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Towards Substructural Property-Based Testing

Marco Mantovani and Alberto Momigliano

Dipartimento di Informatica, Università degli Studi di Milano, Italy

Abstract. We propose to extend property-based testing to substruc-
tural logics to overcome the current lack of reasoning tools in the field.
We take the first step by implementing a property-based testing system
for specifications written in the linear logic programming language Lolli.
We employ the foundational proof certificates architecture to model var-
ious data generation strategies. We validate our approach by encoding a
model of a simple imperative programming language and its compilation
and by testing its meta-theory via mutation analysis.

Keywords: linear logic, property-based testing, focusing, semantics of program-
ming languages.

1 Introduction

Since their inception in the late 80’s, logical frameworks based on intuitionistic
logic [36] have been successfully used to represent/animate deductive systems
(λProlog) and also to reason (Twelf, Isabelle) about them. The methodology
of higher-order abstract syntax (HOAS) together with parametric-hypothetical
judgments [30] yields elegant encodings that lead to elegant proofs, since it del-
egates to the meta-logic the handling of many common notions, in particular
the representation of contexts. For example, when modeling a typing system, we
represent the typing context as a set of parametric (atomic) assumptions: this
tends to simplify the meta-theory since properties such as weakening and con-
text substitution come for free, as they are inherited from the logical framework,
and do not need to be proved on a case-by-case basis. For an early example,
see the proof of subject reduction for MiniML in [27], which completely avoids
the need to establish intermediate lemmas, as opposed to more standard and
labor-intensive treatments [11].

However, this identification of meta and object level contexts turns out to
be problematic in state-passing specifications. To fix ideas, consider specifying
the operational semantics of an imperative programming language: evaluating
an assignment requires taking an input state, modifying it and finally returning
it. A state (and related notions such as heaps, stacks, etc.) cannot be adequately
encoded as a set of intuitionistic assumptions, since it is intrinsically ephemeral.
The standard solution of reifing the state into a data structure, while doable,
betrays the whole HOAS approach.

Luckily, linear logic (and its substructural cousins) can change the world, and
in particular it provides a notion of context which has an immediate reading in
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terms of resources. A state can be seen as a set of linear assumptions and the
linear connectives can be used to model in a declarative way reading/writing
said state. In the early 90’s this idea was taken up in linear logic programming
and linear specification languages, viz., Lolli [17], LLF [6] and Forum [28].

In the following years, given the richness of linear logic and the flexibility of
the proof-theoretic foundations of logic programming [31], more sophisticated
languages were proposed, with additional features such as order (Olli [38]),
subexponentials [34], bottom-up evaluation and concurrency (Lollimon [23],
Celf [40]). Each extension required significant ingenuity, since it relied on ap-
propriate notions of canonical forms, resource management, unification etc. At
the same time tools for reasoning over such substructural specifications did not
materialize, as opposed to the development of dedicated intuitionistic proof as-
sistants such as Abella [1] and Beluga [37]. Meta-reasoning over such frameworks,
in fact, asks for formulating appropriate meta-logical tools, which, again, is far
from trivial. Schürmann et al. [25] have designed a linear meta-logics and Pien-
tka et al. [16] have introduced a linear version of contextual modal type theory
to be used within Beluga, but no implementations have appeared. The case for
the concurrent logical framework is particularly striking, where, notwithstanding
the wide range of applications [7], the only meta-theoretic analysis available in
Celf is checking that a program is well-moded.

If verification is too hard, or just while we wait for the field to catch up,
this paper suggests validation as a useful alternative, in particular in the form
of property-based testing [19] (PBT). This is a lightweight validation technique
whereby the user specifies executable properties that the code should satisfy and
the system tries to refute them via automatic (typically random) data generation.

Previous work [3] gives a proof-theoretic reconstruction of PBT in terms of
focusing and Foundational Proof Certificates (FPC) [8], which, in theory applies
to all the languages mentioned above. The promise of the approach is that we
can state and check properties in the very logic where we specify them, without
resorting to a further meta-logic. Of course, validation is no verification, but as
by now common in mainstream proof assistants, e.g., [4, 35], we may resort to
testing not only in lieu of proving, but before proving.

In fact, the two-level architecture [15] underlying the Abella system and the
Hybrid library [13] seems a good match for the combination of testing and prov-
ing over substructural specifications. The approach keeps the meta-logic fixed,
while making substructural the specification logic. Indeed, some case studies have
been already carried out, the more extensive being the verification of type sound-
ness of quantum programming languages in a Lolli-like specification logic [24].

In this paper we move the first steps in this programme by implementing
PBT for Lolli and evaluating its capability in catching bugs by applying it to a
mid-size case study: we give a linear encoding of the static and dynamic semantic
of an imperative programming language and its compilation into a stack machine
and validate several properties, among which type preservation and soundness of
compilation. We have tried to test properties in the way they would be stated and
hopefully proved in a linear proof assistant based on the two-level architecture.
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Γ,A ⊢ B

Γ ⊢ A → B
R→

Γ,A ⊢ A
init

Γ,B, a ⊢ C

Γ, a → B, a ⊢ C
La

→

Γ,A2 → B ⊢ A1 → A2 Γ,B ⊢ C

Γ, (A1 → A2) → B ⊢ C
Li

→

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pv(imp(A,B)) <- (hyp(A) -> pv(B)).

pv(C) <- hyp(C) x erase.

pv(C) <- hyp(imp(A,B)) x atom A x hyp(A) x

(hyp(B) -> hyp(A) -> pv(C)).

pv(C) <- hyp(imp(imp(A1 ,A2),B)) x

(hyp(imp(A2 ,B) -> pv(imp(A1 ,A2 ))) &

(hyp(B) -> pv(C))).

Fig. 1. Rules for contraction free LJF→ and their Lolli encoding

That is, we are not arguing (yet) that linear PBT is “better” than traditional
ones based on state-passing specifications. Besides, in the case studies we have
carried out so far, we generate only persistent data (expressions, programs) un-
der a given linear context. Rather, we advocate the coupling of validation and
(eventually) verification for those encoding where linearity does make a differ-
ence in terms of drastically simplifying the infrastructure one needs to put in
place towards proving the main result: one of the original success stories of lin-
ear specifications, namely type preservation of MiniMLR [6,26], still stands and
nicely extends the cited one for MiniML: linearly, the theorem can be proven
from first principles, while with a standard encoding, for example the Coq for-
malization in Software foundations1, you need literally dozens of preliminary
lemmas.

In the following, we assume a passing familiarity with linear logic program-
ming and its proof-theory, as introduced in [17, 29].

1.1 A motivating example

To preview our methodology, we present a self-contained example where we
use PBT as a form ofmodel-based testing: we evaluate an implementation against
a trusted version. We choose as trusted model the linear encoding of the impli-
cational fragment of the contraction-free calculus for propositional intuitionistic
logic, popularized by Dyckhoff. Figure 1 lists the rules for the judgment Γ ⊢ C,
together with a Lolli implementation. Here, and in the following, we will use
Lolli’s concrete syntax, where the arrow (in both directions) is linear implica-
tion, x is multiplicative conjunction (tensor), & is additive conjunction and erase

its unit ⊤.

1 https://softwarefoundations.cis.upenn.edu/plf-current/References.html
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As shown originally in [17], we can encode provability with a predicate pv

that uses a linear context of propositions hyp for assumptions at the left of the
turnstile, as shown in the first clause encoding the implication right rule R→ via
the embedded implication hyp(A) ->pv(B). In the left rules, the major premise
is consumed by means of the tensor and the new assumptions (re)asserted. Note
that in rule Li

→
, the context Γ is duplicated via additive conjunction. The init

rule disposes via eraseof any remaining assumption since the object logic enjoys
weakening. By construction, the above code is a decision procedure for LJF→.

Taking inspiration from Tarau’s [41], we consider next an optimization where
we factor the two left rule for implication in one:

... % similar to before

pvb(C) <- hypb(imp(A,B)) x pvb_imp(A,B) x

(hypb(B) -> pvb(C)).

pvb_imp(imp(C,D),B) <- (hypb(imp(D,B)) -> pvb(imp(C,D))).

pvb_imp(A,_) <- hypb(A).

Does the optimization preserve provability? Formally, the conjecture is
∀A : form . pv(A) ⊃ pvb(A). We could try to prove it, although, for the rea-
sons alluded to in the introduction, it is not clear in which (formalized) meta-
logic we would carry out such proof. Instead, it is simpler to test, that is to
search for a counter-example. And the answer is no, the (encoding of the)
optimization is faulty, as witnessed by the (pretty printed) counterexample
A => ((A => (A => B)) => B): this intuitionistic tautology fails to be prov-
able in the purported optimization. We leave the fix to the reader.

2 The proof-theory of PBT

While PBT originated in a functional programming setting [10], at least two
factors make a proof-theoretic reconstruction fruitful: 1) it fits nicely with a
(co)inductive reading of rule-based presentations of a system-under-test 2) it
easily generalizes to richer logics.

If we view a property as a logical formula ∀x[(τ(x) ∧ P (x)) ⊃ Q(x)] where
τ is a typing predicate, providing a counter-example consists of negating the
property, and therefore searching for a proof of ∃x[(τ(x) ∧ P (x)) ∧ ¬Q(x)].

Stated in this way the problem points to a logic programming solution, and
since the seminal work of Miller et al. [31], this means proof-search in a focused
sequent calculus, where the specification is a set of assumptions (typically sets
of clauses) and the negated property is the query.

The connection of PBT with focused proof search is that in such a query
the positive phase is represented by ∃x and (τ(x) ∧ P (x)). This corresponds
to the generation of possible counter-examples under precondition P . That is
followed by the negative phase (which corresponds to counter-example testing)
and is represented by ¬Q(x). This formalizes the intuition that generation may
be arbitrarily hard, while testing is just a deterministic computation.
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Ξ1 : ∆I \∆O ⊢ G1 Ξ2 : ∆I \∆O ⊢ G2 &e(Ξ,Ξ1, Ξ2)

Ξ : ∆I \∆O ⊢ G1 &G2

1e(Ξ)

Ξ : ∆I \∆I ⊢ 1

Ξ1 : ∆I \∆M ⊢ G1 Ξ2 : ∆M \∆O ⊢ G2 ⊗e(Ξ,Ξ1, Ξ2)

Ξ : ∆I \∆O ⊢ G1 ⊗G2

∆I ⊇ ∆O ⊤e(Ξ)

Ξ : ∆I \∆O ⊢ ⊤

Ξ ′ : ∆I , A \∆O,� ⊢ G ⊸e (Ξ,Ξ′)

Ξ : ∆I \∆O ⊢ A⊸ G

Ξ ′ : ∆I \∆I ⊢ G !e(Ξ,Ξ′)

Ξ : ∆I \∆I ⊢ !G

inite(Ξ)

Ξ : ∆I , A \∆I ,� ⊢ A

init! e(Ξ)

Ξ : ∆I , !A \∆O, !A ⊢ A

Ξ′ : ∆I \∆O ⊢ G unfolde(Ξ,Ξ ′, A,G)

Ξ : ∆I \∆O ⊢ A

Fig. 2. FPC presentation of the IO system for second order Lolli

How do we supply external information to the positive phase? In particular,
how do we steer data generation? This is where the theory of foundational proof
certificates [8] (FPC) comes in. For the type-theoretically inclined, FPCs can
be understood as a generalization of proof-terms in the Curry-Howard tradi-
tion. They have been introduced to define and share a range of proof structures
used in various theorem provers (e.g., resolution refutations, Herbrand disjuncts,
tableaux, etc). A FPC implementation consists of

1. a generic proof-checking kernel,

2. the specification of a certificate format, and

3. a set of predicates (called clerks and experts to underline their different
functionalities) that decorate the sequent rules used in the kernel and help
to process the certificate.

In our setting, we can view those predicates as simple logic programs that guide
the search for potential counter-examples using different generation strategies.

2.1 Linear logic programming

Although focusing and FPC apply to most sequent calculi [22], we find convenient
to stay close to the traditional semantics of uniform proofs [31]. The language
that we adopt here (shown below) is a minor restriction of linear Hereditary Har-
rop formulæ which underlay the linear logic programming language Lolli [17].
We consider implications with atomic premises only and a first-order term lan-
guage, thus making universal goals essentially irrelevant. The rationale of this is
mirroring our Prolog implementation, but we could easily account for the whole
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of Lolli.

Goals G ::= A | ⊤ | 1 | A⊸ G | !G | G1 ⊗G2 | G1 &G2

Clauses D ::= ∀(G→ A)
Programs P ::= · | P , D
Context ∆ ::= · | ∆,A | ∆, !A
Atoms A ::= . . .

This language induces an abstract logic programming language in the sense
of [31], and as such can be given a uniform proof system with a judgment of
the form ∆⇒ G, for which we refer once more to [17]: intuitionistic implication
A→ B is considered defined by !A⊸ B and therefore the intuitionistic context
is omitted.

However, the uniform proofs discipline does not address the question of how
to perform proof search in the presence of linear assumptions, a.k.a. the resource
management problem [5]. The problem is caused by multiplicative connectives
that, under a goal-oriented strategy, require a potentially exponential partition-
ing of the given linear context.

One solution, based on lazy context splitting and known as the IO system,
was introduced in [17], and further refined in [5]: when we need to split a context
(here only in the tensor case), we give to one of the sub-goal the whole input
context (∆I): some of it will be consumed and the leftovers (∆O) returned to
be used by the other sub-goal.

Figure 2 contains a version of the IO system for our language as described
by the judgment Ξ : ∆I \ ∆O ⊢ G, where \ is just a suggestive notation to
separate input and output context. We will explain the role of Ξ and the pred-
icates ope(Ξ, . . . ) in the next paragraphs. We overload “,” to denote multi-set
union and adding a formula to a context. Following on the literature and our
implementation, we will signal that a resource has been consumed in the input
context by replacing it with the placeholder “�”.

The IO system (without certificates) is known to be sound and complete
w.r.t. uniform provability: ∆I \∆O ⊢ G iff ∆I −∆O ⇒ G, where “−” is a notion
of context difference modulo � (see [17] for details). Given this relationship, the
requirement for the linear context to be empty in the right rules for 1 and ! is
realized by the notation ∆I \ ∆I . In particular, in the linear axiom rule, A is
the only available resource, while in the intuitionistic case, !A is not consumed.
The tensor rule showcases lazy context splitting, while additive conjunction du-
plicates the linear context.

The handling of ⊤ is sub-optimal, since it succeeds with any subset of the
input context. As well known [5], this could be addressed by moving to a system
with slack. However, given the preferred style of our encodings (see Section 3),
where additive unit is called only as a last step, this has so far not proved
necessary.

Building on the original system and in accord with the FPC approach, each
inference rule is augmented with an additional premise involving an expert pred-
icate, a certificate Ξ, and possibly resulting certificates (Ξ ′, Ξ1, Ξ2) reading the
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rules from conclusion to premises. Operationally, the certificate Ξ is an input in
the conclusion of a rule and the continuations are computed by the expert to be
handed over to the premises, if any.

The FPC methodology requires first to describe a format for the certificate.
Since we use FPC only to guide proof-search, we fix the following three formats
and we allow their composition, known as pairing:

Certificates Ξ ::= n | 〈n,m〉 | d | (Ξ,Ξ)

The first certificate is just a natural number and it used to bound a derivation
according to its height. Similarly, the second consists of a pair of naturals that
bounds the number of clauses used in a derivation (size): typically n will be
input and m output, so the size will be n−m. In the third case, d stands for a
distribution of weights to clauses in a predicate definition, to be used for random
generation; if none is given, we assume a uniform distribution. Crucially, we can
compose certificates, so that for example we can provide random generation
bounded by the height of the derivation; pairing is a simple, but surprisingly
effective combinator [2].

Each certificate format is accompanied by the implementation of the experts
that process the certificate in question. We exemplify the FPC discipline with a
selection of rules instantiated with the size certificates. If we run the judgment
〈n,m〉 : ∆I \ ∆O ⊢ G, the inputs are n, ∆I and G, while ∆O and m will be
output.

〈n− 1,m〉 : ∆I \∆O ⊢ G (A← G) ∈ grnd(P) n > 0

〈n,m〉 : ∆I \∆O ⊢ A 〈n, n〉 : ∆I \∆I ⊢ 1

〈i,m〉 : ∆I \∆M ⊢ G1 〈m, o〉 : ∆M \∆O ⊢ G2

〈i, o〉 : ∆I \∆O ⊢ G1 ⊗G2

〈n,m〉 : ∆I \∆O ⊢ G1 〈n,m〉 : ∆I \∆O ⊢ G2

〈n,m〉 : ∆I \∆O ⊢ G1 &G2

Here (as in all the formats considered in this paper), most experts are rather
simple; they basically hand over the certificate according to the connective. This
is the case of & and 1, where the expert copies the bound and its action is
implicit in the instantiation of the certificates in the premises. In the tensor
rule, the certificate mimics context splitting. The unfold expert, instead, is more
interesting: not only does it decrease the bound, provided we have not maxed out
on the latter, but it is also in charge of selecting the next goal: for bounded search
via chronological backtracking over the grounding of the program. This very
expert is also the hook for implementing random data generation via random
back-chaining, where we replace chronological with randomized backtracking:
every time the derivation reaches an atom, we permute its definition and pick a
matching clause according to the distribution described by the certificate. Other
strategies are possible, as suggested in [14]: for example, permuting the definition
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just once at the beginning of generation, or even randomizing the conjunctions
in the body of a clause.

Note that we have elected not to delegate to the experts resource manage-
ment: while possible, it would force us to pair such certificate with any other
one. As detailed in [3], more sophisticated FPCs capture other features of PBT,
such as δ-debugging (shrinking) and bug-provenance, and will not be repeated
here.

We are now ready to account for the soundness property from the example
in Section 1.1. By analogy, this applies to certificate-driven PBT with a liner IO
kernel in general. Let Ξ be here the height certificate with bound 4 and form a
unary predicate describing the syntax of implication formulæ, which we use as a
generator. Testing the property becomes the following query in a host language
that implements the kernel:

∃F. (Ξ : · \ · ⊢ form(F)) ∧ (Ξ : · \ · ⊢ pv(F)) ∧ ¬(Ξ : · \ · ⊢ pvb(F))

In our case, the meta-language is simply Prolog, where we encode the kernel with
a predicate prove/4 and to check for un-provability negation-as-failure suffices,
as argued in [3].

C = height (4),prove(C,[],[],form(F)),prove(C,[],[],pv(F)),

\+ prove(C,[],[],pvb(F)).

3 Case study

IMP is a model of a minimalist Turing-complete imperative programming lan-
guage, featuring instructions for assignment, sequencing, conditional and loop.
It has been extensively used in teaching and in mechanizations (viz. formalized
textbooks such as Software Foundations and Concrete Semantics). Here we fol-
low Leroy’s account [21], but add a basic type system to distinguish arithmetical
from Boolean expressions. IMP is a good candidate for a linear logic encoding,
since its operational semantics is, of course, state based, while its syntax (see
below) is simple enough not to require a sophisticated treatment of binders.

expr ::= var variable

| i integer constant

| b Boolean constant

| expr + expr addition

| expr − expr subtraction

| expr ∗ expr multiplication

| expr ∧ expr conjunction

| expr ∨ expr disjunction

| ¬ expr negation

| expr == expr equality

val ::=
| vi integer value

| vb Boolean value

ty ::=
| tint type of integers

| tbool type of Boolean’s

8



cmd ::= skip no op

| cmd ; cmd sequence

| if expr then cmd else cmd conditional

| while expr do cmd loop

| var = expr assignment

The relevant judgments describing the dynamic and static semantics of IMP
are:

σ ⊢ m ⇓ v big step evaluation of expressions;
(c, σ) ⇓ σ′ big step execution of commands;
(c, σ) (c′, σ′) small step execution of commands and its Kleene closure;
Γ ⊢ m : τ well-typed expressions and v : τ well-typed values;
Γ ⊢ c well-typed commands and Γ : σ well-typed states;

3.1 On linear encodings

In traditional accounts, a state σ is a (finite) map between variables and values.
Linear logic takes a “distributed” view and represent a state as a multi-set of
linear assumptions. Since this is central to our approach, we make explicit the
(overloaded) encoding function p·q on states. Its action on expressions and values
is as expected and therefore omitted:

σ ::= · | σ, x 7→ v
p·q = ∅

pσ, x 7→ vq = pσq, var(x , pvq)

When encoding state-based computations such as evaluation and execution
in a Lolli-like language, it is almost forced on us to use a continuation-passing

style (CPS): by sequencing the computation, we get a handle on how to express
“what to compute next”, and this turns out to be the right tool to encode the
operational semantics of state update. CPS fixes a given evaluation order, which
is crucial when the modeled semantics has side-effects, lest adequacy is lost.

Yet, even under the CPS-umbrella, there are choices: e.g., whether to adopt
an encoding that privileges additive connectives, in particular when using the
state in a non-destructive way. In the additive style, the state is duplicated with
& and then eventually disposed of via ⊤ at the leaves of the derivation.

This is well-understood, but, at least in our setup, it leads to the reification
of the continuation as a data structure and the introduction of an additional
layer of instructions to manage the continuation: for an example, see the static
and dynamic semantics of MiniMLR in [6]2.

Mixing additive and multiplicative connectives needs a more sophisticated
resource management system; this is a concern, given the efficiency requirements
that testing brings to the table — it is not called “QuickCheck” for nothing. We

2 This can be circumvented by switching to a more expressive logic, either by inter-
nalizing the continuation as an ordered context [38] or by changing representation
via forward chaining (destination-passing style) [23].
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therefore use the notion of logical continuation advocated by Chirimar [9], which
affords us the luxury to never duplicate the state. Logical continuations need
higher-order logic (or can be simulated in an un-typed setting such as Prolog).
Informally, the idea is to transform every atom A of type (τ1 ∗ · · · ∗ τn)→ o into
a new one Â of type (τ1 ∗ · · · ∗ τn ∗ o)→ o where we accumulate in the additional
argument the body of the definition of A as a nested goal. Facts are transformed
so that the continuation becomes the precondition.

For example, consider a fragment of the rules for the evaluation judgment
σ ⊢ m ⇓ v and its encoding:

x 7→ n ∈ σ
σ ⊢ x ⇓ n

e/v
σ ⊢ n ⇓ n

e/n

σ ⊢ e1 ⇓ v1 σ ⊢ e2 ⇓ v2 plus v1 v2 v

σ ⊢ e1 + e2 ⇓ v
e/p

eval(v(X),N,K) <- var(X,N) x (var(X,N) -> K).

eval(i(N),vi(N),K) <- K.

eval(plus(E1 ,E2),vi(V),K) <-

eval(E1,vi(V1),eval(E2 ,vi(V2),bang(sum(V1 ,V2 ,V,K)))).

In the variable case, the value for X is read (and consumed) in the linear context
and consequently reasserted; then we call the continuation in the restored state.
Evaluating a constant i(N) will have the side-effect of instantiating N in K. The
clause for addition showcases the sequencing of goals inside the logical continu-
ation, where the sum predicate is “banged” as a computation that does not need
the state.

The adequacy statement for CPS-evaluation reads: σ ⊢ m ⇓ v iff the sequent
pσq⇒ eval(pmq, pvq,⊤) has a uniform proof, where the initial continuation ⊤
cleans up σ upon success. As well-know, we need to generalize the statement to
arbitrary continuations for the proof to go through.

It is instructive to look at an additive encoding as well:

ev(v(X),V) <- var(X,V) x erase.

ev(i(N),vi(N)) <- erase.

ev(plus(E1,E2),vi(V)) <- ev(E1 ,vi(V1)) &

ev(E2 ,vi(V2)) &

bang(sum(V1,V2,V)).

While this seems appealingly simpler, it breaks down when the state is updated
and not just read; consider the operational semantics of assignment and its
encoding:

σ ⊢ m ⇓ v

(σ, x := m) ⇓ σ ⊕ {x 7→ v}

ceval(asn(X,E),K) <- eval(E,V,(var(X,_) x (var(X,V) -> K))).

The continuation is in charge of both having something to compute after the
assignment returns, but also of sequencing in the right order reading the state via
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evaluation, and updating via the embedded implication. An additive encoding
via & would not be adequate, since the connective’s commutativity is at odd
with side-effects.

At the top level, we initialize the execution of programs (seen as a sequence of
commands) by using as initial continuation a predicate collect that consumes
the final state and returns it in a reified format.

main(P,Vars ,S) <- ceval(P,collect(Vars ,S)).

We are now in the position of addressing the meta-theory of our system-
under-study via testing. We list the more important properties among those
that we have considered. All statements are universally quantified:

srv subject reduction for evaluation: Γ ⊢ m : τ −→ σ ⊢ m ⇓ v −→ Γ : σ −→
v : τ ;

dtx determinism of execution: (σ, c) ⇓ σ1 −→ (σ, c) ⇓ σ2 −→ σ1 ≈ σ2;
srx preservation of state under execution: Γ ⊢ c −→ Γ : σ −→ (σ, c) ⇓ σ′ −→

Γ : σ′;
pr progress for small step execution: Γ ⊢ c −→ Γ : σ −→ c = skip ∨
∃c′ σ′, (c, σ) (c′, σ′);

eq equivalence of small and big step execution (assuming determinism of both):
(σ, c) ⇓ σ1 −→ (c, σ1) 

∗ (skip, σ2) −→ σ1 ≈ σ2.

We have also encoded the compilation of IMP to a stack machine and (mu-
tation) tested forward and backward simulation of compilation w.r.t. source and
target execution. We have added a simple type discipline for the assembly lan-
guage in the spirit of TAL [33] and tested preservation and progress, to exclude
underflows in the execution of a well-typed stack machine. Details can be found
in the accompanying repository.

3.2 Experimental evaluation

A word of caution before discussing our experiments: first, we have spent almost
no effort in crafting nor tuning custom generators; in fact, they are simply FPC-
driven regular unary logic programs [42] with a very minor massage. Compare
this with the amount of ingenuity poured in writing generators in [18] or with
the model-checking techniques of [39]. Secondly, our interpreter is a Prolog meta-
interpreter and while we have tried to exploit Prolog’s indexing, there are obvious
ways to improve its efficiency, from partial evaluation to better data structures
for contexts.

To establish a fair baseline, we have also implemented a “vanilla” version
of our benchmarks, that is state-passing ones, driven by a FPC-lead vanilla
meta-interpreter. We have run the experiments on a laptop with an Intel i7–
7500U CPU and 16GB of RAM running WSL (Ubuntu 20.04) over Windows 10,
using SWI-Prolog 8.2.4. All times are in seconds, as reported by SWI’s time/1.
They are the average of five measurements. We list here only a few experiments
with no pretense of completeness. In particular, we choose a fixed exhaustive
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Fig. 3. Testing property eq with certificate 〈n, 〉

dtx srx srv pr eq cex

M1 pass pass pass pass pass

M2 found pass pass pass found w := 0 - 1

M3 pass pass pass pass pass

M4 pass found found pass pass x := tt /\ tt

M5 pass pass pass pass pass

M6 found pass pass pass found if x = x then {w := 0} else {w := 1}

M7 pass pass pass pass pass

M8 pass pass pass pass pass

M9 pass pass pass pass pass

Fig. 4. Mutation testing

generation strategy (size), then pair it with height for mutation analysis. We
use consistently certain bounds that experimentally have shown to be effective
in generating enough interesting data.

First we compare the time to test a sample property (“eq”, the equivalence of
big and small step execution) over a bug-free model both with linear and vanilla
PBT. On the left of Fig. 3 we plot the time proportionally to the certificate
size. On the right we list the number of generated programs and the percentage
of those that converge within a bound given by a polynomial function over the
certificate size. The linear interpreter performs worse than the state passing one,
but not dramatically so. This is to be expected, since the vanilla meta-interpreter
does not do context management: in fact, it does not use logical contexts at all.

Next, to gauge the effectiveness in catching bugs, we use, as customary, mu-

tation analysis [20], whereby single intentional mistakes are inserted into the
system under study. A testing suite is deemed as good as its capability of de-
tecting those bugs (killing a mutant). Most of the literature about mutation
analysis revolves around automatic mutant analysis for imperative code, cer-
tainly not (linear) logical specifications of object logics. Therefore, we resort
to the manual design of a small number of mutants, with all the limitations
entailed. Note, however, that this is the approach taken by the testing suite3

3 https://docs.racket-lang.org/redex/benchmark.html
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of a comparable tool such as PLT-Redex [12]. The mutations are described in
Appendix A.

Table 4 summarizes the outcome of mutation testing, where “found” indicates
that a counter-example (cex) has been found and “pass” that the bound has been
exhausted. In the first case, we report counter-examples in the last column, after
pretty-printing. Since this is accomplished in milliseconds, we omit the precise
timing information. Note that cex found by exhaustive search are minimal by
construction.

The results seem at first disappointing (3 mutants out of 9 being detected),
until we realize that it is not so much a question of our tool failing to kill mutants,
but of the above properties being too loose. Consider for example mutation M3:
being a type-preserving operation swap in the evaluation of expressions, this will
certainly not lead to a failure of subject reduction, nor invalidate determinism
of evaluation. On the other hand all mutants are easily killed with model-based
testing, that is taking as properties soundness and completeness of the (top-
level) judgments where mutations occur w.r.t. their bug-free versions executed
under the vanilla interpreter. This is reported in Table 5.

exec: C → L exec: L → C cex

No Mut pass in 2.40 pass in 6.56

M1 found in 0.06 pass in 6.45 w := 0 + 0

M2 pass in 2.40 found in 0.04 w := 0 - 1

M3 found in 0.06 found in 0.06 w := 0 * 1

M4 found in 0.06 found in 0.04 y := tt /\ tt

M5 found in 0.00 pass in 5.15 w := 0; w := 1

M6 pass in 2.34 found in 0.17 if y = y then {w := 0} else {w := 1}

M7 found in 0.65 pass in 0.82 while y = y /\ y = w do {y := tt}

type: C → L type: L → C cex

No Mut pass in 0.89 pass in 0.87

M8 found in 0.03 pass in 0.84 w := 0 + 0

M9 found in 0.04 pass in 0.71 y := tt \/ tt

Fig. 5. Model-based testing of IMP mutations

4 Conclusions

In this paper we have argued for the extension of property-based testing to sub-
structural logics to overcome the current lack of reasoning tools in the field.
We have taken the first step by implementing a PBT system for specifications
written in linear Hereditary Harrop formulæ, the language underlying Lolli. We
have adapted the FPC architecture to model various generation strategies. We
have validated our approach by encoding the meta-theory of IMP and its com-
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pilation, with a rudimentary mutation analysis. With all the caution that our
setup entails, results are encouraging.

There is so much future work that it is almost overwhelming: first item from
the system point of view is abandoning the meta-interpretation approach, and
then a possible integration with Abella. Theoretically, our plan is to extend
our framework to richer linear logic languages, featuring ordered logic up to
concurrency, as well as supporting different operational semantics, to begin with
bottom-up evaluation.

Source code can be found at https://github.com/Tovy97/

Towards-Substructural-Property-Based-Testing
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Polakow for his comments on a draft version of this paper.

A Appendix

List of mutations We describe a selection of the mutations that we have im-
plemented, together with a categorization, borrowed from the classification of
mutations for Prolog-like languages in [32]. We also report the judgment where
the mutation occurs.

Clause mutations: deletion of a predicate in the body of a clause, deleting the
whole clause if a fact.

Operator mutations: arithmetic and relational operator mutation.
Variable mutations: replacing a variable with an (anonymous) variable and

vice versa.
Constant mutations: replacing a constant by a constant (of the same type),

or by an (anonymous) variable and vice versa.

M1 (eval, C) tag mutation in the definition of addition;
M2 (eval, Cl) added another clause to the definition of subtraction;
M3 (eval, O) substitution of − for ∗ in arithmetic definitions;
M4 (eval, O) similar to M1 but for conjunction;
M5 (exec, V) bug on assignment;
M6 (exec, Cl) switch branches in if-then-else;
M7 (exec, Cl) deletion of one of the while rule;
M8 (type, C) wrong output type in rule for addition;
M9 (type, C) wrong input type in rule for disjunction.
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