
Enhancing expressivity
of checked corecursive streams

Davide Ancona, Pietro Barbieri, and Elena Zucca

DIBRIS, University of Genova

Abstract. We propose a novel approach to stream definition and ma-
nipulation. Our solution is based on two key ideas. Regular corecursion,
which avoids non termination by detecting cyclic calls, is enhanced, by al-
lowing in equations defining streams other operators besides the stream
constructor. In this way, some non-regular streams are definable. Fur-
thermore, execution includes a runtime check to ensure that the stream
generated by a function call is well-defined, in the sense that access to
an arbitrary index always succeeds. We extend the technique beyond the
simple stream operators considered in previous work, notably by adding
an interleaving combinator which has a non-trivial recursion scheme.

Keywords: operational semantics · stream programming · runtime checking

1 Introduction

Applications often deal with data structures which are conceptually infinite;
among those data streams (unbounded sequences of data) are a paradigmatic
example, important in several application domains as the Internet of Things.
Lazy evaluation is a well-established and widely-used solution to data stream
generation and processing, supported, e.g., in Haskell, and in most stream li-
braries offered by mainstream languages, as java.util.stream. In this approach,
data streams can be defined as the result of an arbitrary function. For instance,
in Haskell we can write

one_two = 1:2: one_two -- 1:2:1:2:1: ...

from n = n:from(n+1) -- n:n+1:n+2: ...

Functions which only need to inspect a finite portion of the structure, e.g., getting
the i-th element, can be correctly implemented, thanks to the lazy evaluation
strategy as exemplified below.

get_elem 3 (one_two) -- evaluates to 2

get_elem 3 (from 5) -- evaluates to 7

More recently, another approach has been proposed [14,19,11,2], called reg-
ular corecursion, which exploits the fact that streams as one_two above are pe-
riodic, a.k.a. regular following the terminology in [8], meaning that the term
1:2:1:2:1: ... is infinite but has a finite number of subterms. Regular streams
can be actually represented at runtime by a finite set of equations involving only

2 D. Ancona et al.

the stream constructor, in the example x = 1 : 2 : x. Furthermore, function def-
initions are corecursive, meaning that they do not have the standard inductive
semantics; indeed, even though the evaluation strategy is call-by-value, thanks
to the fact that pending function calls are tracked, cyclic calls are detected,
avoiding in this case non-termination.

For instance, with regular corecursion1 we have:

one_two () = 1:2: one_two ()

from(n) = n:from(n+1)

get_elem(3,one_two ()) -- evaluates to 2

get_elem (3,from (5)) -- leads to non-termination

Despite their differences, in both approaches programmers are allowed to write
intuitively ill-formed definitions such as bad_stream() = bad_stream(); any ac-
cess to indexes of the stream returned by this function leads to non-termination
both with lazy evaluation and regular corecursion. However, while in the regular
case it is simple to reject the result of calling bad_stream by checking a guard-
edness syntactic condition, the Haskell compiler does not complain if one calls
such a function. In this paper, we propose a novel approach to stream generation
and manipulation, providing, in a sense, a middle way between those described
above. Our solution is based on two key ideas:

– Corecursion is enhanced, by allowing in stream equations other typical oper-
ators besides the stream constructor; in this way, some non-regular streams
are supported. For instance, we can define from(n)=n:(from(n)[+]repeat(1)),
with [+] the pointwise addition and repeat defined by repeat(n)=n:repeat(n).

– Execution includes a runtime check which rejects the stream generated by
a function call if it is ill-formed, in the sense that access to an index could
possibly diverge. For instance, the call bad_stream() raises a runtime error.

In this way we achieve a convenient trade-off between expressive power and re-
liability; indeed, we do not have the full expressive power of Haskell, where we
can manipulate streams generated as results of arbitrary functions, but, clearly,
the well-definedness check described above would be not decidable. On the other
hand, we significantly augment the expressive power of regular corecursion, al-
lowing several significant non-regular streams, at the price of making the well-
definedness check non-trivial, but still decidable.

The main formal results are (1) Theorem 1 stating the soundness of the
runtime check; (2) Theorem 2 stating that the optimized definition of the runtime
check in Sect. 5 is equivalent to the simpler one given in Sect. 4. In particular,
for contribution (1) the interleaving operator requires a more involved proof
in comparison with [3] (see Sect. 6), while for (2) we show that the optimized
definition improves the time complexity from O(N2) to O(N logN).

In Sect. 2 we formally define the calculus, in Sect. 3 we show examples,
in Sect. 4 we define the well-formedness check, and in Sect. 5 its optimized

1 Here we use the syntax of our calculus, where, differently from Haskell, functions are
uncurried, that is, take as arguments possibly empty tuples delimited by parentheses.

Enhancing expressivity of checked corecursive streams 3

version. Finally, in Sect. 6 we discuss related and further work. More examples
of derivations and omitted proofs can be found in the extended version [4].

2 Stream calculus

Fig. 1 shows the syntax of the calculus.

fd :: = fd1 . . . fdn program
fd :: = f(x) = se function declaration
e :: = se | ne | be expression
se :: = x | if be then se1 else se2 | ne : se | seˆ | se1op se2 | f(e) stream expression
ne :: = x | se(ne) | ne1 nop ne2 | 0 | 1 | 2 | ... numeric expression
be :: = x | true | false | ... boolean expression
op :: = [nop] | ∥ binary stream operator
nop :: = + | − | ∗ | / numeric operator

Fig. 1. Stream calculus: syntax

A program is a sequence of (mutually recursive) function declarations, for
simplicity assumed to only return streams. Stream expressions are variables, con-
ditionals, expressions built by stream operators, and function calls. We consider
the following stream operators: constructor (prepending a numeric element),
tail, pointwise arithmetic operators, and interleaving. Numeric expressions in-
clude the access to the i-th2 element of a stream. We use fd to denote a sequence
fd1, . . . , fdn of function declarations, and analogously for other sequences.

The operational semantics, given in Fig. 2, is based on two key ideas:

1. some infinite streams can be represented in a finite way
2. evaluation keeps trace of already considered function calls

To obtain (1), our approach is inspired by capsules [13], which are expres-
sions supporting cyclic references. That is, the result of a stream expression is
a pair (s, ρ), where s is an (open) stream value, built on top of stream vari-
ables, numeric values, the stream constructor, the tail destructor, the pointwise
arithmetic and the interleaving operators, and ρ is an environment mapping
variables into stream values. In this way, cyclic streams can be obtained: for
instance, (x, x 7→ n : x) denotes the stream constantly equal to n.

We denote by dom(ρ) the domain of ρ, by vars(ρ) the set of variables occur-
ring in ρ, by fv(ρ) the set of its free variables, that is, vars(ρ) \ dom(ρ), and say
that ρ is closed if fv(ρ) = ∅, open otherwise, and analogously for a result (v, ρ).

To obtain point (2) above, evaluation has an additional parameter which is
a call trace, a map from function calls where arguments are values (dubbed calls
for short in the following) into variables.

2 For simplicity, here indexing and numeric expressions coincide.

4 D. Ancona et al.

c :: = f(v) (evaluated) call
v :: = s | n | b value
s :: = x | n : s | sˆ | s1op s2 (open) stream value
i,n :: = 0 | 1 | 2 | ... index, numeric value
b :: = true | false boolean value
τ :: = c1 7→ x1 . . . cn 7→ xn (n ≥ 0) call trace
ρ :: = x1 7→ s1 . . . xn 7→ sn (n ≥ 0) environment

(val)
v, ρ, τ ⇓(v, ρ) (if-t)

be, ρ, τ ⇓(true, ρ) se1, ρ, τ ⇓(s, ρ′)
if be then se1 else se2, ρ, τ ⇓(s, ρ′)

(if-f)
be, ρ, τ ⇓(false, ρ) se2, ρ, τ ⇓(s, ρ′)
if be then se1 else se2, ρ, τ ⇓(s, ρ′)

(cons)
ne, ρ, τ ⇓(n, ρ) se, ρ, τ ⇓(s, ρ′)

ne : se, ρ, τ ⇓(n : s, ρ′)
(tail)

se, ρ, τ ⇓(s, ρ′)
seˆ, ρ, τ ⇓(sˆ, ρ′) (op)

se1, ρ, τ ⇓(s1, ρ1) se2, ρ, τ ⇓(s2, ρ2)
se1op se2, ρ, τ ⇓(s1op s2, ρ1 ⊔ ρ2)

(args)

ei, ρ, τ ⇓(vi, ρi) ∀i ∈ 1..n f(v), ρ̂, τ ⇓(s, ρ′)
f(e), ρ, τ ⇓(s, ρ′)

e = e1, . . . , en not of shape v
v = v1, . . . , vn
ρ̂ =

⊔
i∈1..n ρi

(invk)

se[v/x], ρ, τ{f(v) 7→ x}⇓(s, ρ′)
f(v), ρ, τ ⇓(x, ρ′{x 7→ s})

f(v) ̸∈ dom(τ)
x fresh
fbody(f) = (x, se)
wd(ρ′, x, s)

(corec)
f(v), ρ, τ ⇓(x, ρ)

τ(f(v)) = x

(at)
se, ρ, τ ⇓(s, ρ′) ne, ρ, τ ⇓(i, ρ)

se(ne), ρ, τ ⇓(n, ρ)
atρ′(s, i) = n

(at-var)
atρ(ρ(x), i) = n′

atρ(x, i) = n′ (at-cons-0)
atρ(n : s, 0) = n

(at-cons-succ)
atρ(s, i) = n′

atρ(n : s, i+ 1) = n′

(at-tail)
atρ(s, i+ 1) = n

atρ(sˆ, i) = n
(at-nop)

atρ(s1, i) = n1 atρ(s2, i) = n2

atρ(s1[nop]s2, i) = n1 nop n2

(at-∥-even)
atρ(s1, i) = n

atρ(s1∥s2, 2i) = n
(at-∥-odd)

atρ(s2, i) = n

atρ(s1∥s2, 2i+ 1) = n

Fig. 2. Stream calculus: operational semantics

Enhancing expressivity of checked corecursive streams 5

Altogether, the semantic judgment has shape e, ρ, τ ⇓ (v, ρ′), where e is the
expression to be evaluated, ρ the current environment defining possibly cyclic
stream values that can occur in e, τ the call trace, and (v, ρ′) the result. The se-
mantic judgments should be indexed by an underlying (fixed) program, omitted
for sake of simplicity. Rules use the following auxiliary definitions:

– ρ ⊔ ρ′ is the union of two environments, which is well-defined if they have
disjoint domains; ρ{x 7→ s} is the environment which gives s on x, coincides
with ρ elsewhere; we use analogous notations for call traces.

– se[v/x] is obtained by parallel substitution of variables x with values v.
– fbody(f) returns the pair of the parameters and the body of the declaration

of f, if any, in the assumed program.

Intuitively, a closed result (s, ρ) is well-defined if it denotes a unique stream,
and a closed environment ρ is well-defined if, for each x ∈ dom(ρ), (x, ρ) is well-
defined. In other words, the corresponding set of equations admits a unique
solution. For instance, the environment {x 7→ x} is not well-defined, since it
is undetermined (any stream satisfies the equation x = x); the environment
{x 7→ x[+]y, y 7→ 1 : y} is not well-defined as well, since it is undefined (the two
equations x = x 7→ x[+]y, y = 1 : y admit no solutions for x). This notion can
be generalized to open results and environments, assuming that free variables
denote unique streams, as will be formalized in Sect. 4.

Rules for values and conditional are straightforward. In rules (cons), (tail)
and (op), arguments are evaluated and the stream operator is applied without
any further evaluation. That is, we treat all these operators as constructors.

The rules for function call are based on a mechanism of cycle detection [2].
Evaluation of arguments is handled by a separate rule (args), whereas the fol-
lowing two rules handle (evaluated) calls.

Rule (invk) is applied when a call is considered for the first time, as expressed
by the first side condition. The body is retrieved by using the auxiliary function
fbody, and evaluated in a call trace where the call has been mapped into a fresh
variable. Then, it is checked that adding the association of such variable with
the result of the evaluation of the body keeps the environment well-defined, as
expressed by the judgment wd(ρ, x, s), which will be defined in Sect. 4. If the
check succeeds, then the final result consists of the variable associated with the
call and the updated environment. For simplicity, here execution is stuck if the
check fails; an implementation should raise a runtime error instead. An example
of stuck derivation is shown in [4].

Rule (corec) is applied when a call is considered for the second time, as ex-
pressed by the first side condition. The variable x is returned as result. However,
there is no associated value in the environment yet; in other words, the result
(x, ρ) is open at this point. This means that x is undefined until the environment
is updated with the corresponding value in rule (invk). However, x can be safely
used as long as the evaluation does not require x to be inspected; for instance, x
can be safely passed as an argument to a function call.

For instance, if we consider the program f()=g() g()=1:f(), then the judg-
ment f(), ∅, ∅⇓ (x, ρ), with ρ = {x 7→ y, y 7→ 1 : x}, is derivable; however, while

6 D. Ancona et al.

the final result (x, ρ) is closed, the derivation contains also judgments with open
results, as happens for f(), ∅, {f() 7→ x, g() 7→ y}⇓ (x, ∅) and g(), ∅, {f() 7→ x}⇓
(y, {y 7→ 1 : x}). The full derivation can be found in [4].

Finally, rule (at) computes the i-th element of a stream expression. After
evaluating the arguments, the result is obtained by the auxiliary judgment
atρ(s, i) = n, whose straightforward definition is at the bottom of the figure.
Rules (at-∥-even) and (at-∥-odd) define the behaviour of the interleaving oper-
ator, which merges two streams together by alternating their elements.

When evaluating atρ(s, i), if s is a variable free in the environment, then exe-
cution is stuck; again, an implementation should raise a runtime error instead.

3 Examples

First we show some simple examples, to explain how corecursive definitions work.
Then we provide some more significant examples.

Consider the following function declarations:

repeat(n) = n:repeat(n)

one_two () = 1: two_one ()

two_one () = 2: one_two ()

With the standard semantics of recursion, the calls, e.g., repeat(0) and one_two()

lead to non-termination. Thanks to corecursion, instead, these calls terminate,
producing as result (x, {x 7→ 0 : x}), and (x, {x 7→ 1 : y, y 7→ 2 : x}), respectively.
Indeed, when initially invoked, the call repeat(0) is added in the call trace with
an associated fresh variable, say x. In this way, when evaluating the body of the
function, the recursive call is detected as cyclic, the variable x is returned as
its result, and, finally, the stream value 0 : x is associated in the environment
with the result x of the initial call. In the sequel, we will use [k] as a shorthand
for repeat(k). The evaluation of one_two() is analogous, except that another
fresh variable y is generated for the intermediate call two_one(). The formal
derivations are given below.

(value) repeat(0), ∅, {repeat(0) 7→ x}⇓(x, ∅)
(corec)

0 : repeat(0), ∅, {repeat(0) 7→ x}⇓(0 : x, ∅)
(cons)

repeat(0), ∅, ∅⇓(x, {x 7→ 0 : x})
(invk)

(value)

(value) one two(), ∅, {one two() 7→ x, two one() 7→ y}⇓(x, ∅)
(corec)

2 : one two(), ∅, {one two() 7→ x, two one() 7→ y}⇓(2 : x, ∅)
(cons)

two one(), ∅, {one two() 7→ x}⇓(y, {y 7→ 2 : x})
(invk)

1 : two one(), ∅, {one two() 7→ x}⇓(1 : y, {y 7→ 2 : x})
(cons)

one two(), ∅, ∅⇓(x, {x 7→ 1 : y, y 7→ 2 : x})
(invk)

For space reasons, we did not report the application of rule (value). In both
derivations, note that rule (corec) is applied, without evaluating the body of
one_two once more, when the cyclic call is detected.

Enhancing expressivity of checked corecursive streams 7

The following examples show function definitions whose calls return non-
regular streams, notably, the natural numbers, the natural numbers raised to
the power of a number, the factorials, the powers of a number, the Fibonacci
numbers, and the stream obtained by pointwise increment by one.

nat() = 0:(nat ()[+][1])

nat_to_pow(n) = // nat_to_pow(n)(i)=i^n

if n <= 0 then [1] else nat_to_pow(n -1)[*] nat()

fact() = 1:((nat ()[+][1])[*] fact ())

pow(n) = 1:([n][*] pow(n)) //pow(n)(i)=n^i

fib() = 0:1:(fib ()[+] fib ()^)

incr(s) = s[+][1]

The definition of nat uses corecursion, since the recursive call nat() is cyclic.
Hence the call nat() returns (x, {x 7→ 0 : (x[+]y), y 7→ 1 : y}). The definition of
nat_to_pow is a standard inductive one where the argument strictly decreases in
the recursive call. Hence, the call, e.g., nat_to_pow(2), returns
(x2, {x2 7→ x1[∗]x, x1 7→ x0[∗]x, x0 7→ y, y 7→ 1 : y, x 7→ 0 : (x[+]y′), y′ 7→ 1 : y′}).

The definitions of fact, pow, and fib are corecursive. For instance, the call fact()
returns (z, z 7→ 1 : ((x[+]y)[∗]z), x 7→ 0 : (x[+]y′), y 7→ 1 : y, y′ 7→ 1 : y′). The def-
inition of incr is non-recursive, hence always converges, and the call incr(s)
returns (x, {x 7→ s[+]y, y 7→ 1 : y}).

The next few examples show applications of the interleaving operator.

dup_occ () = 0:1:(dup_occ () || dup_occ ())

Function dup_occ() generates the stream which alternates sequences of occur-
rences of 0 and 1, with the number of repetitions of the same number duplicated
at each step, that is, (0:1:0:0:1:1:0:0:0:0...).

A more involved example shows a different way to generate the stream of all
powers of 2 starting from 21:

pow_two =2:4:8:((pow_two ^^[*] pow_two)||(pow_two ^^[*] pow_two ^))

The following definition is an instance of a schema generating the infinite se-
quence of labels obtained by a breadth-first visit of an infinite complete binary
tree where the labels of children are defined in terms of that of their parent.

bfs_index () = 1:((bfs_index ()[*][2])||(bfs_index ()[*][2][+][1]))

In particular, the root is labelled by 1, and the left and right child of a node with
label i are labelled by 2*i and 2*i+1, respectively. Hence, the generated stream
is the sequence of natural numbers starting from 1, as it happens in the array
implementation of a binary heap.

In the other instance below, the root is labelled by 0, and children are labelled
with i+1 if their parent has label i . That is, nodes are labelled by their level.

bfs_level () = 0:((bfs_level ()[+][1])||(bfs_level ()[+][1]))

In this case, the generated stream is more interesting; indeed, bfs_level()(n) =

floor(log2(n+1)).
The following function computes the stream of partial sums of the first i+1

elements of a stream s, that is, sum(s)(i)=
∑i

k=0 s(k):

8 D. Ancona et al.

sum(s) = s(0):(s^[+] sum(s))

Such a function is useful for computing streams whose elements approximate
a series with increasing precision; for instance, the following function returns
the stream of partial sums of the first i+ 1 elements of the Taylor series of the
exponential function:

sum_expn(n) = sum(pow(n)[/] fact ())

Function sum_expn calls sum with the argument pow(n)[/]fact() corresponding
to the stream of terms of the Taylor series of the exponential; hence, by accessing
the i-th element of the stream, we have the following approximation of the series:

sum_expn(n)(i)=

i∑
k=0

nk

k!
= 1 + n+

n2

2!
+

n3

3!
+

n4

4!
+ · · ·+ ni

i!

Lastly, we present a couple of examples showing how it is possible to define
primitive operations provided by IoT platforms for real time analysis of data
streams; we start with aggr(n,s), which allows aggregation by addition of data
in windows of length n:

aggr(n,s) = if n<=0 then [0] else s[+] aggr(n-1,s^)

For instance, aggr(3,s) returns the stream s′ s.t. s′(i) = s(i)+ s(i+1)+ s(i+2).
On top of aggr, we can easily define avg(n,s) to compute the stream of average
values of s in windows of length n:

avg(n,s) = aggr(n,s)[/][n]

4 Well-definedness check

A key feature of our approach is the runtime check ensuring that the stream
generated by a function call is well-defined, see the side condition wd(ρ′, x, s) in
(invk); in this section we formally define the corresponding judgment and prove
its soundness. Before doing this, we provide, for reference, a formal abstract
definition of well-definedness.

Intuitively, an environment is well-defined if each variable in its domain de-
notes a unique stream. Semantically, a stream σ is an infinite sequence of numeric
values, that is, a function which returns, for each index i ≥ 0, the i-th element
σ(i). Given a result (s, ρ), we get a stream by instantiating variables in s with
streams, in a way consistent with ρ, and evaluating operators. To make this
formal, we need some preliminary definitions.

A substitution θ is a function from a finite set of variables to streams. We
denote by JsKθ the stream obtained by applying θ to s, and evaluating operators,
as formally defined below.

JxKθ = θ(x)

(Jn : sKθ)(i) =

{
n i = 0

(JsKθ)(i− 1) i ≥ 1

Enhancing expressivity of checked corecursive streams 9

(JsˆKθ)(i) = JsKθ(i+ 1) i ≥ 0

(Js1[nop]s2Kθ)(i) = Js1Kθ(i) nop Js2Kθ(i) i ≥ 0

(Js1∥s2Kθ)(2i) = Js1Kθ(i) i ≥ 0

(Js1∥s2Kθ)(2i+ 1) = Js2Kθ(i) i ≥ 0

Given an environment ρ and a substitution θ with domain vars(ρ), the sub-
stitution ρ[θ] is defined by:

ρ[θ](x) =

{
Jρ(x)Kθ x ∈ dom(ρ)

θ(x) x ∈ fv(ρ)

Then, a solution of ρ is a substitution θ such that ρ[θ] = θ.
A closed environment ρ is well-defined if it has exactly one solution. For in-

stance, {x 7→ 1 : x} and {y 7→ 0 : (y[+]x), x 7→ 1 : x} are well-defined, since their
unique solutions map x to the infinite stream of ones, and y to the stream of
natural numbers, respectively. Instead, for {x 7→ 1[+]x} there are no solutions.
Lastly, an environment can be undetermined: for instance, a substitution map-
ping x into an arbitrary stream is a solution of {x 7→ x}.

An open environment ρ is well-defined if, for each θ with domain fv(ρ), it
has exactly one solution θ′ such that θ ⊆ θ′. For instance, the open environment
{y 7→ 0 : (y[+]x)} is well-defined.

In Fig. 3 we provide the operational characterization of well-definedness. The

m :: = x1 7→ n1 . . . xn 7→ nk (n ≥ 0) map from variables to integer numbers

(main)
wdρ′(x, ∅)
wd(ρ, x, v)

ρ′ = ρ{x 7→ v} (wd-var)
wdρ(ρ(x),m{x 7→ 0})

wdρ(x,m)
x ̸∈ dom(m)

(wd-corec)
wdρ(x,m)

x ∈ dom(ρ)
m(x) > 0

(wd-delay)
wdρ(ρ(x),m{x 7→ 0})

wdρ(x,m)
m(x) > 0

(wd-fv)
wdρ(x,m)

x ̸∈ dom(ρ) (wd-cons)
wdρ(s,m

+1)

wdρ(n : s,m)
(wd-tail)

wdρ(s,m
−1)

wdρ(sˆ,m)

(wd-nop)
wdρ(s1,m) wdρ(s2,m)

wdρ(s1[nop]s2,m)
(wd-∥)

wdρ(s1,m) wdρ(s2,m
+1)

wdρ(s1∥s2,m)

Fig. 3. Operational definition of well-definedness

judgment wd(ρ, x, s) used in the side condition of rule (invk) holds if wdρ′(x, ∅)
holds, with ρ′=ρ{x 7→ v}. The judgment wdρ(s, ∅) means well-definedness of a
result. That is, restricting the domain of ρ to the variables reachable from s
(that is, either occurring in s, or, transitively, in values associated with reachable

10 D. Ancona et al.

variables) we get a well-defined environment; thus, wd(ρ, x, s) holds if adding the
association of s with x preserves well-definedness of ρ.

The additional argument m in the judgment wdρ(s,m) is a map from vari-
ables to integer numbers. We write m+1 and m−1 for the maps {(x,m(x) + 1) |
x ∈ dom(m)}, and {(x,m(x)− 1) | x ∈ dom(m)}, respectively.

In rule (main), this map is initially empty. In rule (wd-var), when a variable
x defined in the environment is found the first time, it is added in the map with
initial value 0 before propagating the check to the associated value. In rule (wd-

corec), when it is found the second time, it is checked that constructors and
right operands of interleave are traversed more times than tail operators, and
if it is the case the variable is considered well-defined. Rule (wd-delay), which
is only added for the purpose of the soundness proof and should be not part of
an implementation3, performs the same check but then considers the variable
occurrence as it is was the first, so that success of well-definedness is delayed.
Note that rules (wd-var), (wd-corec), and (wd-delay) can only be applied if
x ∈ dom(ρ); in rule (wd-corec), this explicit side condition could be omitted
since satisfied by construction of the proof tree.

In rule (wd-fv), a free variable is considered well-defined.4 In rules (wd-

cons) and (wd-tail) the value associated with a variable is incremented/decre-
mented by one, respectively, before propagating the check to the subterm. In rule
(wd-nop) the check is simply propagated to the subterms. In rule (wd-∥), the
check is also propagated to the subterms, but on the right-hand side the value
associated with a variable is incremented by one before propagation; this reflects
the fact that, in the worst case, atρ(s1∥s2, i) = atρ(s1, i), and this happens only
for i = 0, while for odd indexes i we have that atρ(s1∥s2, i) = atρ(s2, i−k), with
k ≥ 1; more precisely, k = 1 only when i = 1; for all indexes i > 1 (both even
and odd), k > 1. For instance, the example s() = 1:(s()∥s()^), which has the
same semantics as [1], would be considered not well-defined if we treated the
interleaving as the pointwise arithmetic operators.

Note that the rules in Fig. 3 can be immediately turned into an algorithm
which, given a stream value s, always terminates either successfully (finite proof
tree), or with failure (no proof tree can be constructed). On the other hand,
the rules in Fig. 2 defining the atρ(s, i) = n judgment can be turned into an
algorithm which can possibly diverge (infinite proof tree).

Two examples of derivation of well-definedness and access to the i-th element
can be found in [4] for the results obtained by evaluating the calls nat() and
bfs_level(), respectively, with nat and bfs_level defined as in Sect. 3. Below
we show an example of failing derivation:

As depicted in Fig. 4, the check succeeds for the left-hand component of the
interleaving operator, while the proof tree cannot be completed for the other
side. Indeed, the double application of the tail operator makes undefined access
to stream elements with index greater than 1, since the evaluation of atρ(x, 2)
infinitely triggers the evaluation of itself.

3 Indeed, it does not affect derivability, see Lemma 4 in the following.
4 Non-well-definedness can only be detected on closed results.

Enhancing expressivity of checked corecursive streams 11

wdρ(x, {x 7→ 1})
(wd-corec)

FAIL

wdρ(x, {x 7→ 0})
(??)

wdρ(xˆ, {x 7→ 1})
(wd-tail)

wdρ(xˆˆ, {x 7→ 2})
(wd-tail)

wdρ(x || xˆˆ, {x 7→ 1})
(wd-∥)

wdρ(0 : (x || xˆˆ), {x 7→ 0})
(wd-cons)

wdρ(x, ∅)
(wd-var)

Fig. 4. Failing derivation for ρ = {x 7→ 0 : (x || xˆˆ)}

To formally express and prove that well-definedness of a result implies ter-
mination of access to an arbitrary index, we introduce some definitions and
notations. First of all, since the result is not relevant for the following technical
treatment, for simplicity we will write atρ(s, i) rather than atρ(s, i) = n. We call
derivation an either finite or infinite proof tree. We write wdρ(s

′,m ′) ⊢ wdρ(s,m)
to mean that wdρ(s

′,m ′) is a premise of a (meta-)rule where wdρ(s,m) is the
conclusion, and ⊢⋆ for the reflexive and transitive closure of this relation.

Lemma 1.

1. A judgment wdρ(s, ∅) has no derivation iff the following condition holds:
(wd-stuck) wdρ(x,m

′) ⊢⋆ wdρ(ρ(x),m{x 7→ 0}) ⊢ wdρ(x,m) ⊢⋆ wdρ(s, ∅)
for some x ∈ dom(ρ), and m ′,m s.t. x ̸∈ dom(m),m ′(x) ≤ 0.

2. If the derivation of atρ(s, j) is infinite, then the following condition holds:
(at-∞) atρ(x, i+ k) ⊢⋆ atρ(ρ(x), i) ⊢ atρ(x, i) ⊢⋆ atρ(s, j)

for some x ∈ dom(ρ), and i, k ≥ 0.

Lemma 2. If atρ(x, i
′) ⊢⋆ atρ(s

′, i), and wdρ(s
′,m) ⊢⋆ wdρ(s, ∅) with wdρ(s, ∅)

derivable, and x ∈ dom(m), then

wdρ(x,m
′) ⊢⋆ wdρ(s

′,m) for some m ′ such that m ′(x)−m(x) ≤ i− i′.

Proof. The proof is by induction on the length of the path in atρ(x, i
′) ⊢⋆ atρ(s

′, i).

Base The length of the path is 0, hence we have atρ(x, i) ⊢⋆ atρ(x, i). We also
have wdρ(x,m) ⊢⋆ wdρ(x,m), and we get the thesis since m(x) = m(x)+i−i.

Inductive step By cases on the rule applied to derive atρ(s
′, i).

(at-var) We have atρ(x, i
′) ⊢⋆ atρ(ρ(y), i) ⊢ atρ(y, i). There are two cases:

– If y ̸∈ dom(m) (hence y ̸= x), we have wdρ(ρ(y),m{y 7→ 0}) ⊢
wdρ(y,m) by rule (wd-var), the premise is derivable, hence by in-
ductive hypothesis we have wdρ(x,m

′) ⊢⋆ wdρ(ρ(y),m{y 7→ 0}), and
m ′(x) ≤ m{y 7→ 0}(x) + i− i′ = m(x)+i−i′, hence we get the thesis.

– If y ∈ dom(m), then it is necessarily m(y) > 0, otherwise, by
Lemma 1-(1), wdρ(s, ∅) would not be derivable. Hence, we have
wdρ(ρ(y),m{y 7→ 0}) ⊢ wdρ(y,m) by rule (wd-delay), hence by in-
ductive hypothesis we have wdρ(x,m

′) ⊢⋆ wdρ(ρ(y),m{y 7→ 0}), and
m ′(x) ≤ m{y 7→ 0}(x) + i− i′. There are two subcases:

12 D. Ancona et al.

• If y ̸= x, then m{y 7→ 0}(x) = m(x), and we get the thesis as in
the previous case.

• If y = x, thenm{x 7→ 0}(x) = 0, hencem ′(x) ≤ i− i′ ≤ m(x) + i− i′,
since m(x) > 0.

(at-cons-0) Empty case, since the derivation for atρ(n:s, 0) does not contain
a node atρ(x, i

′).
(at-cons-succ) We have atρ(n : s, i), and atρ(x, i

′) ⊢⋆ atρ(s, i − 1). More-
over, we can derive wdρ(n : s,m) by rule (wd-cons), and by induc-
tive hypothesis we also have wdρ(x,m

′) ⊢⋆ wdρ(s,m
+1), with m ′(x) ≤

m+1(x) + (i− 1)− i′, hence we get the thesis.
(at-tail) This case is symmetric to the previous one.
(at-nop) We have atρ(s1[op]s2, i), and either atρ(x, i

′) ⊢⋆ atρ(s1, i), or
atρ(x, i

′) ⊢⋆ atρ(s2, i). Assume the first case holds, the other is analo-
gous. Moreover, we can derive wdρ(s1[op]s2,m) by rule (wd-nop), and
by inductive hypothesis we also have wdρ(x,m

′) ⊢⋆ wdρ(s1,m), with
m ′(x) ≤ m(x) + i− i′, hence we get the thesis.

(at-∥-even) We have atρ(s1∥s2, 2i) and atρ(x, i
′) ⊢⋆ atρ(s1, i). By inductive

hypothesis, we have wdρ(x,m
′) ⊢⋆ wdρ(s1,m), with m ′(x) ≤ m(x)+i−i′.

Moreover, wdρ(s1,m) ⊢ wdρ(s1∥s2,m) holds by rule (wd-∥), hence we
have wdρ(x,m

′) ⊢⋆ wdρ(s1∥s2,m) with m ′(x) ≤ m(x) + 2i− i′ and, thus,
the thesis.

(at-∥-odd) We have atρ(s1∥s2, 2i + 1) and atρ(x, i
′) ⊢⋆ atρ(s2, i). By in-

ductive hypothesis, we have wdρ(x,m
′) ⊢⋆ wdρ(s2,m

+1), with m ′(x) ≤
m+1(x) + i − i′. Moreover, wdρ(s2,m) ⊢ wdρ(s1∥s2,m) holds by rule
(wd-∥), hence we have wdρ(x,m ′) ⊢⋆ wdρ(s1∥s2,m) with m ′(x) ≤ m(x)+
2i+ 1− i′ and, thus, the thesis.

Lemma 3. If atρ(x, i
′) ⊢⋆ atρ(s, i), and wdρ(s, ∅) derivable, then

wdρ(x,m) ⊢⋆ wdρ(s, ∅) for some m such that x ̸∈ dom(m).

Proof. Easy variant of the proof of Lemma 2.

Theorem 1. If wdρ(s, ∅) has a derivation then, for all j, atρ(s, j) either has no
derivation or a finite derivation.

Proof. Assume by contradiction that atρ(s, j) has an infinite derivation for some
j, and wdρ(s, ∅) is derivable. By Lemma 1-(2), the following condition holds:

(at-∞) atρ(x, i+ k) ⊢⋆ atρ(ρ(x), i) ⊢ atρ(x, i) ⊢⋆ atρ(s, j)
for some x ∈ dom(ρ), and i, k ≥ 0.

Then, starting from the right, by Lemma 3 we have wdρ(x,m) ⊢⋆ wdρ(s, ∅) for
somem such that x ̸∈ dom(m); by rule (wd-var) wdρ(ρ(x),m{x 7→ 0}) ⊢ wdρ(x,m),
and finally by Lemma 2 we have:

(wd-stuck) wdρ(x,m
′) ⊢⋆ wdρ(ρ(x),m{x 7→ 0}) ⊢ wdρ(x,m) ⊢⋆ wdρ(s, ∅)

for some x ∈ dom(ρ), and m ′,m s.t. x ̸∈ dom(m),m ′(x)≤ −k ≤ 0.

hence this is absurd by Lemma 1-(1).

Enhancing expressivity of checked corecursive streams 13

5 An optimized algorithm for well-definedness

The definition of well-definedness in Fig. 3 can be easily turned into an algorithm,
since, omitting rule (wd-delay), at each point in the derivation there is at most
one applicable rule. Now we will discuss its time complexity, assuming that
insertion, update and lookup are performed in constant time. It is easy to see
that when we find a stream constructor we need to perform an update of the
map ρ for every variable in its domain. If we consider the following environment:

ρ = (x0, {x0 7→ 0 : x1, x1 7→ 0 : x2, x2 7→ 0 : x3, x3 7→ 0 : x4, . . . , xn 7→ 0 : x0})

we get the derivation presented in Fig. 5. Here, the number of constructor oc-

...
wdρ(x3, {x0 7→ 3, x1 7→ 2, x2 7→ 1})

(wd-var)

wdρ(0 : x3, {x0 7→ 2, x1 7→ 1, x2 7→ 0})
(wd-cons)

wdρ(x2, {x0 7→ 2, x1 7→ 1})
(wd-var)

wdρ(0 : x2, {x0 7→ 1, x1 7→ 0})
(wd-cons)

wdρ(x1, {x0 7→ 1})
(wd-var)

wdρ(0 : x1, {x0 7→ 0})
(wd-cons)

wdρ(x0, ∅)
(wd-var)

Fig. 5.

currences for which we have to perform an update of all variables in the domain
of the map is linearly proportional to the number N of nodes in the derivation
tree; since the domain is increased by one for each new variable, and the total
number of variables is again linearly proportional to N , it is easy to see that we
have a time complexity quadratic in N .

We propose now an optimized version of the well-definedness check, having
a time complexity of O(N logN). On the other hand, the version we provided
in Fig. 3 is more abstract, hence more convenient for the proof of Theorem 1.

In the optimized version, given in Fig. 6, the judgment has shape owdρ(s,m, π),
where π represents a path in the proof tree where each element corresponds to
a visit of either the constructor or the right operand of interleave (value 1 for
both) or the tail operator (value -1), and m associates with each variable an
index (starting from 0) corresponding to the point in the path π where the vari-
able was found the first time. The only operation performed on a path π is the
addition π · b of an element b at the end.

In rule (main), both the map and the path are initially empty. In rule
(owd-var), a variable x defined in the environment, found for the first time,
is added in the map with as index the length of the current path. In rule (owd-

corec), when the same variable is found the second time, the auxiliary function
sum checks that more constructors and right operands of interleave have been

14 D. Ancona et al.

m :: = x1 7→ i1 . . . xn 7→ ik (i ≥ 0) map from variables to indexes
π :: = b1b2 . . . bn sequence of either 1 or -1

(main)
owdρ′(x, ∅, ϵ)
wd(ρ, x, v)

ρ′ = ρ{x 7→ v} (owd-var)
owdρ(ρ(x),m{x 7→ i}, π)

owdρ(x,m, π)

x ̸∈ dom(m)
i = length(π)

(owd-corec)
owdρ(x,m, π)

x ∈ dom(m)
sum(m(x), π) > 0

(owd-fv)
owdρ(x,m, π)

x ̸∈ dom(ρ)

(owd-cons)
owdρ(s,m, π · 1)
owdρ(n : s,m, π)

(owd-tail)
owdρ(s,m, π · (−1))

owdρ(sˆ,m, π)

(owd-nop)
owdρ(s1,m, π) owdρ(s2,m, π)

owdρ(s1[nop]s2,m, π)
(owd-∥)

owdρ(s1,m, π) owdρ(s2,m, π · 1)
owdρ(s1∥s2,m, π)

(sum-0)
sum(π) = n

sum(0, π) = n
(sum-n)

sum(n− 1, b2 . . . bn) = n′

sum(n, b1b2 . . . bn) = n′ n > 0

(sum-b)
sum(ϵ) = 0

(sum-i)
sum(b2 . . . bn) = n

sum(b1b2 . . . bn) = b1 + n

Fig. 6. Optimized operational definition of well-definedness

traversed than tail operators (see below). In rule (owd-fv), a free variable is con-
sidered well-defined as in the corresponding rule in Fig. 3. In rules (owd-cons),
(owd-tail) and (op-wd), the value corresponding to the traversed operator is
added at the end of the path (1 for the constructor and the right operand of
interleave, -1 for the tail operator). Lastly, rules (owd-nop) behaves in a similar
way as in Fig. 3. The semantics of the auxiliary function sum is straightforward:
starting from the point in the path where the variable was found the first time,
the sum of all the elements is returned.

Let us now consider again the example above:

ρ = (x0, {x0 7→ 0 : x1, x1 7→ 0 : x2, x2 7→ 0 : x3, x3 7→ 0 : x4, . . . , xn 7→ 0 : x0})

By the new predicate owd, we get a derivation tree of the same shape as in
Fig. 5. However, sum is applied to the path π only at the leaves, and the length
of π is linearly proportional to the depth of the derivation tree, which coincides
with the number N of nodes in this specific case; hence, the time complexity to
compute sum(0, π) (that is, sum(m(x0), π)) is linear in N . Finally, since for inner
nodes only constant time operations are performed5 (addition at the end of the
path, and map insertion and lookup), the overall time complexity is linear in N .

As worst case in terms of time complexity for the predicate owd, consider

ρi = (x0, {x0 7→ 0 : x1[+]x1, x1 7→ 0 : x2[+]x2, x2 7→ 0 : x3[+]x3, . . . , xi 7→ 0 : x0})

5 This holds for any valid derivation tree and not for this specific case.

Enhancing expressivity of checked corecursive streams 15

The derivation tree for this environment is shown in Fig. 7, where mi abbreviates
the map {x0 7→ 0, x1 7→ 1, . . . , xi 7→ i}.

.

.

.

owdρ(x3[+]x3,m2, [1, 1, 1])
(owd-nop)

owdρ(0 : x3[+]x3,m2, [1, 1])
(owd-cons)

owdρ(x2,m1, [1, 1])
(owd-var)

.

.

.

owdρ(x2,m1, [1, 1])
(owd-var)

owdρ(x2[+]x2,m1, [1, 1])
(owd-nop)

owdρ(0 : x2[+]x2,m1, [1])
(owd-cons)

owdρ(x1,m0, [1])
(owd-var)

.

.

.

owdρ(x1,m0, [1])
(owd-var)

owdρ(x1[+]x1,m0, [1])
(owd-nop)

owdρ(0 : x1[+]x1,m0, ϵ)
(owd-cons)

owdρ(x0, ∅, ϵ)
(owd-var)

Fig. 7.

As already noticed, for inner nodes only constant time operations are per-
formed, and the length of the paths in the leaves is linearly proportional to the
depth D of the derivation tree; however, in this worst case the number of leaves
is not just one, but is linearly proportional to the total number N of nodes in the
derivation tree, hence the depth D is linearly proportional to logN . Therefore
the overall time complexity is O(N ·D), that is, O(N · logN).

We now show that the optimized version of the judgment has the same se-
mantics as its counterpart presented in Sect. 4. First of all we formally state
that, in Fig. 3, rule (wd-delay) does not affect derivability.

Lemma 4. A judgment wdρ(s, ∅) has a derivation iff it has a derivation which
does not use rule (wd-delay).

Proof. The right-to-left implication is obvious. If wdρ(s, ∅) uses rule (wd-delay),
all the (first in their path) occurrences of the rule can be replaced by rule (wd-

corec), still getting a derivation.

Then, we define a relation between the auxiliary structures used in the two
judgments:

For all m and (m, π), m ▷◁ (m, π) holds iff
dom(m) = dom(m) and, for all x ∈ dom(m), m(x) = sum(m(x), π).

In this way, we have the following generalization, whose straightforward proof
can be found in [4].

Theorem 2. If m ▷◁ (m, π), then, for all s, wdρ(s,m) is derivable iff owdρ(s,m, π)
is derivable.

Corollary 1. wdρ(s, ∅) is derivable iff owdρ(s, ∅, ϵ) is derivable.

16 D. Ancona et al.

6 Related and future work

As mentioned in Sect. 1, our approach extends regular corecursion, which orig-
inated from co-SLD resolution [18,19,1,6], where already considered goals (up
to unification), called coinductive hypotheses, are successfully solved. Language
constructs that support this programming style have also been proposed in the
functional [14] and object-oriented [7,2] paradigm.

There have been a few attempts of extending the expressive power of regular
corecursion. Notably, structural resolution [15,16] is an operational semantics for
logic programming where infinite derivations that cannot be built in finite time
are generated lazily, and only partial answers are shown. Another approach is
the work in [8], introducing algebraic trees and equations as generalizations of
regular ones. Such proposals share, even though with different techniques and in
a different context, our aim of extending regular corecursion; on the other hand,
the fact that corecursion is checked is, at our knowledge, a novelty of our work.

For the operators considered in the calculus and some examples, our main
sources of inspiration have been the works of Rutten [17], where a coinductive
calculus of streams of real numbers is defined, and Hinze [12], where a calculus
of generic streams is defined in a constructive way and implemented in Haskell.

In this paper, as in all the above mentioned approaches derived from co-SLD
resolution, the aim is to provide an operational semantics, designed to directly
lead to an implementation. That is, even though streams are infinite objects
(terms where the constructor is the only operator, defined coinductively), eval-
uation handles finite representations, and is defined by an inductive inference
system. Coinductive approaches can be adopted to obtain more abstract seman-
tics of calculi with infinite terms. For instance, [9] defines a coinductive semantics
of the infinitary lambda-calculus where, roughly, the semantics of terms with an
infinite reduction sequence is the infinite term obtained as limit. In coinduc-
tive logic programming, co-SLD resolution is the operational counterpart of a
coinductive semantics where a program denotes a set of infinite terms. In [2],
analogously, regular corecursion is shown to be sound with respect to an abstract
coinductive semantics using flexible coinduction [5,10], see below.

Our calculus is an enhancement of that presented in [3], with two main sig-
nificant contributions: (1) the interleaving operator, challenging since it is based
on a non-trivial recursion schema; (2) an optimized definition of the runtime
well-definedness check, as a useful basis for an implementation. Our main tech-
nical results are Theorem 1, stating that passing the runtime well-definedness
check performed for a function call prevents non-termination in accessing ele-
ments in the resulting stream, and Theorem 2, stating that the optimized version
is equivalent.

