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Abstract. In this paper, we propose a hybrid parallel model checking
algorithm for both shared and distributed memory architectures. The
model checking is performed simultaneously with a parallel construction
of system state space by distributed multi-core machines. The represen-
tation of the system’s state space is a hybrid graph called Symbolic Ob-
servation Graph (SOG), which combines the symbolic representation of
its nodes (sets of single states) and the explicit representation of its arcs.
The SOG is adapted to allow the preservation of both state and event-
based LTL formulae (hybrid LTL), i.e. the atomic propositions involved
in the formula to be checked are either state or event-based propositions.
We have implemented the proposed model checker within a C++ proto-
type and compared our preliminary results to the LTSmin model checker.

Keywords: Decision diagrams · Linear temporal logic · Model checking
· Parallel verification.

1 Introduction

Model checking [10] has proven to be a major formal verification technique. It is
based on an automatic procedure that takes a model M of a system and a formula
ϕ expressing a temporal property, and decides whether the system satisfies the
property (denoted by M |= ϕ). The automata-based LTL verification decision
procedure is reduced to the emptiness check of a synchronized product between
two automata AM and A¬ϕ (denoted by AM × A¬ϕ). AM represents the state
space of the system and A¬ϕ represents the automaton of the negation of the
formula ϕ to be verified (i.e. accepting all the words that do not satisfy ϕ). Thus,
model checking is based on an exhaustive exploration of the system state space
and, consequently, suffers from the state space explosion problem [31].

The system state space can be represented explicitly (i.e. each state/arc
of the graph is represented individually) or symbolically (i.e. the set of the
reachable states is represented compactly using decision diagram-based tech-
niques). Hybrid representation of the state space (i.e. an explicit graph where
nodes are sets of reachable states encoded symbolically) is also possible, al-
lowing to combine the advantages of both representations. Several approaches
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(e.g. [11,19,17,5,30,21,15,6,18,28,23]) have been proposed to cope with the state
space explosion problem in order to get a manageable state space and to improve
the scalability of the model checking. In addition to techniques for reduction and
compression, parallel and distributed-memory processing can be used [2]. The
use of distributed processing increases the speed and scalability of model check-
ing by exploiting the cumulative computational power and memory of a cluster of
computers. Such approaches have been studied in various contexts leading to dif-
ferent solutions for both symbolic and explicit model checking (e.g. [2,20,14,4,3]).

A Symbolic Observation Graph (SOG) [18,23] is a graph whose construction
is guided by a set of observable atomic propositions involved in a formula. These
atomic propositions can represent events or actions (event-based SOG [18]), or
state-based properties (state-based SOG [23]). The nodes of a SOG are aggre-
gates hiding a set of local states which are equivalent with respect to the ob-
servable atomic propositions, and are compactly encoded using Binary Decision
Diagram techniques (BDDs) [9]. The arcs of an event-based SOG are exclusively
labeled with observable actions. It has been proven that both event and state-
based SOGs preserve stutter-invariant LTL formulae [18,23]. Moreover, once
built for a given LTL formula φ1, the SOG can be reused to check any other
LTL formula φ2 involving a subset of the atomic propositions of φ1.

In previous works, we have investigated different approaches to parallelize
the SOG construction. In [24,25], we propose different algorithms to benefit
from additional speedups and performance improvement in execution time and
memory saving. However, in some cases where huge state spaces are involved [1],
the model checking does not finish due to lack of memory, or it takes too long.

In this work, we present a distributed model checking technique based on
the SOG. It extends the multi-core SOG-based model checker introduced in [1]
by allowing the handling of huge state spaces. To achieve this, we propose a hy-
brid technique that combines parallel (shared memory) and distributed (message
passing) construction algorithms [27,1]. Roughly, the construction of a SOG is
partitioned over a set of processes which, in turn, distribute the building of their
sub-graphs over a set of threads. We thus exploit the strengths of the parallel
exploration/construction of the SOG, and distribute the processes in charge of
the construction and the verification over multiple machines when a single one
(although multi-core) is not sufficient.

In the proposed algorithm, both event- and state-based LTL properties can be
expressed, combined, and verified. Here, the event-based and state-based seman-
tics are interchangeable: an event can be encoded as a change in state variables,
and likewise one can equip a state with different events to reflect different val-
ues of its internal variables. However, converting from one representation to the
other often leads to a significant enlargement of the state space. Typically, event-
based semantics is adopted to compare systems according to some equivalence
or pre-order relation (e.g. [29,21]), while state-based semantics is more suitable
to model-checking approaches [16]. Combining both semantics then allows to
express properties in a compact and intuitive manner.
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The paper is structured as follows. First, we recall in Section 2 the notions
of Kripke structures and hybrid LTL. Then, in Section 3, we introduce the event
and state-based SOG. Section 4 describes the main contribution of the paper: a
model checker based on the hybrid parallel construction of an event- and state-
based SOG. The proposed approach is evaluated and compared to other related
works in Section 5. Finally, Section 6 is dedicated to conclusion and perspectives.

2 Preliminaries

In this paper, we consider hybrid linear-time temporal logic (hybrid LTL) formu-
lae where both state- and event-based atomic propositions can occur. Therefore,
we chose to represent the semantics (behavior) of a system by a Labeled Kripke
Structure (LKS ). Next, we present their formal definition and semantics.

Definition 1 (Labeled Kripke Structure (LKS)). Let AP be a finite set of
atomic propositions and Act be a set of actions. An LKS over AP is a 5-tuple
〈Γ,Act ,L,→, s0〉 where:

– Γ is a finite set of states,
– L : Γ → 2AP is a labeling (or interpretation) function,
– →⊆ Γ ×Act × Γ is a transition relation, and
– s0 ∈ Γ is the initial state.

Definition 2 (Hybrid LTL). Given a set of atomic propositions AP and a
set of actions Act, a hybrid LTL formula is defined inductively as follows:

– each member of AP ∪Act is a formula,
– if φ and ψ are hybrid LTL formulae, so are ¬φ, φ ∨ ψ, Xφ and φUψ.

Other temporal operators, e.g. F (eventually) and G (always) can be derived as
follows: Fφ = true ∪ φ and Gφ = ¬F¬φ.

An interpretation of a hybrid LTL formula is an infinite run w = s0s1s2 . . .
(of some LKS ), assigning to each state si a set of atomic propositions and a set
of actions that are satisfied within that state. A p ∈ AP is satisfied by a state
si if it belongs to its label (i.e. L(si)), while an action a ∈ Act is said to be
satisfied within a state si if it occurs from this state in w (i.e. (si, a, si+1) ∈→).
In our case, where a single action can occur at a time (i.e. interleaving model of
concurrency), at most one action can be assigned to a state of a run.

We write wi for the suffix of w starting from si. Moreover, we say that p ∈ si,
for p ∈ AP ∪ Act , when p is satisfied by si. The hybrid LTL semantics is then
defined inductively as follows:

– w |= p iff p ∈ s0, for p ∈ AP ∪Act ,
– w |= φ ∨ ψ iff w |= φ or w |= ψ,
– w |= ¬φ iff not w |= φ,
– w |= Xφ iff w1 |= φ, and
– w |= φUψ iff ∃i ≥ 0 such that wi |= ψ and ∀ 0 ≤ j < i, wj |= φ.
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Thus, an LKS K satisfies a hybrid LTL formula ϕ, denoted by K |= ϕ, iff
all its runs satisfy ϕ.

It is well known that LTL formulae without the next operator (X), denoted by
LTL\X, are invariant under the so-called stuttering equivalence [10]. Stuttering
occurs when the same atomic propositions hold on two or more consecutive states
of a given run. In the next section, we will use this equivalence relation to prove
that event- and state-based SOGs preserve hybrid LTL \X properties.

3 Event-Based and State-Based SOG

Symbolic Observation Graph (SOG) [23,18] is an abstraction of the reachability
graph of concurrent systems. The construction of a SOG is guided by the set of
atomic propositions occurring in the LTL formula to be checked. Such atomic
propositions are called observed, while the others are unobserved. Nodes of the
SOG are called aggregates, each of them is a set of states encoded efficiently using
decision diagram techniques (e.g. LDD [7], a List-implementation of Multiway
Decision Diagrams). Despite the exponential theoretical complexity of the size
of a SOG (a single state can belong to several aggregates), its size is, in practice,
much more reduced than the one of the original reachability graph.

The difference between the event-based and the state-based versions of the
SOG ([18] and [23], respectively) is the aggregation criterion. In the event-based
version, observed atomic propositions correspond to some actions of the system,
and aggregates contain states that are connected by unobserved actions. On the
other hand, in the state-based version, observed atomic propositions are Boolean
state-based conditions, and aggregates regroup states with the same truth values
of the observed atomic propositions.

In this section, we present the definition of an event-state based SOG
which abstracts systems’ behavior while preserving hybrid LTL formulae (i.e. both
state- and action-based atomic propositions can be used within a same formula).
In that sense, the construction of aggregates will depend on both a set of actions
and state variables appearing as atomic propositions in the checked formula.
Here, systems’ behavior will be modeled as Labeled Kripke Structures (LKS).

3.1 Revisiting SOG for hybrid LTL

The adaptation of the SOG to hybrid LTL leads to new aggregation criteria:
(1) two states belonging to a same aggregate must have the same truth values
of the state-based atomic propositions of the formula; (2) for any state s in the
aggregate, any state s′ having the same truth values of the atomic propositions as
s, and being reachable from s by the occurrence of an unobserved action, belongs
necessarily to the same aggregate; and (3) for any state s in the aggregate, any
state s′ which is reachable from s by the occurrence of an observed action, is not
a member of the same aggregate (even if it has the same label as s), unless it is
reachable from another state s′′ of the aggregate by an unobserved action.

In the following, we present the formal definition of an aggregate and a SOG,
according to a given LKS and the new aggregation criteria discussed above.
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Definition 3 (Event-State Based Aggregate). Let K = 〈Γ,Act,L,→, s0〉
be an LKS over a set of atomic propositions AP , and Obs ⊆ Act be a set of
observed actions of K. Then, UnObs = Act \Obs denotes the set of unobserved
actions. An aggregate a of K w.r.t. Obs is a triplet 〈S, d, l〉 satisfying:

– S ⊆ Γ where:
• ∀s, s′ ∈ S,L(s) = L(s′);

• ∀s ∈ S, (∃(s′, u) ∈ Γ ×UnObs | L(s′) = L(s) ∧ s u−→ s′)⇒ s′ ∈ S;

• ∀s ∈ S, ((∃(s′, o) ∈ Γ ×Obs | s o−→ s′)∧ (@(s′′, u) ∈ S ×UnObs | L(s′′) =

L(s′) ∧ s′′ u−→ s′))⇒ s′ 6∈ S.
– d ∈ {true, false}; d = true iff S contains a dead state.
– l ∈ {true, false}; l = true iff S contains an unobserved cycle.

Before defining event-state based SOGs, let us define the following operations:

– SATAP(S ): for a set of states S ⊆ Γ with the same labels (i.e. such that
L(s) = L(s′), for any s, s′ ∈ S), returns the set of states that are reachable
from any state in S by a sequence of unobserved actions, and which have
the same value of the atomic propositions as S. It is defined as follows:

SATAP(S ) =

{
s′′ ∈ Γ

∣∣∣∣∣ ∃s ∈ S, ∃σ ∈ UnObs∗, s
σ−→ s′′∧

∀s′ ∈ Γ,∀β prefix of σ, s
β−→ s′ ⇒ L(s) = L(s′)

}

– Out(a, t): returns, for an aggregate a = 〈S, d, l〉 and action t, the set of states
that are reachable from some state in a by firing t. It is defined as follows:

Out(a, t) =

{
if t ∈ Obs {s′ ∈ Γ | ∃s ∈ S, s t−→ s′}
if t ∈ UnObs {s′ ∈ Γ | ∃s ∈ S, s t−→ s′ ∧ L(s) 6= L(s′)}

– Outτ (a): returns, for an aggregate a, the set of states whose label is different
from the label of any state of a, and which are reachable from some state in
a by firing unobserved actions. It is defined as follows:

Outτ (a) =
⋃

t∈UnObs

Out(a, t)

– PartAP(S ): returns, for a set of states S ⊆ Γ , the set of subsets of S that
defines the smallest partition of S according to the labeling function L. It is
defined as follows:
PartAP(S ) = {S1, S2, . . . , Sn} ⇔ S =

⋃n
i=1 Si : ∀i ∈ {1..n},∀s, s′ ∈ Si, L(s) =

L(s′) ∧ ∀s ∈ Si,∀s′ ∈ Sj , j 6= i, L(s) 6= L(s′)

Now we are able to define the symbolic observation graph for hybrid LTL.

Definition 4 (Event-State Based SOG). Let K = 〈Γ,Act,L,→, s0〉 be an
LKS over a set of atomic propositions AP , and Obs ⊆ Act be a set of observed
actions of K. The SOG associated with K, over AP and Obs, is an LKS G =
〈A, Obs ∪ {τ},L′,→′, a0〉 where:
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1. A is a nonempty finite set of aggregates satisfying:
– ∀a ∈ A, ∀t ∈ Obs,∀oi ∈ PartAP(Out(a, t)),∃a′ ∈ A s.t. a′.S = SATAP(oi)
– ∀a ∈ A, ∀oi ∈ PartAP(Outτ (a)),∃a′ ∈ A s.t. a′.S = SATAP(oi)

2. L′ : A→ 2AP is a labeling function s.t. L′(a = 〈S, d, l〉) = L(s) for s ∈ S;
3. →′⊆ A×Act×A is the action relation where:

– (a, t, a′) ∈→′⇔ (t ∈ Obs∧∃oi ∈ PartAP(Out(a, t)) s.t. SATAP(oi) = a′.S)
– (a, τ, a′) ∈→′⇔ (∃oi ∈ PartAP(Outτ (a)) s.t. SATAP(oi) = a′.S)

4. a0 is the initial aggregate s.t. a0 = SATAP({s0})

The finite set of aggregates A of the SOG is defined in a complete manner such
that the necessary aggregates are represented. The labeling function gives to any
aggregate of the SOG, the same label as its states. Point 3 defines the action
relation: there exists an arc, labeled with an observed action t (resp. τ), from a
to a′ iff a′ is obtained by saturation (using SATAP) on a set of equally labeled
reached states Out(a, t) (resp. Outτ (a)) by the firing of t (resp. any unobserved
action) from states in a. Finally, point 4 characterizes the initial aggregate.

Figure 1(b) illustrates an event-state based SOG corresponding to the LKS
of Figure 1(a). This SOG consists of 4 aggregates {a0, a1, a2, a3} and 4 edges.
The initial aggregate a0 is obtained by adding the initial state s0 of the LKS,
and any state labeled similarly to s0 that is reachable from it by unobserved
sequences of actions. Hence, a0 contains the states s0 and s4. State s2, which
is reachable from s0 by an observed action o1, is excluded from a0 and belongs
to a1. The same holds for s6 which is reachable from s4 by o1 and belongs to
the aggregate a2. State s3 (resp. s7) is added to a1 (resp. a2) because it has the
same label as s2 (resp. s6) and it is reachable from it by an unobserved action.

According to Definition 4, the SOG associated with an LKS is unique. Thus,
by considering the coarsest possible partition of homogeneous successor aggre-
gates, aggregates a1 and a2 in Figure 1(b) will be merged into a unique aggregate
since they have the same label. Note that SOGs can also be nondeterministic
since, for instance, an aggregate can have several successors with τ (i.e. when
the reached states, by τ , have different labels).

3.2 Checking stuttering invariant properties on SOGs

The equivalence between checking a given stuttering invariant formula (e.g. LTL\
X formula) on the new adapted SOG, and checking it on the original reachability
graph is ensured by the preservation of maximal paths (i.e. finite paths leading
to a dead state and infinite paths).

Note that a SOG preserves the observed traces of the corresponding model,
thus it preserves the infinite runs involving infinitely often observed transitions.
Then, the truth value of the state-based atomic propositions occurring in the
formulae is visible on the SOG by labeling each aggregate with the atomic propo-
sitions labeling of (all) its states. Moreover, the d and l attributes of each aggre-
gate allow detecting deadlocks and livelocks (unobserved cycles), respectively.
The detection of the existence of dead states and cycles inside an aggregate is
performed using symbolic operations (decision diagram-based operations) only.
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o1

o1
τ

o2

(b) A corresponding SOG:
AP = {a, b} and Obs = {o1, o2}

Fig. 1. An LKS and its SOG

We can now establish that an LKS satisfies a hybrid LTL\X formula iff the
corresponding SOG does. The reader can find the proof of Theorem 1 in [27].

Theorem 1. Let K be an LKS and G be the corresponding SOG over Obs and
AP. Let ϕ be a hybrid LTL \X formula on a subset of Obs ∪ AP. Then K |=
ϕ⇔ G |= ϕ.

4 Hybrid LTL model checker based on the SOG

In this section, we propose an on-the-fly parallel/distributed LTL model checking
approach based on the event-state based SOG. Here, our aim is to compute
the synchronized product between the automaton modeling the negation of the
hybrid LTL formula with the SOG (LKS ), and check its emptiness on-the-fly.

For this purpose, a dedicated process, called model checker process is created
(see Figure 2). It builds the Büchi automaton of the formula negation, and
then it initiates the parallel construction of the SOG simultaneously with the
model checking process (i.e. computation of the synchronized product and the
emptiness check). Note that this process performs model checking sequentially,
while SOG construction is distributed.

Regarding the construction of the SOG, it is performed by running several
processes, where each process consists of several threads. The partitioning of the
building of the SOG is performed at the process level, where the load balancing
between processes is performed statically by using a hash function. On the other
hand, the partitioning of each part of the graph, for a given process, is performed
at the thread level by using a dynamic load balancing function.
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Build the automaton
corresponding to the

negation of the formula

Send to process 1
message ASK INITIAL

Receive Id(A0)
and IdPr(A0)

A := A0

Send to process
IdPr(A) message

ASK SUCCESSORS of A

Receive list of successors A

Explore a new node A

An acceptance cycle is
detected or no possible

progress

Send TERMINATE to
all builder processes

Indicate the empti-
ness check result

True

False

Fig. 2. Algorithm of the model
checker process

Since every process has its own mem-
ory, during the computation of the synchro-
nized product the model checker process
asks builder processes for an aggregate: (1)
whether it contains a livelock (unobserved
cycle) or a deadlock state, and (2) in the
memory of which process its successors are
stored. The model checker process does not
require to receive the LDD structure from
builder processes, but rather it receives just a
unique identifier for every aggregate. This al-
lows to reduce the size of exchanged messages
between the model checker process and the
builder ones, as the size of an aggregate can
be huge. To do so, we use the hash function
MD5 [12], which is also used to decide where
an aggregate will be stored during the con-
struction of the SOG. That is, the same func-
tion is used to statically balance the load of
aggregates construction on builder processes.

In order to illustrate how the model
checker process retrieves information about a
SOG from builder processes, we consider the
SOG sample described in Figure 3(a). Let us
assume that we have three builder processes,
and that the static load balancing produces
three graphs as illustrated in Figure 3(b). In
this figure, a dotted node of a graph in a process i corresponds to an aggregate
such that its LDD structure is not stored by process i. Process i stores only its
MD5 value (its unique identifier) and the identity of the process that should store
it. For instance, in the graph built by process 1, there is only the aggregate qa
that is stored with its LDD structure by process 1. For the two other aggregates

qa

qb

qd

qc

t1

t2

t2

t1

(a) A SOG sample

qa

qb

qd

(a). Proc. 1

t1

t2

qb

qc

(b). Proc. 2

t2

qd

qc

(c). Proc. 3

t1

(b) A distributed SOG

Fig. 3. Illustration of builder processes
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qb and qd, only their MD5 values are stored. Indeed, qb is stored in the memory
of process 2, while qd and qc are stored in the memory of process 3.

With the above in mind, we next describe the algorithm of the model checker
process shown in Figure 2. The process starts by requesting from process 1 the
initial aggregate. The builder process gets as an answer its MD5 value. When
the model checker asks the successors of an aggregate, it sends its request to the
process storing the aggregate. For instance, for the SOG of Figure 3(b), when
the builder process wants to explore the successors of the initial aggregate, it
sends a request to the builder process 1. As an answer to this request, the model
checker process should get the MD5 values of aggregates qb and qd, and the
identities of the processes storing these successors. Following the same approach,
in order to get the successors of qb, the model checker process will send its request
to process 2. The termination is fully managed by the model checker process,
since it may request information from builder processes even if they terminate
the SOG construction. In fact, termination is achieved when the model checker
process detects an acceptance run or when it is not possible to progress in the
computation of the synchronization product, i.e. the result is an empty set.

Now we describe the algorithm of builder processes (see Figure 4). The pro-
cess starts by creating several threads. One of them is dedicated for communica-
tion with other processes, while the others operate in a loop as follows. At each
iteration, it pops a set of markings from which it builds an aggregate. The latter
is canonicalized [26] (i.e. aggregates a and a′ are equals iff they have the same
canonical representation), then through a hash function the thread determines if
the computed aggregate should be stored by its process or to be sent to another
builder process. In order to minimize communication cost, only markings of the
canonicalized version of an aggregate are sent. Function idPr(A) returns the
process identity that has to store the aggregate A. If an aggregate should be sent
to another process, only its hash identifier is stored by the current process. Note

Receive message

Send successors
of A to process 0

Send prId(A0)
to process 0

Terminate := true

Push A into the
stack of the thread

having minimum load

idThread=1

Push initial M0 into
the stack of thread 1

Pop a marking
from the stack

Build an aggre-
gate A from the
marking popped
from the stack

IdPr(A)=1

Build successors of
A and push them

into stacks of threads
having minimum load

Store(Id(A), IdPr(A))
Send BUILD A

to IdPr(A)

All builder threads have no
element to process or
terminate = true

ASK INITIAL

ASK SUCCESSORS of A
TERMINATE

BUILD A

· · · ThnTh1

True

False

True

False
True

False

Fig. 4. Algorithm of builder processes



10 K. Klai et al.

that only thread 1 of the first builder process has to initiate the construction of
the distributed SOG by pushing an initial marking into its stack.

Different messages can be received by a builder process from the model
checker process. We use the function Receive(TAG, message, 0) to receive a
message of type TAG from process with ranking 0. Function Send(TAG, message,
0) allows for sending a message of type TAG to process with ranking 0. A builder
process can receive the following types of messages from a model checker process:

– Message ASK INITIAL corresponds to a request from the model checker pro-
cess to get the MD5 value and the identity of the process storing the aggre-
gate. This message is only received by the master builder process.

– Message ASK SUCCESSORS corresponds to a request from the model checker
process to get the list of successors of the aggregate having the MD5 value
specified in the message. Also, information about divergence and deadlocks
related to this aggregate are concerned.

– Message TERMINATE is sent by the model checker process in order to termi-
nate builder processes. This message is sent when the model checker process
has already performed the emptiness check.

5 Implementation and Experiments

The implementation of the hybrid model checker is based on the Spot library [13]:
an object-oriented model checking C++ library that offers a set of building
blocks to develop LTL model checkers based on the automata-theoretic approach.

Experiments were performed on the Magi cluster (http://magi.univ-paris13.
fr/wiki/) of University Sorbonne Paris Nord and on the Grid’5000 network [8].
For the former, we used the partition COMPUTE which has 40 processors (two Intel
Xeon E5-2650 v3 at 2.30GHz) connected by an InfiniBand network, and 64GB
of RAM. For the latter, we used the gros cluster composed of 124 processors
connected by a 25 Gbps Ethernet network, and 96GB of RAM.

A total of 5 models from the Model Checking Contest (https://mcc.lip6.fr/
models.php) were used in our experiments: Philosophers (philo), RobotManipu-
lation(robot), SwimmingPool (spool), CircularTrains (train), and TokenRing
(tring). Due to lack of space, we show only some of these figures. The reader
can find the files needed to reproduce our experiments and all the figures at
https://up13.fr/?G8tMFVS2. Experiments on models philo and train were
performed on Grid’5000, while for the other models they were on Magi.

We measured the time (in seconds) consumed by the verification of 200 ran-
dom formulae by progressively increasing the number of processes and cores. For
this, we set a timeout of 10 minutes. LTL \X formulae were generated by the
tool randltl (provided by Spot), and filtered into 100 satisfied and 100 violated
properties. In the following, the figures are presented using a logarithmic scale,
where each point represents a formula (green if satisfied and red if violated).

First, we compared the performance of our hybrid model checker (pmc-sog)
when using only one process (multi-core execution) and several processes. Fig-
ure 5 shows the performance comparison when using 16 cores and 1, 2 and 4

http://magi.univ-paris13.fr/wiki/
http://magi.univ-paris13.fr/wiki/
https://mcc.lip6.fr/models.php
https://mcc.lip6.fr/models.php
https://up13.fr/?G8tMFVS2
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(b) Model philo10. Results using 2
and 4 processes with 16 threads each

Fig. 5. Comparison of performances in pmc-sog by increasing the number of processes

processes with models tring10 and philo10 as inputs. Observe that the hybrid
execution outperforms the multi-core one, and the verification performance is
improved by using more processes despite the induced communication overhead.

Then, we performed a comparison between our tool (pmc-sog) and the LTSmin
model checker [22]. LTSmin (https://ltsmin.utwente.nl/) is an LTL/CTL/µ-
calculus model checker that accepts inputs in different modeling formalisms,
e.g. PNML, UPPAAL, DiVinE. For sake of simplicity, we choose the traditional
place/transition Petri nets in PNML format, thus we run pnml2lts-mc in our
experiments since it is the LTSmin frontend that performs LTL model checking
for PNML models. We also adopted the DFS (Depth-First Search) algorithm
for all approaches. It is worth noting that we only used formulae whose atomic
propositions are based on states because LTSmin is a state-based model checker.

We keep all the parameters across the different model checkers the same.
Tuning these parameters on a per-model basis could give faster results, however
it would hide the real performance gains obtained by parallelization. We also
avoid resizing of the state storage in all cases by increasing the initial hash table
size enough for all benchmarked input models.

We show in Figures 6 and 7 a selection of our experimental results. As we can
observe, our approach performs better than LTSmin for big models (i.e. robot50,
spool5). For instance, LTSmin could not verify 96 formulae of robot50 due to
timeout, lack of memory or unknown errors. On the other hand, pmc-sog could
not verify 49 formulae. We also note that LTSmin has a better performance for
small models (i.e. philo10, train12). Indeed, at the right of each figure the
number of states explored by LTSmin during the verification of each formula,
confirms this observation. For the model robot50, LTSmin explores 3.64 × 109

states on average for verifying violated formulae, and 2.56×109 states on average

https://ltsmin.utwente.nl/
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Fig. 6. Comparison of pmc-sog and pnml2lts-mc in big models

for verifying satisfied properties. On the other hand, for the model train12,
LTSmin explores 4.94 × 103 states on average for verifying violated formulae,
and 2.22× 103 states on average for verifying satisfied properties. This disparity
w.r.t. explored states allows LTSmin to quickly verify properties on small models.
In this case, the performances of our tool are reduced due to the communication
overhead induced by the increase of the number of processes (contrary to LTSmin
that does not require any communication since it is a multi-core tool), as well
as the time consumed by MD5 computation, the construction and the reduction
of the SOG aggregates. Besides, our tool outperforms LTSmin for bigger models
since more space memory in total is allocated by the operating system to the
tool, and the storage of a SOG is split over processes. Thus, processes can be
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Fig. 7. Comparison of pmc-sog and pnml2lts-mc in small models

speedier as they manage less memory space to store parts of the SOG, or they
can terminate the model checking while LTSmin cannot due to lack of memory.

To improve our tool performances against relatively small models, we could
use some heuristics to stop the local computation of an aggregate, and prioritize
the building of the synchronized product and the search for an accepting cycle. A
possible heuristic could be a predefined threshold (parameter of our tool) defining
the maximum number of states per aggregate. Once this threshold is reached for
a current aggregate, its construction is stopped (i.e. split the aggregate). In this
case, some aggregates would be connected by a τ transition (i.e. unobserved).

As a preliminary deduction, no model checker has an absolute advantage over
the other: our model checker is the fastest for checking properties that require
to explore a large number of states, while LTSmin performs better for cases
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requiring less states to explore. Finally, it is important to emphasize that our
tool is still a prototype and its results should be confirmed by more testing and
improving some of its aspects.

6 Conclusion

In this paper, we proposed a hybrid parallel model-checker approach for event-
and state-based LTL\X logic. This approach targets both distributed and shared
memory architectures, and operates on a hybrid representation of the state space
called SOG. Preliminary results of experiments on state-based formulae (only)
show that our approach is competitive in comparison with the LTSmin parallel
model checker. Our approach has the advantage to handle event- and state-
based LTL \X, allowing to make formulae containing state and action atomic
propositions. This allows to express simple properties intuitively, leading to a
smaller state space to explore during the verification process. We plan to pursue
the evaluation of our prototype on real word examples and against other model
checking tools. Also, many improvements of our algorithm will be investigated,
e.g. heuristics to increase efficiency for small models, parallelize the emptiness
check, combine symbolic representation and partial order reduction, etc.
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