Skip to main content

An Ontology to Structure Biological Data: The Contribution of Mathematical Models

  • Conference paper
  • First Online:
Metadata and Semantic Research (MTSR 2021)

Abstract

The biology is a research field well known for its huge quantity and diversity of data. Today, these data are still recognized as heterogeneous and fragmented. Despite the fact that several initiatives of biological knowledge representation have been realized, biologists and bioinformaticians do not have a formal representation that, at the level of the entire organism, can help them to organize such a diversity and quantity of data. Recently, in the context of the whole cell modeling approach, the systemic mathematical models have proven to be a powerful tool for understanding the bacterial cell behavior. We advocate that an ontology built on the principles that govern the design of such models, can help to organize the biological data. In this article, we describe the first step in the conception of an ontology dedicated to biological data organization at the level of the entire organism and for molecular scales i.e., the choice of concepts and relations compliant with principles at work in the systemic mathematical models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.w3.org/OWL/.

  2. 2.

    https://www.w3.org/TR/shacl/.

References

  1. Gene Ontology Consortium: The gene ontology resource: 20 years and still GOing strong. Nucleic Acids Res. 47(D1), D330–D338 (2019)

    Article  Google Scholar 

  2. Demir, E., Cary, M.P., Paley, S., et al.: The BioPAX community standard for pathway data sharing. Nat. Bbiotechnol. 28(9), 935–942 (2010)

    Article  Google Scholar 

  3. Goelzer, A., Muntel, J., Chubukov, V., et al.: Quantitative prediction of genome-wide resource allocation in bacteria. Metab. Eng. 32, 232–243 (2015)

    Article  Google Scholar 

  4. Hartwell, L.H., Hopfield, J.J., Leibler, S., et al.: From molecular to modular cell biology. Nature 402(6761), C47–C52 (1999)

    Article  Google Scholar 

  5. Henry, V., Saïs, F., Inizan, O., et al.: BiPOm: a rule-based ontology to represent and infer molecule knowledge from a biological process-centered viewpoint. BMC Bioinform. 21(1), 1–18 (2020)

    Article  Google Scholar 

  6. Henry, V.J., Goelzer, A., Ferré, A., et al.: The bacterial interlocked process ONtology (BiPON): a systemic multi-scale unified representation of biological processes in prokaryotes. J. Biomed. Semant. 8(1), 1–16 (2017)

    Article  Google Scholar 

  7. Hucka, M., Finney, A., Sauro, H.M., et al.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003)

    Article  Google Scholar 

  8. Joyce, A.R., Palsson, B.Ø.: The model organism as a system: integrating ‘omics’ data sets. Nat. Rev. Mol. Cell Biol. 7(3), 198–210 (2006)

    Article  Google Scholar 

  9. Karr, J.R., Sanghvi, J.C., Macklin, D.N., et al.: A whole-cell computational model predicts phenotype from genotype. Cell 150(2), 389–401 (2012)

    Article  Google Scholar 

  10. López de Maturana, E., Alonso, L., Alarcón, P., et al.: Challenges in the integration of omics and non-omics data. Genes 10(3), 238 (2019)

    Google Scholar 

  11. Michaelis, L., Menten, M.L., et al.: Die kinetik der invertinwirkung. Biochem. z 49(333–369), 352 (1913)

    Google Scholar 

  12. Nicolas, J.: Artificial intelligence and bioinformatics. In: Marquis, P., Papini, O., Prade, H. (eds.) A Guided Tour of Artificial Intelligence Research, pp. 209–264. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-06170-8_7

    Chapter  Google Scholar 

  13. Ramon, C., Gollub, M.G., Stelling, J.: Integrating-omics data into genome-scale metabolic network models: principles and challenges. Essays Biochem. 62(4), 563–574 (2018)

    Article  Google Scholar 

  14. Reuter, J.A., Spacek, D.V., Snyder, M.P.: High-throughput sequencing technologies. Mol. Cell 58(4), 586–597 (2015)

    Article  Google Scholar 

  15. Voit, E.O.: Computational Analysis of Biochemical Systems: A Practical Guide for Biochemists and Molecular Biologists. Cambridge University Press, Cambridge (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Inizan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Inizan, O., Fromion, V., Goelzer, A., Saïs, F., Symeonidou, D. (2022). An Ontology to Structure Biological Data: The Contribution of Mathematical Models. In: Garoufallou, E., Ovalle-Perandones, MA., Vlachidis, A. (eds) Metadata and Semantic Research. MTSR 2021. Communications in Computer and Information Science, vol 1537. Springer, Cham. https://doi.org/10.1007/978-3-030-98876-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98876-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98875-3

  • Online ISBN: 978-3-030-98876-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics