Skip to main content

GAN-SNR-Shrinkage-Based Network for Modulation Recognition with Small Training Sample Size

  • Conference paper
  • First Online:
Communications and Networking (ChinaCom 2021)

Abstract

Modulation recognition plays an important role in non-cooperative communications. In practice, only a small number of samples can be collected for training purposes. The limited training data degrade the accuracy of the modulation recognition networks. In this paper, we propose a novel network to realize the modulation recognition on basis of the few-shot learning. Generative adversarial networks (GANs) and a signal-to-noise ratio (SNR) augment module are introduced to expand the training dataset. In addition, a preprocessing module and residual shrinkage networks are used to improve the capability of characterizing signal features and the anti-noise performance. The proposed network is evaluated using the RML2016.10a dataset. It is illustrated that the proposed network outperforms the baseline method and the method without data augment with a small number of training samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dobre, O., Abdi, A., Bar-Ness, Y., Su, W.: Survey of automatic modulation classification techniques: classical approaches and new trends. IET Commun 1(2), 137 (2007)

    Article  Google Scholar 

  2. Hameed, F., Dobre, O.A., Popescu, D.C.: On the likelihood-based approach to modulation classification. IEEE Trans. Wirel. Commun. 8(12), 5884–5892 (2009)

    Article  Google Scholar 

  3. Chen, W., Xie, Z., Ma, L., Liu, J., Liang, X.: A faster maximum-likelihood modulation classification in flat fading non-Gaussian channels. IEEE Commun. Lett. 23(3), 454–457 (2019)

    Article  Google Scholar 

  4. Nandi, A.K., Azzouz, E.E.: Algorithms for automatic modulation recognition of communication signals. IEEE Trans. Commun. 46(4), 431–436 (1998)

    Article  Google Scholar 

  5. Ma, J., Qiu, T.: Automatic modulation classification using cyclic correntropy spectrum in impulsive noise. IEEE Wirel. Commun. Lett. 8(2), 440–443 (2019)

    Article  Google Scholar 

  6. Wu, Z., Zhou, S., Yin, Z., Ma, B., Yang, Z.: Robust automatic modulation classification under varying noise conditions. IEEE Access 5, 19733–19741 (2017)

    Article  Google Scholar 

  7. Li, R., Li, L., Yang, S., Li, S.: Robust automated VHF modulation recognition based on deep convolutional neural networks. IEEE Commun. Lett. 22(5), 946–949 (2018)

    Article  Google Scholar 

  8. Peng, S., et al.: Modulation classification based on signal constellation diagrams and deep learning. IEEE Trans. Neural Netw. Learn. Syst. 30(3), 718–727 (2019)

    Article  Google Scholar 

  9. Hong, D., Zhang, Z., Xu, X.: Automatic modulation classification using recurrent neural networks. In: 2017 3rd IEEE International Conference on Computer and Communications (ICCC), pp. 695–700 (2017)

    Google Scholar 

  10. Li, L., Huang, J., Cheng, Q., Meng, H., Han, Z.: Automatic modulation recognition: a few-shot learning method based on the capsule network. IEEE Wirel. Commun. Lett. 10(3), 474–477 (2021)

    Article  Google Scholar 

  11. Zhang, D., Ding, W., Liu, C., Wang, H., Zhang, B.: Modulated autocorrelation convolution networks for automatic modulation classification based on small sample set. IEEE Access 8, 27097–27105 (2020)

    Article  Google Scholar 

  12. Zhang, H., Huang, M., Yang, J., Sun, W.: A data preprocessing method for automatic modulation classification based on CNN. IEEE Commun. Lett. 25(4), 1206–1210 (2021)

    Article  Google Scholar 

  13. Gong, J., Xu, X., Lei, Y.: Unsupervised specific emitter identification method using radio-frequency fingerprint embedded InfoGAN. IEEE Trans. Inf. Forensics Secur. 15, 2898–2913 (2020)

    Article  Google Scholar 

  14. O’Shea, T.J., Corgan, J., Clancy, T.C.: Convolutional radio modulation recognition networks. In: Jayne, C., Iliadis, L. (eds.) EANN 2016. Communications in Computer and Information Science, vol. 629, pp. 213–226. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44188-7_16

    Chapter  Google Scholar 

  15. De Boer, P.T., Kroese, D.P., Mannor, S., et al.: A tutorial on the cross-entropy method. Ann. Oper. Res. 134(1), 19–67 (2005)

    Article  MathSciNet  Google Scholar 

  16. Zhang, Z., Li, H., Chen, L.: Deep residual shrinkage networks with self-adaptive slope thresholding for fault diagnosis. In: 2021 7th International Conference on Condition Monitoring of Machinery in Non-Stationary Operations (CMMNO) (2021). In press

    Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 27–30 June 2016, pp. 770–778 (2016)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China under Grant (2019YFE0196400), the National Natural Science Foundation of China under Grant (61871035), and the National Defense Science and Technology Innovation Zone.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zunwen He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, S., Zhang, Y., Ma, M., He, Z., Zhang, W. (2022). GAN-SNR-Shrinkage-Based Network for Modulation Recognition with Small Training Sample Size. In: Gao, H., Wun, J., Yin, J., Shen, F., Shen, Y., Yu, J. (eds) Communications and Networking. ChinaCom 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 433. Springer, Cham. https://doi.org/10.1007/978-3-030-99200-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99200-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99199-9

  • Online ISBN: 978-3-030-99200-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics