
Faster YOLO-LITE: Faster Object Detection
on Robot and Edge Devices

ZhengBai Yao , Will Douglas , Simon O’Keeffe , and Rudi Villing(B)

Department of Electronic Engineering, Maynooth University, Maynooth, Ireland
rudi.villing@mu.ie

Abstract. Mobile robots and many edge AI devices have a need to trade off
computational power against power consumption, battery size, and time between
charges. Consequently, it is common for such devices to have significantly less
computational power than the powerful GPU-based systems typically used to
train and evaluate deep neural networks. Object detection is a key aspect of visual
perception for robots and edge devices but popular object detection architectures
that run fastest on GPU based systems or that are designed to maximize mAP with
large input image sizes may not scale well to edge devices. In this work we evaluate
the latency and mAP of several model architectures from the YOLO and SSD
families on a range of devices representative of robot and edge device capabilities.
We also evaluate the effect of runtime framework and show that some unexpected
large differences can be found. Based on our evaluations we propose new variations
of the YOLO-LITE architecture which we show can provide increased mAP at
reduced latency.

Keywords: Deep learning · Object detection · Convolutional neural network ·
Embedded system · Real-time performance · Edge AI

1 Introduction

Essentially all training and a large majority of the inference and evaluation of deep-
learning models reported in the literature is based on powerful GPU-based systems
deployed locally or in the cloud. However, mobile robots and many edge AI devices
need to trade off computational power against power consumption, battery size, and time
between charges. For this reason, such devices are usually much less computationally
powerful than those used to train and test deep neural networks and frequently they
might not have a GPU. One solution to this problem might be for the edge device to do
minimal processing and instead offload data for processing to the cloud [1]. However,
this solution has its own issues which include data privacy, the cost of communication,
and processing latency, among others. Therefore, there has recently been a trend towards
deploying more sophisticated AI functionality in edge devices, including mobile robots.

In this work, we are particularly focused on object detection, a branch of computer
vision AI focused on identifying and locating objects within an image. In mobile robotic
applications, object detection may be used to identify and locate semantically meaningful

© Springer Nature Switzerland AG 2022
R. Alami et al. (Eds.): RoboCup 2021, LNAI 13132, pp. 226–237, 2022.
https://doi.org/10.1007/978-3-030-98682-7_19



Faster YOLO-LITE 227

features of the scene including objects to be grasped or manipulated, objects whose
location within the map should be remembered, people and obstacles to be approached
or avoided, etc. For a review of object detection in general, see [2].

A review of the literature indicates that most new developments in object detection
and consequent comparative evaluations focus on increasing the mean average precision
(mAP) metric for the COCO [3] or VOC 2007 and 2012 datasets [4, 5]. To achieve
small percentage gains the size of neural network models has increased dramatically
and real time performance is almost always quoted for GPU based systems only. There
has been relatively less attention paid to object detection models that perform well on
less powerful hardware using only the CPU. Additionally, most evaluations use general
datasets with many object classes, but edge AI applications are often specialized and
may only require a small number of classes leading to wasted representational capability
(and power consumption) if large models are applied to the problem.

Therefore, this work focuses on deep neural network architectures for object detec-
tion using CPU only processing that can potentially achieve real-time video capability for
which we have chosen a guideline threshold at 50 ms (or 20 FPS). The main contributions
of this paper are as follows:

• We release our SPL Object Detection Dataset V2 as described in Sect. 4.1.
• We evaluate mAP and inference latency for several object detection models on a

variety of representative hardware platforms.
• We also examine the effect of inference engine selection on latency and any

interactions with the underlying hardware.
• Finally, we propose and evaluate two modified YOLO-LITE architectures [6].

The remainder of this paper is organized as follows. Section 2 presents some related
work, particularly focusing on the model architectures. Section 3 introduces the modified
YOLO-LITE architectures. Section 4 details the experimental setup used to conduct the
evaluations while Sect. 5 presents the results and related discussion. Our conclusions
and future work may be found in Sect. 6.

2 Related Work

The two most well known families of object detection models available today are those
based on the Single Shot Multi-box Detector (SSD) architecture [7] and those derived
from YOLO [8–11]. In their default configurations both these models are rather heavy-
weight and real-time performance is usually reported for high-end hardware such as a
Titan X GPU.

SSD has been primarily optimized for speed using the MobileNetV1 and
MobileNetV2 backbones [12, 13] and generally there are relatively few variations of this
model available, though some exist (e.g. [14]). YOLO, on the other hand, has attracted
a lot of interest and resulted in many variations (e.g. [6, 15]), perhaps because of its
simpler architecture (at least up to YOLOv2). Additionally, a number of studies find that
YOLO models outperform SSD in terms of latency and mAP. Such comparisons tend not
to use the MobileNet V1 or V2 versions of SSD (giving a latency disadvantage) and such



228 Z. Yao et al.

comparisons normally use GPU based systems. Therefore there is a need to compare
these model families in an edge device or embedded system environment. In this work
we are particularly interested to evaluate lightweight or faster variants of YOLO and
SSD, including YOLO-LITE [6] and YOLO with a MobileNet family backbone (e.g.
[16]).

Many embedded systems require an inference framework optimized for CPU based
operation and that is our focus here. The most well known inference frameworks include
TensorFlow Lite [17], OpenVINO [18], and ONNX runtime. ONNX runtime uses some
of the same components as OpenVINO so was not considered for evaluation here. In
the RoboCup community there are two other inference frameworks of relevance. Com-
pileNN [19] is a JIT compiler which compiles neural network models at runtime into
machine code that performs inference. DCG, is an unreleased code generator from the
Nao Devils Dortmund RoboCup SPL team which generates a cpp file from a keras model.
The cpp file has no dependencies outside the standard libraries. Both CompileNN and
DCG make it particularly easy to integrate neural network implementation with custom
embedded applications.

The Coral Edge TPU [20] is a USB based accelerator that has been purpose built to
run machine learning models on the edge. It operates as a coprocessor to the system it
is connected to and can greatly speed up inference on slower devices.

3 New YOLO-LITE Based Models

YOLO-LITE is a simple architecture (with just seven convolutional layers) that is rela-
tively easy to modify but preliminary results indicated it was not the fastest, despite its
small size. We observed that MobileNetV1-YOLOv4 offered the best trade-off between
mAP and latency while MobileNetV2-SSD had the highest overall mAP. We identified
several design decisions in YOLO-LITE which differed from the two better performing
models: (1) the use of standard convolutions throughout; (2) the use of Max Pooling lay-
ers only after each convolution has been performed at full resolution; (3) the exclusion
of Batch Normalization layers; and (4) use of the Leaky ReLU activation function.

Based on this analysis we developed two scalable modifications of the YOLO-LITE
architecture for inclusion in our experimental evaluations. Figure 1 shows the key blocks
used in the original YOLO-LITE and our modified versions.

3.1 YOLO-LITE-M1

The first variant of YOLO-LITE modifies the backbone of the model inspired by
MobileNetV1. The number of channels per layer is based on YOLO-LITE. All convolu-
tion layers are replaced by mobile convolution (MConv) layers in which the convolution
is replaced by a depthwise convolution followed by a pointwise 1 × 1 convolution (see
Fig. 1). LeakyReLU activations are replaced by ReLU6. Max pooling layers are removed
and instead the relevant convolutions are performed with a stride of 2. Finally, in contrast
to YOLO-LITE, Batch Normalization layers are re-introduced.



Faster YOLO-LITE 229

Fig. 1. Main convolutional stages used in TinyYOLOv2 and YOLO-LITE (Y2Conv, no BN in
YOLO-LITE), YOLO-LITE-M1 (MConv), and YOLO-LITE-M2 (MBConv). The number of input
channels, c, is expanded by the depthwise multiplier, dw. The number of output channels, k’, is
modified by the channel multiplier in accordance with (1).

Like MobileNetV1 we include a channel multiplier (they call it the width multiplier)
which scales the number of kernels or output channels generated at every convolutional
layer. A factor of 1 has the same number of output channels at each layer as the original
YOLO-LITE architecture. Factors smaller than one reduce the number of channels (and
consequently the number of parameters and the computation load) while factors larger
than 1 increase them. To facilitate efficient SIMD processing, we constrain the channels
at each layer to be the nearest multiple of a tiling parameter that matches the requested
channel multiplication factor. The tiling parameter defaults to 8 in this work. In other
words the actual output channels, k′, is calculated as:

k ′ = round(k · cm, tile) (1)

MobileNetV2 bottleneck layers introduce the concept of an expansion factor such
that the number of channels in an input layer is first expanded before applying a depth-
wise separable convolution. The MobileNetV2 authors found that this increased the
expressiveness of the network. In YOLO-LITE-M1 we use a simplification of this idea,
controlled by a depthwise multiplier which determines the number of output channels
for each input channel. When the depthwise multiplier is 1, this is a standard depthwise
separable convolution. When it is greater than 1, the depthwise output is expanded rela-
tive to the input and each input layer is convolved depthwise with multiple independent
filter kernels, giving the expanded output more representative capability. In this simpli-
fied scheme, each expanded channel is a function of one kernel convolved with one input
channel whereas in the MobileNetV2 scheme, each expanded channel is a weighted sum
of all the input channels.

As a final modification from the original YOLO-LITE architecture, we modify the
overall depth of the network in a rather simple manner depending on the input image
size. This modification is inspired both by the need to maintain a certain minimum spatial
resolution in the object detection head layers and by the development of EfficientNet,



230 Z. Yao et al.

whose authors found that network depth (that is the number of layers) should be adjusted
alongside other factors such as the input image size. Consequently the 5th convolution
layer in the model is optional and is included only if the input image size is of size 224
× 224 or larger.

Table 1 depicts the final model architecture. The MConv block is as shown in Fig. 1.
The Conv block is a standard 2D convolutional layer whose number of outputs are scaled
by the channel multiplier, cm, in accordance with (1). YOLOChannels is calculated
according to:

YOLOChannels = anchors × (classes + 5) (2)

Table 1. YOLO-LITE-M1 architecture (for nominal 224 × 224 × 3 input) where s is the stride,
cm is the channel multiplier and dw is the depthwise expansion multiplier which is scalable for
most stages but fixed at 1 for stage 2 of the architecture. Stage 5 is excluded for inputs smaller
than 224 × 224.

Stage Input size (for cm = 1) Operator(s)

1 224 × 224 × 3 Conv(16, 3 × 3, s = 2), BN, ReLU6

2 112 × 112 × 16 MConv(32, s = 2, cm, dw = 1)

3 56 × 56 × 32 MConv(64, s = 2, cm, dw)

4 28 × 28 × 64 MConv(128, s = 2, cm, dw)

5 (optional) 14 × 14 × 128 MConv(128, s = 2, cm, dw)

6 7 × 7 × 128 Conv(256, 3 × 3, cm), BN, ReLU6

7 7 × 7 × 256 Conv(YOLOChannels, 1 × 1)

3.2 YOLO-LITE-M2

The second variant of YOLO-LITE modifies the backbone of the model based on Mo-
bileNetV2 instead of MobileNetV1. Unlike YOLO-LITE-M1, the number of output
channels per stage is based more closely on the MobileNetV2 architecture than YOLO-
LITE. The resulting model is much deeper than YOLO-LITE but with fewer output chan-
nels per stage. Our expectation was that a deeper but narrower model, with more expres-
sive bottleneck layers would yield higher mAP, possibly at the expense of increased
inference latency.

Similar to MobileNetV2, mobile bottleneck (MBConv) blocks are the principal ele-
ments of the design. As shown in Fig. 1, these include an extra 1 × 1 convolution that
implements the expansion of input channels within the block in a more sophisticated
manner than the MConv block. Additionally, when MBConv blocks are repeated in a
cascade within a stage, the first block in the cascade implements the specified stride.
Subsequent blocks in the cascade use a stride of 1 and in this case include a so-called
inverted residual connection (between bottlenecks) as shown in Fig. 1.



Faster YOLO-LITE 231

Table 2 depicts the final model architecture. The MBConv block is as shown in Fig. 1.
Again, the Conv block is a standard 2D convolutional layer whose number of outputs
may be scaled by the channel multiplier, cm, in accordance with (1).

Table 2. YOLO-LITE-M2 architecture (for nominal 224 × 224 × 3 input) where s is the stride
(only applied to the first block in a cascade), cm is the channel multiplier, dw is the bottleneck
expansion multiplier, and n is the number of times the operation is cascaded in that stage. Stage
5 is excluded for inputs smaller than 224 × 224.

Stage Input size (for cm = 1) Operator(s) n

1 224 × 224 × 3 Conv(32, 3 × 3, s = 2), BN, ReLU6 1

2 112 × 112 × 32 MBConv(16, s = 2, cm, dw) 1

3 56 × 56 × 16 MBConv(24, s = 2, cm, dw) 2

4 28 × 28 × 24 MBConv(32, s = 2, cm, dw) 2

5 (optional) 14 × 14 × 32 MBConv(64, s = 2, cm, dw) 3

6 7 × 7 × 64 Conv(256, 3 × 3, cm), BN, ReLU6 1

7 7 × 7 × 256 Conv(YOLOChannels, 1 × 1) 1

4 Experimental Setup

4.1 Dataset and Training

Unlike traditional evaluations which utilize VOC (20 classes) or COCO (80 classes)
datasets, the dataset used here was based on RoboCup robot soccer (4 classes) and is
available for download1. This dataset may be more representative of application specific
datasets in embedded or edge AI applications which feature relatively few classes. The
dataset comprised 4416 training images and 492 test images with 13178 and 1486 object
instances respectively divided into four object classes: robot (5412), ball (4452), goal
post (2912), and penalty spot (1888). Objects are present in a variety of sizes and can
overlap. The goal post and penalty spot classes are relatively challenging for most object
detectors.

For reasons not directly related to this evaluation, two different training regimes were
used. MobileNetV2-SSD (at full width) and TinyYOLOv3 were both trained on a Dell
XPS 8930 with an Intel i7-9700 CPU and an NVIDIA RTX2060 GPU. Both models were
trained using weights that had been pre-trained on the COCO dataset. MobileNetV2-
SSD was trained in TensorFlow 1.15 for 40000 iterations with a batch size of 6, resulting
in 240000 images being processed in total. TinyYOLOv3 was trained in the DarkNet
framework using the same batch size and number of iterations.

All other models were trained on a Dell Precision 3630 workstation with an Intel i7-
8700K CPU and an NVIDIA P2000 GPU. These models did not use pre-trained weights

1 https://roboeireann.maynoothuniversity.ie/research/SPLObjDetectDatasetV2.zip.



232 Z. Yao et al.

and were trained from scratch on the evaluation data set. Models were trained for up
to 200 epochs with a batch size of 32 and 10% of the training data used for validation.
Therefore, 793600 images were processed during training.

The dataset images are 640 × 480 RGB. We standardized on three input sizes for
training and subsequent evaluation: 128 × 128, 224 × 224, and 416 × 416. The standard
training and data augmentation procedures were followed for SSD and YOLO based
models.

4.2 Models

We selected models that were specifically designed to be less computationally intensive
for evaluation. Two variants of MobileNetV2-SSD were evaluated. The first (using trans-
fer learning from pre-trained weights) utilised the default MobileNetV2 width (width
= 1). Preliminary investigation indicated this might be very slow, so the second variant
used width = 0.25 so that it might run with lower latency.

Two variations of TinyYOLO were also included in the evaluation: TinyYOLOv4
and TinyYOLOv3. TinyYOLOv3 used transfer learning from pre-trained weights so its
mAP may not be directly comparable to that of TinyYOLOv3. The implementation of
TinyYOLOv4 was based on TensorFlow and Keras [16]. The learning rate was set to
1e−4 and the only modifications involved were setting the number of classes, the class
names, and the anchors to use.

MobileNetV1-YOLOv4 used width = 0.25 for the MobileNetV1 backbone. Again,
preliminary work indicated that the full width backbone would run too slowly. The
implementation is based on [21]. Other than the width, remaining modifications were
the same as for TinyYOLOv4.

YOLO LITE was originally developed for the DarkNet/DarkFlow framework. We
ported this to Keras using the general structure of the TinyYOLOv4 implementation.
Learning rate, classes, and anchors were set to match the other YOLO family models.

YOLO-LITE-M1 was evaluated in two configurations: (1) cm = 1, dw = 1; (2) cm
= 0.5, dw = 4 which might have higher mAP. Similarly YOLO-LITE-M2 was evaluated
using two configurations: (1) cm = 1, dw = 4 and (2) cm = 0.5, dw = 4. MobileNetV2
originally set the expansion to 6 but we used 4 to reduce the size and maintain a number
of outputs that was a multiple of 4 and should tile well.

4.3 Inference Configurations

We evaluated the models on the following hardware platforms:

• Raspberry Pi 3B with quad core Broadcom BCM2837 CPU @ 1.2 GHz running
Raspian Linux 10 (Buster).

• Acer Aspire One netbook with an Intel Atom N270 CPU @ 1.6 GHz running Lubuntu
18.04.5. This is a very similar vintage and capability to the Atom Z530 CPU in the
Softbank Nao V5 robot, but more convenient to use for this evaluation. Notably, unlike
other systems in this list, this is a 32-bit processor.



Faster YOLO-LITE 233

• Softbank Nao V6 with a quad core Intel Atom E3485 CPU @ 1.9 GHz
• Latitude 7400 notebook with an Intel i7-8665U CPU @ 1.9 GHz running Ubuntu

18.04.5 (potentially representative of higher end or more modern robotic systems).

Including the i7-8665U gives some insight into differences that may appear due to
more modern instruction sets (for example the inclusion of AVX2 and FMA) and also
gives insight into the difference between machines used for development (even those
without a GPU) and less powerful CPUs often used in edge and mobile robot devices.

Inference was evaluated using (1) TensorFlow Lite version 2.5.0 or built from source
(as of 8 April 2021); (2) CompileNN, built from source (as of 6 April 2021); (3) Nao
Devils DCG code generator (unreleased version as of 14 April 2021); (4) Intel Open-
VINO developer package, version 2021.3.394; and (5) the Coral Edge TPU Accelerator
version 1.0. Table 3 lists the configurations evaluated.

Table 3. Hardware and inference framework combinations evaluated. Note: fp = floating point,
q8 = quantized 8-bit integer, NT = not tested, NC = not compatible, NR = tested but not reported
as times were worse than floating point

Hardware tflite-fp tflite-q8 tflite + Coral OpenVINO CompileNN DCG

RPi3B Y Y Y NT NC NC

Atom N270 Y NR NC NC Y Y

NaoV6 Y NR Y Y Y Y

i7-8665U Y NR Y Y Y Y

Common benchmarking parameters were used on all systems as follows: a batch
size of 1; just 1 thread for inference; at least 5 warm-up runs; and 100 inference runs
averaged for latency measurement. Each framework was benchmarked using its own
benchmark tool, namely benchmark_model for TensorFlow Lite, Benchmark for Com-
pileNN, benchmark_app.py for OpenVino, and the embedded benchmarking code in
DCG generated cpp files.

Perhaps surprisingly, when applied to DCG cpp files, we found that clang (6.0.0)
produced a binary that ran 20% faster than code compiled with g++ (7.5.0) using the
same optimisation settings.

