
Starkit: RoboCup Humanoid KidSize 2021
Worldwide Champion Team Paper

Egor Davydenko, Ivan Khokhlov, Vladimir Litvinenko, Ilya Ryakin, Ilya
Osokin, and Azer Babaev

Team Starkit, Moscow Institute of Physics and Technology, Russia
robocup.mipt@gmail.com

Abstract. This article is devoted to the features that were under devel-
opment between RoboCup 2019 Sydney and RoboCup 2021 Worldwide.
These features include vision-related matters, such as detection and lo-
calization, mechanical and algorithmic novelties. Since the competition
was held virtually, the simulation-specific features are also considered
in the article. We give an overview of the approaches that were tried
out along with the analysis of their preconditions, perspectives and the
evaluation of their performance.

Keywords: Robotics · Simulation · Computer Vision · RoboCup

1 Introduction

The main goal for these years was to improve the localization and motion sta-
bility. Also we managed to benefit from the stability by building more complex
behaviour algorithms on top of it. Some of these features helped us to take first
place in RoboCup 2021 KidSize Humanoid League.

This year, the competition took place in simulator Webots, which was a
challenge for the competitors. We have devoted a lot of time and effort to create
a simulation model of our robot that will be similar enough to the real-world one.
Moreover, organizers have provided a very precise grass model. These factors
allowed our robots to play in simulation almost with the same strategy and
movements as in the real world. We believe that simulated games with automatic
referee will intensify the strategy development for the competitors. Also, we are
glad to announce the publication of our model1 and docker image2 to provide
the ability to compete with our robots.

Speaking of the tournament, we have significantly improved our software dur-
ing the competition. During the group stage we have had severe problems with
the communication of Webots and docker image, but with rapid and valuable
support from the technical team we have managed to solve them. During the
playoff, our robots have scored 32 goals and received only 3 and achieve the most
effective game in our league by scoring 23 goals in one game vs EDROM. The

1 Google Drive
2 Docker Hub

ar
X

iv
:2

11
0.

08
37

7v
1 

 [
cs

.R
O

] 
 1

5 
O

ct
 2

02
1

https://drive.google.com/drive/folders/1Q6x5QzOxln3-fHeHYnt-hTPlJnfus896?usp=sharing
https://hub.docker.com/repository/docker/starkit/v-hsc2021


2 Team Starkit

most exiting game was the final one3 with MRL-HSL from Iran, which was a
challenge. We suppose that changing strategy to more defensive and using op-
ponent avoidance gave us a slight advantage. Thus, we were capable of winning,
despite the fact that the MRL-HSL robots walked faster and had a stronger kick.

We could highlight the following technical and algorithmic features behind
the performance of our robots in the tournament.

– Due to wide field of view of the cameras of our robots they were capable
of fast ball detection. So it was possible for them to instantly start the
movement towards the ball when it was necessary, while the opponents had
to collect data about the surrounding for some time.

– The kick movement was fine-tuned to be robust and stable, leading to the
predictable ball movement. So the pass game was possible, while the stronger
kick of the opponents varied in the ball travelling distance.

– Fast localization of the robots made it possible to walk precisely to the
necessary position for the while receiving the pass. Moreover, the robots
were rapidly recovering after falling, meaning effectively no time to localize
from scratch.

– Our robots were able to prevent collisions with teammates and opponents
due to the stereo vision-based obstacle avoidance and precise localization.
Also it was possible for them to follow the most active action as the game
was unfolding.

Also, we work on developing robotics education [1] in our institute.
The paper consist of the following sections: robot model description is given,

the wide-angle stereo vision and corresponding localization are introduced and
lastly novel motion planning and falling prevention algorithms are presented.

2 Model

2.1 Model and electronics changes

The initial robot structure at the beginning of 2019 was fully inherited from
Rhoban team, the world champion at that time. This model as a product of
several years of development in the University of Bordeaux had great robustness,
and it gave us an invaluable amount of knowledge about building a good robot
for KidSize league competitions.

Its main construction element is a flat milled aluminum plate. Real game
tests demonstrated that this structure is prone to small irreversible deformations,
often leading the damaged robot to look intact but performing worse.

Thus, we decided to switch to a milled carbon structure, which is both stiffer
and lighter, redesigning some parts to better fit the carbon milling process. Also,
we installed support bearings at each limb, including head, to mitigate the servo
output shaft damage, often occurring when the falling robot hits objects with
its head.
3 YouTube Final Game

https://youtu.be/_9q26QjDluw


Champion Team Paper 2021 3

Fig. 1. Real robot Fig. 2. Robot model in Webots

Also, we developed and installed a novel on-board power controller, allowing
us to change the battery of the robot without restarting it. This controller re-
lies on LTC4228 IC-based line switching, and we are happy to share it via our
GitHub.

2.2 Real2sim

The robot model was exported from SolidWorks to URDF4 and then to PROTO
format. We ensured that all the parameters, e.g. masses, inertia tensors, are
close to the real values. This approach along with the use of the same material
appearances where possible, helped us to get the model not only physically but
also visually close to the real robot.

The most difficult for us was the simplification according to the Model Speci-
fications document5. An example of the head simplification is given in 2.2. Since
there is no need for heat dissipation in the simulator, all the ventilation holes
were removed. Wires, screws and their landing nests were also considered redun-
dant for the simulation.

Another problem was to fit the parts with complex shapes in the simple
bounding objects. Lots of time was spent to ensure that they are close enough
to the original details, that there are not too many of them, and it is possible

4 http://wiki.ros.org/sw_urdf_exporter
5 https://cdn.robocup.org/hl/wp/2021/06/v-hsc_model_specification_v1.05.

pdf

https://github.com/StarkitRobots
http://wiki.ros.org/sw_urdf_exporter
https://cdn.robocup.org/hl/wp/2021/06/v-hsc_model_specification_v1.05.pdf
https://cdn.robocup.org/hl/wp/2021/06/v-hsc_model_specification_v1.05.pdf


4 Team Starkit

Fig. 3. Head: from real to simplified

Fig. 4. Bounding objects for legs (left), neck (middle) and arms (right)



Champion Team Paper 2021 5

to turn on the selfCollision and do not ruin the motion because of the rough
shapes 2.2. This robot model won the Best Humanoid Model Award.

3 Vision

3.1 Wide-angle lens

Prior to 2020, our robot was equipped with a regular lens with approximately
45◦ Field of View (FoV). This relatively narrow FoV forced the robot to con-
stantly move the head with moderate velocity to scan the surroundings trying
to find a ball or opponent robots, inherently emulating a large-FoV camera with
constantly moving narrow-FoV camera. This leads to the drawbacks, causing
game quality degradation:

– inability to rapidly detect the ball
– inability to perceive large structures on the field (prolonged goal lane / bor-

der lane / central circle)

At the end of 2019 we decided to switch to a wide-angle setup, and started to
test it directly after the RoboCup Asia-Pacific 2019 event. We tested various lens
setups and picked up the Beward BL0220M23 lens model, giving approximately
135◦ FoV on our FLIR camera. This FoV allows the robot to see the ball in
almost all required view angles using only the small panning motion of the
camera, allowing the robot to react to the ball movements more rapidly.

But the wide-angle lens setup immediately leads to resolution and rectifica-
tion problems. The first is the smaller pixel size of objects compared to a narrow
FoV imaging. For an “classic” narrow FoV imaging, we use a 720 × 540 resolu-
tion of a captured image with a 2 × 2 binning on a camera (which is capable
of 1440 × 1080 raw image capturing). This binning allows us to lower the expo-
sure time and to move a camera relatively fast with a little motion blur. At this
binned resolution, the ball at the center of a robot’s sight has the pixel size of
approximately 40×40 pixels. This size is enough to robustly detect the ball with
our current convolutional neural network-based pipeline. But with 135 degrees
FoV at the same 720 × 540 input image resolution the pixel size of a ball is less
than 20 × 20, which is below the robust detection threshold. To mitigate this
problem, we switched to full 1440×1080 capturing with a lower camera panning
speed. This resolution can still provide the reasonable pixel size of a ball in the
center of a FoV of wide-angle lens, but with a cost of slightly higher motion blur
and noise and larger exposure times.

3.2 Vision pipeline parallelization and optimization

Our “classic” vision pipeline prior to the end of 2019 was a slightly modified
version of a highly successful vision pipeline of the Rhoban team, used by them to
win the RoboCup 2019 competition. This pipeline uses the 640×480 or 720×540
captured image size and is capable of processing it at 30 frames per second using a



6 Team Starkit

strictly “series” processing architecture. The series architecture means that each
vision processing step can be performed only after the previous processing step is
finished. For example, it’s possible to perform the goal post detection only after
the ball detection step is done. According to Rhoban’s naming, each pipeline
processing step is called a “filter”, and thus the “classic” vision pipeline is the
series connection of different vision filters that runs strictly one after another
connected by the corresponding inputs and outputs. Almost none of the vision
filters we used at that time were capable of being parallelized, and ran mostly
in single-core mode with some minor exceptions to truly OpenCV-based well-
parallelized filters like color space conversion.

After switching from 720 × 540 to 1440 × 1080 capturing with a wide-angle
setup, the throughput of this “series” vision pipeline degraded to less than 7
frames per second, not allowing us to play a normal dynamic game. In order to
optimize the vision pipeline performance, we rewrote it using a hybrid “series-
parallel” architecture with an automatic filters parallelization.

At the robots’ software boot time, the vision pipeline governor loads its
structure from a JSON file and automatically parses it to estimate which vi-
sion processing steps (filters) can be done in parallel (i.e. ball detection and
goal posts detection). This step has a name of “filter’s batch”. The criterion
of the possibility of the parallel processing for the group of vision filters is all
their input dependencies that are satisfied simultaneously. We use the std::async
multi-threading to run all the filters in a batch in separate threads and wait for
all the filters in a batch to finish. This pipeline allowed us to better utilize the
multi-core architecture of an on-board PC, giving approximately 10-12 frames
per second processing.

To further optimize the vision pipeline, we divided processing steps that
required a full-sized input image and filters that can work on downsampled input
image with small robustness degradation. An example of such filter is the goal
posts detector: they are significantly larger than the ball and can be detected
well enough on a downsampled 720 × 540 image. In addition we parallelized all
the possible filters with the OpenCV “parallel for” approach.

The second major drawback of a wide-angle lens setup we faced is the ne-
cessity to undistort the input image. The raw wide-angle image has a heavy
radial distortion, causing straight lines to be bent significantly, especially at the
borders of an image. At first sight, OpenCV library has a mature set of tools to
perform the distortion correction, widely used by the robotics community. But
the resultant undistorted image will be significantly larger than the captured
image, causing the throughput of a vision pipeline to degrade twice: because of
the undistortion time and because of the larger image size that will be processed
in all the subsequent filters. For example, for the 135 degrees FoV lens with a
1440× 1080 capture, the rectified image will have a size bigger than 2880× 2160
to cover all the pixels present in the captured image with the same resolution at
the center of an undistorted image (assuming we are still using pinhole camera
model with a flat imaging plane).



Champion Team Paper 2021 7

To mitigate this, we modified the underlying math of the vision filters for
most of them to perform directly on the raw wide-angle distorted image. For
example, our ball detection routine performs its job on a distorted image, and
only undistort the final position of several ball candidates, not the full image.
So there is no classical undistortion filter at the beginning of our vision pipeline.

After all of these optimization steps, our wide-angle vision pipeline through-
put is brought back to 20 frames per second which (at least for us) is enough for
a moderate dynamic gameplay, and only a small panning of a head is needed to
detect the ball at all the required positions.

3.3 Stereoscopic camera setup

The classic approach to detect the opponents at the KidSize league is to use
some CNN/DNN processing or semantic segmentation to find the robots on the
captured image, and then estimate their field positions from monocular image
position utilizing the fact that the opponent robot is standing on a flat ground.

After some testing, we were not satisfied with this approach. Most of the
robots in the league use some sort of lightened legs and thin feet, so only the
body of a robot can be detected robustly enough but not the legs (at least
with our detection approaches), especially when the robot is in front of the
observer. This leads to the large ambiguity of a robot’s feet position estimation
on a monocular image. But the ability to robustly estimate the opponent’s field
position is mandatory for obstacle avoidance and ball kick direction calculation
for better strategy. Also, to detect the goal posts, goal net, legs of a referee
and other obstacles the multi-class segmentation or detection DNN is needed
with heavy processing time requirements, requiring to use some hardware neural
networks accelerators like Intel Neural Compute Stick or its analogues.

As an attempt to fuse the monocular vision data and calculated geometrical
data we have implemented a pipeline that adds the predicted depth as an ad-
ditional channel to the TinyYOLO v3 NN detector, which resulted in a paper
[3].

After that we decided to use a different approach and install a stereoscopic
wide-angle vision system, being the first to do so in the KidSize league to our
knowledge.

This stereoscopic setup allowed us to robustly detect all the possible obstacles
by their shape and size, not appearance or color, and estimate the distance to
them with sufficient precision. This approach forced us to put large effort into
solving camera synchronization issues and stereoscopic processing issues to keep
the vision pipeline throughput fast enough.

Currently, we use a pair of FLIR BFS-PGE-16S2C cameras with 62 mm
baseline. We use a hardware synchronization feature of these cameras, making
one of it act as a master, generating the sync signal during the exposure time,
and the other camera acts as a sync slave using the sync signal as a trigger
input. Both frames are being augmented with a hardware timestamp. The vision
pipeline input routine was modified to support two capture inputs, and the
special synchronization governor was implemented to estimate the difference



8 Team Starkit

between timestamps of input frames and re-sync the capturing if one of the
captured frames was missing due to high CPU load or another issues. Utilizing
the fact that the FLIR camera has a global shutter feature, this setup allows us
to get a good quality stereo pair even in the case of a fast-moving robot.

The weight of a large head with a dual camera setup causes our robot to be
a little less stable during walk and kick. We are mitigating this with the “active
falling” and other walk stabilization techniques.

3.4 Fast stereoscopic vision processing

To keep the vision pipeline fast enough, we use downsampled 720 × 540 images
as an input to the stereoscopic processing filter. The stereoscopic processing fil-
ter is an optimized custom-written routine doing all the stereoscopic processing
steps in one filter. Currently, we use classic OpenCV rectification and dispar-
ity estimation, followed by custom disparity to point cloud processing combined
with voxelization via binning and filtering. Then we use a ground plane estima-
tion using RANSAC algorithm, and a combination of 2D connected components
analysis and Point Cloud Library KD-Tree based EuclideanClusterExtraction
[7] to detect obstacles as objects which are protruded by some threshold from a
detected ground plane.

Fig. 5. Three different views of a real game example with two opponent robots being
detected as obstacles in a 3D point cloud constructed from stereoscopic image using
algorithms described above. Pictures are taken from a real-time point cloud feed by
the robot, on-board processing speed is more than 10 FPS

Our on-board PC (currently the Intel NUC i7 gen9 ) is capable of performing
this stereo pair processing at 10-12 frames per second. As a comparison, classic
ROS stereo processing, being integrated in our vision pipeline, gives about 2-3
FPS under the same conditions. So we abandoned it and used our less precise,
but faster solution. Currently, we use ROS only for visualization of the resultant
point cloud and obstacles for debugging purposes. (Sample of visualization is
given on figure 5)

To integrate these 10 frames per second stereoscopic processing in our project,
we once again modified the vision pipeline to support filters that operate at
the frequency that is a divider of the capturing frequency. Currently, the main
pipeline is done at 20 FPS, and stereoscopic processing at 10 FPS. Our tests show



Champion Team Paper 2021 9

that it is not necessary to detect the obstacles faster than 10 times per second
because none of the current robots at the league move so fast that the detection
does not work properly. But this holds true only in the case of a wide-angle
stereoscopic vision setup that we have. If the robot needs to rapidly pan and tilt
its head to cover all the required large field of view with a relatively narrow field
of view stereoscopic camera, we assume that the stereo pair processing should
be faster in order to not to miss important data.

4 Localization

4.1 Line-based localization on narrow FoV

The goal post detection-based localization that we used in 2019 (that were picked
from Rhoban 2018 code release) was not robust enough even at the RoboCup
2019 competition. To find an alternative we switched to a field lane detection
based approach.

We implemented a custom vision filter for field lines detection. The main
idea was to use some prolonged ”global” features instead of small ”local” ones
to make the detection more robust. Our filter is capable of detecting two major
types of features: a) the single field line and b) the corner of two field lines.

Due to prolonged structure, field lines can be detected more reliably in the
presence of noise and motion blur than the goal posts or other local features.
Also in comparison to a goal posts or other point-like features with no distinct
orientation information (we can observe a goal post from any angle as it will
look the same), the lines and corners embed additional orientation information
allowing the particle filter to converge faster due to less potential orientation
ambiguity.

At the first step, our filter tries to find any local features on the image that
can be treated as the part of a straight line. Similar to the classic Sobel edge
detection approach, we do two passes of a sliding window convolution - one in the
horizontal, and one in the vertical direction. Our sliding window consists of three
regions. The horizontal pass sliding window consists of three rectangles - left,
middle and right. The middle rectangle corresponds to the line being detected,
its size is picked up at each image location according to the expected line width
at this field position. Left and right rectangles correspond to the regions to the
left and right of a line being detected. The middle rectangle should be white and
bright, and the left and right rectangles should be dark and green. The estimation
of how this current image position fits this criterion is done via score function
using integral image processing similar to ball detection sliding window routine.
After this sliding window step, we get two images that we call a horizontal and
vertical “heatmaps” for a horizontal and vertical pass separately.

At the second step, we perform a Non-Maximum Suppression (NMS) [6] al-
gorithm to detect the local maximums of these heatmaps. This local maximums
correspond to the middle pixels of a line being detected. To speed up the process-
ing, the sliding window and NMS algorithms are performed not on each image
row/column, but with decimation.



10 Team Starkit

Fig. 6. Possible positions of a robot (blue) to see the observation detected (red). Goal
post (a): high orientation ambiguity / moderate position ambiguity. Line (b): very
low orientation ambiguity / high position ambiguity. Corner (c): very low orientation
ambiguity / very low position ambiguity. The corner is the most valuable observation
among listed ones.

At the third step, these local maximums act as the inputs to the classic
OpenCV Probabilistic Hough Transform [5] algorithm to detect the candidates
of the line segments. Its result is then filtered to join the separate short segments
into prolonged straight lines and to remove the duplicated lines if there are any.
If the length of a line is above the threshold, it will be reported to the particle
filter as a “line” observation.

At the fourth step, the resulting array of detected prolonged lines is checked
for 90-degrees intersections. The basic type of intersection is the L-corner, and
this is the type of observation that will be reported to the particle filter as a
single “corner” observation. The T- and X-cross of field lines will be reported to
the particle filter as two or four “corner” observations respectively.

As the result, each field line detected on the image is reported to particle
filter twice: as an endless line observation, and as the part of a corner if this
line intersected by another at the appropriate angle close to 90◦. This gives a
sufficient number of observations for the particle filter to quickly converge and
keep track of the robot’s position, even in the narrow-angle FoV vision setup.
The overall structure of our localization pipeline is given below:

4.2 Lane-based localization in wide-angle lens setup

After switching to wide-angle lens setup, we extended our line-based localization
approach to the large FoV imaging. Line detection algorithms require the lines
on the image to be straight for them to be properly detected. This is not the
case in the wide-angle camera setup, thus proper image rectification is needed.
The straightforward wide-angle image rectification is too time-consuming and
gives a large of the resultant image.



Champion Team Paper 2021 11

Fig. 7. Line/corners detection pipeline

So for a wide-angle setup, we switched to the so-called “birdview” approach.
Using camera position and orientation from IMU and forward kinematics, with
assumption that the field is flat, we can calculate such a perspective transform
that maps image pixels from the current robot’s point of view to a point of view of
a new virtual camera, observing the field from the top and orthogonal to the field
surface. This approach becomes especially efficient with the large field of view of
a wide-angle camera setup, giving a good overview of the robot’s surrounding.
After this transform, all non-planar objects (other robots, goal posts, etc.) are
heavily deformed, losing their shape, but the field lines have constant width and
proper geometry.

Due to the relatively large, “global” scale of field lines compared to the
small size of other ”local” features like ball or goal posts, the field lines can be
robustly detected on a birdview image using a relatively low-resolution image.
Also lowering the resolution acts as an additional “low-pass” image filtering to
remove noise and small field line discontinuities due to paint defects and other
factors. Using the fact that the amount of pixels to be processed by undistortion
routine depends on the undistorted image size and is almost independent from
the input image size, a fast undistortion of a large input image to a low-resolution
undistorted one could be performed, followed by a perspective transform on the
same low resolution. We use a 640 × 480 output image for a birdview, and this
processing can still be performed at more than 30 frames per second on the
board CPU.

Using this technique, thanks to the large FoV of a wide-angle setup, the
robot could localize itself robustly in approximately 2 seconds after a complete
localization loss.

4.3 Modeling of a wide-angle lens in Webots simulator

As RoboCup 2021 Worldwide took place in simulation, we had to model our
wide-angle camera setup in a simulated environment. The default camera model



12 Team Starkit

that Webots 2021b provides can have a planar (rectilinear) and spherical pro-
jections, and theoretically speaking only the spherical projection is suitable to
simulate the camera with a wide field of view. But at the time of the competition
our test have shown that the projection mode of a simulated camera in ”spher-
ical mode” is actually a cylindrical projection, and this problem was not solved
during the competition. So we were forced to emulate our wide-angle lens setup
with a large field of view camera with a planar (rectilinear) projection followed
by a simulated heavy radial distortion. This approach limits the actual field of
view of a simulated camera and introduces some noise at the borders of the re-
sulting image. Thus, our simulated camera image has a lower field of view than
a real-world one (100 degrees instead of 135 degrees), and with a bigger inactive
area (we use a procedural-calculated mask to cover this area with a solid black
color to not to confuse our vision algorithms, see Fig.3). So the vision system in
Webots simulator was modelled with worse characteristics than the real-world
one.

Fig. 8. Left: example of an input wide-angle image from a real robot with marked
detected ball (red circle) and field lines (green). Middle: corresponding image after
”birdview” transform with marked detected lines (yellow) and detected corner (or-
ange/red/green triangle) constructed from NMS processing output (blue/red dots).
Right: example of a simulated image from Webots simulator with a rectilinear projec-
tion followed by a radial distortion to mimic the real-world wide-angle image

5 Strategy

5.1 Ball path planning

Improvements in localization and vision systems allow us to construct more
complex and smart strategy. We decided to work on the approach to choosing
kick direction. The algorithm that we used is described in [4]. We introduce a
graph Fig. 5.1 by discretizing the field. Each cell is a square of 10 × 10 cm, so
there are 90×60 = 5400 cells overall. Then, given the ball position, the cell with
a center that is the closest to the ball position is identified, and it is considered
as the first vertex of the graph. Then the edges of the graph are generated with
the length of the possible kicks and the shortest path is calculated with the A∗



Champion Team Paper 2021 13

[2] algorithm with the cost (Alg. 1) and heuristic functions (Alg. 2). With this
algorithm the robot prefers to play a pass and to move ball to the free zones.

Fig. 9. Left: Graph used for path planning. The centers of the grid cells define the ver-
tices. Edges are defined implicitly by each pair of the vertices that (approximately) lie
within the predefined kick distance from each other. Right: Example of the algorithm
output.

Algorithm 1 Cost function

function computeCost(robotPos, opponentsPositions, ballFromPos, ballToPos,
firstKick)

ballT ravelT ime← getLength(toPos, fromPos)/ballSpeed
if firstKick then

timeToReachBall← calcT imeToApproachBall(fromPos, robotPos)
if intersectOpponent(fromPos, toPos, opponentsField) then

return timeToReachBall + ballT ravelT ime ∗ 2
else

return timeToReachBall + ballT ravelT ime
end if

else
return ballT ravelT ime

end if
end function

We have used this algorithm for some games, but for now more straightfor-
ward algorithms like kicking directly to the goal are applied. The main prob-
lem is that the planer is sensitive to the noise in the ball position. We believe
that at some point we will be able to improve the algorithm for it to give-
https://www.office.com/?auth=2 satisfactory results.



14 Team Starkit

Algorithm 2 Heuristic function

function hFunc(teamMatesField, toPos, firstKick)
timeToReachGoal← distToGoal(toPos)/ballSpeed
if firstKick then

timeToApproachBall← calcT imeToApproachBall(toPos, teamMatesF ield)
return timeToApproachBall + timeToReachGoal

else
return timeToReachGoal

end if
end function

6 Motions

6.1 Active falling

We have noticed that the robots spend much time recovering from the falls,
specially when standing up from the back. Thus, we introduced so called active
falling, that is activated when the robot CoM leaves the support polygon. During
this motion the robot throws out its arms in the direction of the fall6. After this,
the robot start the stand up motion directly from this pose. For back stand
up the recovery time decreased by the factor of 1.6 and for the front one by
the factor of 1.4. This motion is harsh to the shoulder pitch servos, so we have
developed flexible arms and added support bearings.

However, this motion is still too unstable and potentially harmful, so we are
planning to improve it with better falling detection and processing.

Fig. 10.

6 https://youtu.be/ZZ7lhSuwT2o

https://youtu.be/ZZ7lhSuwT2o


Champion Team Paper 2021 15

References

1. Gorbachev, R., Semendyaev, S., Khokhlov, I., Litvinenko, V., Ryakin, I.: The ro-
bosoccer as a modern educational platform in the field of artificial intelligence. In:
2019 International Conference on Artificial Intelligence: Applications and Innova-
tions (IC-AIAI). pp. 59–592. IEEE

2. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination
of minimum cost paths. IEEE transactions on Systems Science and Cybernetics 4(2),
100–107 (1968)

3. Khokhlov, I., Davydenko, E., Osokin, I., Ryakin, I., Babaev, A., Litvinenko, V.,
Gorbachev, R.: Tiny-yolo object detection supplemented with geometrical data. In:
2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). pp. 1–5. IEEE
(2020)

4. Khokhlov, I., Litvinenko, V., Ryakin, I., Yakovlev, K.: Planning to score a goal in
robotic football with heuristic search. In: International Conference on Interactive
Collaborative Robotics. pp. 148–159. Springer (2020)

5. Matas, J., Galambos, C., Kittler, J.: Progressive probabilistic hough transform. In:
BMVC (1998)

6. Neubeck, A., Van Gool, L.: Efficient non-maximum suppression. In: 18th Interna-
tional Conference on Pattern Recognition (ICPR’06). vol. 3, pp. 850–855 (2006).
https://doi.org/10.1109/ICPR.2006.479

7. Rusu, R.B.: Semantic 3D Object Maps for Everyday Manipulation in Human Living
Environments. Ph.D. thesis, Computer Science department, Technische Universitaet
Muenchen, Germany (October 2009)

https://doi.org/10.1109/ICPR.2006.479

	Starkit: RoboCup Humanoid KidSize 2021 Worldwide Champion Team Paper