5 Results and Discussion

5.1 Model Architecture and Input Image Size

The effect of model architecture and input image size was evaluated using all models with
the one inference framework (TensorFlow Lite) available on all hardware platforms. On
the NaoV6, Fig. 2 shows that just two of the models attain our real-time target and both
have an mAP which is much lower than the maximum achieved. MobileNetV2-YOLOv4
and YOLO-LITE both demonstrate significant mAP gains for moderate increase in



234 Z. Yao et al.

latency, suggesting that these models are the most promising for further development
and tuning. MobileNetV2-SSD-0.25 has the best overall mAP with input size 224 and
416 and is only beaten by MobileNetV2-SSD at size 128.

Fig. 2. Latency and mAP in relation to object detection model and input image size evaluated on
the NaoV6 (Atom E3845) using the TensorFlow Lite runtime. Very long latencies associated with
input size 416 are not shown for presentation reasons.

Latencies for the i7 platform follow a similar pattern to the NaoV6, but are between
6 and 14 times shorter, and are therefore not shown. The situation was broadly similar on
the older Atom N270 and the Raspberry Pi, but the latencies are longer as shown in Fig. 3.
The latency lead of MobileNetV1-YOLOv4 over YOLO-LITE is more pronounced here.
This would suggest that the speedup advantage of the MobileNet family of architectures
is even more important on these platforms.

Fig. 3. Object detection latency on Atom N270 and Raspberry Pi 3B with an input image size of
128 × 128. Larger input sizes yielded much longer latencies and are consequently not shown.

5.2 Choice of Inference Framework, Quantization, and Accelerator Support

To compare inference frameworks, we selected two unrelated models that were suitable
for quantization: an SSD model and a YOLO based model. Figure 4 shows the latency



Faster YOLO-LITE 235

results for YOLO-LITE (second fastest overall and easy to quantize) and MobileNetV2-
SSD (well supported for quantization) across the range of hardware and inference
framework combinations presented in Table 3.

Fig. 4. Object detection latency on multiple hardware platform and inference runtime com-
binations for two different network architectures. Latencies longer than 200 ms excluded for
presentation reasons.

Considering speedup relative to the TensorFlow Lite floating point on each platform
we can make some observations. For floating point inference, OpenVINO is fastest on
the i7 (1.78×), CompileNN is fastest on the NaoV6 (1.28×), and TensorFlow Lite is
fastest on the Atom N270 and Raspberry Pi. OpenVINO likely makes better use of the
more powerful SIMD instructions of the i7. DCG yielded latencies that were longer than
TensorFlow Lite on the Atom N270 (0.66×) and the NaoV6 (0.83×). However it has
the advantage of being very easy to integrate with an application having essentially no
non-standard dependencies.

On the Raspberry Pi, quantized models demonstrated a useful speed up
(2–2.9×). However, this was not replicated on Intel CPUs where quantized models had
larger latency than floating point models. TensorFlow Lite is better optimized for the
ARM NEON instruction set and it appears that the XNNPACK delegate does not (yet)
sufficiently optimize quantized models. OpenVINO does provide support for quantized
models but the process of creating them is much more involved than with TensorFlow
Lite and was not completed for this evaluation.

The Coral Edge TPU accelerator demonstrated dramatic latency improvements on
the Raspberry Pi (33×), NaoV6 (19–23×), and i7 (5–8×), but required the replacement
of LeakyReLU layers with ReLU in the YOLO-LITE model. The edge TPU could not
be used with the Atom N270.

5.3 YOLO LITE-M1 and YOLO-LITE-M2

Figure 5 summarizes the performance of the new models (named as model-channel
multiplier-depthwise multiplier). YOLO-LITE-M2-1-4 has the best mAP and is always
faster than MobileNetV1-YOLOv4 (for the same image size), while YOLO-LITE-M2-
0.5-4 is always fastest overall and may have the best tradeoff between mAP and latency.
The results also show that it is easy to tune the new models or speed or mAP.



236 Z. Yao et al.

Fig. 5. Latency and mAP for new YOLO-LITE based models and the fastest models identi-
fied previously. All models were tested with an input image size of 224, but YOLO-LITE, and
MobileNetV1-YOLOv4 were also tested at size 128 (shown with smaller markers).

6 Conclusions

In this work we evaluated several object detection models in the YOLO and SSD families
to identify which could provide the best performance (mAP vs latency) on a variety of
hardware platforms and inference frameworks. We also proposed two new models based
on YOLO-LITE and included these in our evaluations.

Our results showed that our new models offer the best performance amongst the
evaluation set and are easy to tune for maximizing speed or maximizing mAP. Our results
also suggest that there are additional gains to be made on Intel CPUs if quantization was
well supported, but current frameworks all have issues in this regard. We also observe
that the Coral Edge TPU facilitates dramatic speed-ups if the model to be used can
be easily quantized and only uses operations supported by the TPU. Future work may
include evaluation of other accelerators and more recent model architectures.

Finally, to support further building upon this work and development of better object
detectors, we have also released the RoboCup SPL object detection data set (V2) used
for this evaluation.

Acknowledgements. The authors would like to acknowledge the assistance of Arne Moos and
Nao Devils TU Dortmund who kindly generated C++ implementations of object detection net-
works using their as yet unreleased DCG code generator. We are also grateful for the assistance
of Tobias Kalbitz and Nao Team HTWK who provided us with an early build of TensorFlow Lite
for the Nao V6 (eventually superseded for the final evaluation).

References

1. Saha, O., Dasgupta, P.: A comprehensive survey of recent trends in cloud robotics architectures
and applications. Robotics 7, 47 (2018)



Faster YOLO-LITE 237

2. Zhao, Z., et al.: Object detection with deep learning: a review. IEEE Trans. Neural Netw.
Learn. Syst. 30(11), 3212–3232 (2019)

3. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele,
B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-10602-1_48

4. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL
visual object classes challenge 2007 (VOC2007) results (2007)

5. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL
visual object classes challenge 2012 (VOC2012) results (2012)

6. Huang, R., Pedoeem, J., Chen, C.: YOLO-LITE: a real-time object detection algorithm opti-
mized for non-GPU computers. In: 2018 IEEE International Conference on Big Data (Big
Data) (2018)

7. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling,
M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-46448-0_2

8. Redmon, J., et al.: You only look once: unified, real-time object detection. In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

9. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv e-prints arXiv:1804.
02767 (2018)

10. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2017)

11. Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M.: YOLOv4: optimal speed and accuracy of object
detection. arXiv e-prints arXiv:2004.10934 (2020)

12. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision
applications. arXiv e-prints arXiv:1704.04861 (2017)

13. Sandler, M., et al.: MobileNetV2: inverted residuals and linear bottlenecks. In: 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018)

14. Zhang, X., et al.: A fast SSD model based on parameter reduction and dilated convolution.
J. Real-Time Image Proc. 18(6), 2211–2224 (2021). https://doi.org/10.1007/s11554-021-011
08-9

15. Zhao, H., et al.: Mixed YOLOv3-LITE: a lightweight real-time object detection method.
Sensors (Basel Switz.) 20(7), 1861 (2020)

16. Bubbliiiing: YOLOV4-tiny: the realization of you only look once-tiny target detection model
in Keras (2021)

17. Authors, T.: TensorFLow for Mobile & IoT. https://www.tensorflow.org/lite. Accessed 2021
18. Authors, O. OpenVINO Toolkit Overview. https://docs.openvinotoolkit.org/latest/index.html.

Accessed 2021
19. Thielke, F., Hasselbring, A.: A JIT compiler for neural network inference. In: Chalup, S.,

Niemueller, T., Suthakorn, J., Williams, M.A. (eds.) RoboCup 2019. LNCS, vol. 11531,
pp. 448–456. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35699-6_36

20. coral.ai. USB Accelerator datasheet. https://coral.ai/docs/accelerator/datasheet/. Accessed
2021

21. Bubbliiiing: YOLOV4: you only look once object detection model - modified mobilenet series
backbone network - realization in Keras (2021)