Whereas in [3] the well-definedness check was also a necessary condition to
guarantee termination, this is not the case here, due to the interleaving operator.
Consider, for instance, the following example: ρ = {s 7→ (sˆ∥s)∥0:s}. The judg-
ment wdρ(s, ∅) is not derivable, in particular because of sˆ, since wdρ(s, {s 7→ −1})
is not derivable and, hence, wdρ(sˆ, {s 7→ 0}), wdρ(sˆ∥s, {s 7→ 0}), and
wdρ((sˆ∥s)∥0:s, {s 7→ 0}). However, atρ(s, i) is well-defined for all indexes i; in-

Enhancing expressivity of checked corecursive streams 17

deed, atρ(s, 1) = 0 is derivable, atρ(s, 0) = k is derivable iff atρ(s, 1) = k is
derivable, and, for all i > 1, atρ(s, i) = k is derivable iff atρ(s, j) = k is derivable
for some j < i, hence atρ(s, i) = 0 is derivable for all i. We leave for future work
the investigation of a complete check.

In future work, we plan to also prove soundness of the operational well-
definedness with respect to its abstract definition. Completeness does not hold,
as shown by the example zeros() = [0] [*] zeros() which is not well-formed
operationally, but admits as unique solution the stream of all zeros.

Finally, in the presented calculus a cyclic call is detected by rule (corec) if
it is syntactically the same of some in the call trace. Although such a rule allows
cycle detection for all the examples presented in this paper, it is not complete
with respect to the abstract notion where expressions denoting the same stream
are equivalent, as illustrated by the following alternative definition of function
incr as presented in Sect. 3:

incr_reg(s) = (s(0)+1): incr_reg(s^)

If syntactic equivalence is used to detect cycles, then the call incr_reg([0])

diverges, since the terms passed as argument to the recursive calls are all syn-
tactically different; as an example, consider the arguments x and xˆ passed to
the initial call and to the first recursive call, respectively, in the environment
ρ = {x 7→ 0 : x}; they are syntactically different, but denote the same stream.

In future work we plan to investigate more expressive operational character-
izations of equivalence.

Other interesting directions for future work are the following.

– Investigate additional operators and the expressive power of the calculus.
– Design a static type system to prevent runtime errors such as the non-well-

definedness of a stream.
– Extend corecursive definition to flexible corecursive definitions [10,11] where

programmers can define specific behaviour when a cycle is detected. In this
way we could get termination in cases where lazy evaluation diverges. For
instance, assuming to allow also booleans results for functions, we could
define the predicate allPos, checking that all the elements of a stream are
positive, specifying as result true when a cycle is detected; in this way, e.g.,
allPos(one_two) would return the correct result.

18 D. Ancona et al.

References

1. Davide Ancona. Regular corecursion in Prolog. Computer Languages, Systems &
Structures, 39(4):142–162, 2013.

2. Davide Ancona, Pietro Barbieri, Francesco Dagnino, and Elena Zucca. Sound regu-
lar corecursion in coFJ. In Robert Hirschfeld and Tobias Pape, editors, ECOOP’20
- Object-Oriented Programming, volume 166 of LIPIcs, pages 1:1–1:28. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

3. Davide Ancona, Pietro Barbieri, and Elena Zucca. Enhanced regular corecursion
for data streams. In ICTCS’21 - Italian Conf. on Theoretical Computer Science,
2021.

4. Davide Ancona, Pietro Barbieri, and Elena Zucca. Enhancing expressivity of
checked corecursive streams (extended version), 2022. Available at https://arxiv.
org/abs/2202.06868.

5. Davide Ancona, Francesco Dagnino, and Elena Zucca. Generalizing inference sys-
tems by coaxioms. In Hongseok Yang, editor, 26th European Symposium on Pro-
gramming, ESOP 2017, volume 10201 of Lecture Notes in Computer Science, pages
29–55, Berlin, 2017. Springer.

6. Davide Ancona and Agostino Dovier. A theoretical perspective of coinductive logic
programming. Fundamenta Informaticae, 140(3-4):221–246, 2015.

7. Davide Ancona and Elena Zucca. Corecursive Featherweight Java. In FTfJP’12 -
Formal Techniques for Java-like Programs, pages 3–10. ACM Press, 2012.

8. Bruno Courcelle. Fundamental properties of infinite trees. Theoretical Computer
Science, 25:95–169, 1983.

9. Lukasz Czajka. A new coinductive confluence proof for infinitary lambda calculus.
Logical Methods in Computer Science, 16(1), 2020.

10. Francesco Dagnino. Flexible Coinduction. PhD thesis, DIBRIS, University of
Genova, 2021.

11. Francesco Dagnino, Davide Ancona, and Elena Zucca. Flexible coinductive logic
programming. Theory and Practice of Logic Programming, 20(6):818–833, 2020.
Issue for ICLP 2020.

12. Ralf Hinze. Concrete stream calculus: An extended study. Journal of Functional
Programming, 20(5–6):463–535, 2010.

13. Jean-Baptiste Jeannin and Dexter Kozen. Computing with capsules. Journal of
Automata, Languages and Combinatorics, 17(2-4):185–204, 2012.

14. Jean-Baptiste Jeannin, Dexter Kozen, and Alexandra Silva. CoCaml: Functional
programming with regular coinductive types. Fundamenta Informaticae, 150:347–
377, 2017.

15. Ekaterina Komendantskaya, Patricia Johann, and Martin Schmidt. A productivity
checker for logic programming. In Manuel V. Hermenegildo and Pedro López-
Garćıa, editors, Logic-Based Program Synthesis and Transformation - LOPSTR
2016, Revised Selected Papers, volume 10184 of Lecture Notes in Computer Science,
pages 168–186. Springer, 2016.

16. Ekaterina Komendantskaya, John Power, and Martin Schmidt. Coalgebraic logic
programming: from semantics to implementation. J. Log. Comput., 26(2):745–783,
2016.

17. Jan J. M. M. Rutten. A coinductive calculus of streams. Mathematical Structures
in Computer Science, 15(1):93–147, 2005.

18. Luke Simon. Extending logic programming with coinduction. PhD thesis, University
of Texas at Dallas, 2006.

https://arxiv.org/abs/2202.06868
https://arxiv.org/abs/2202.06868

Enhancing expressivity of checked corecursive streams 19

19. Luke Simon, Ajay Bansal, Ajay Mallya, and Gopal Gupta. Co-logic programming:
Extending logic programming with coinduction. In Lars Arge, Christian Cachin,
Tomasz Jurdzinski, and Andrzej Tarlecki, editors, Automata, Languages and Pro-
gramming, 34th International Colloquium, ICALP 2007, volume 4596 of Lecture
Notes in Computer Science, pages 472–483. Springer, 2007.

	Enhancing expressivity of checked corecursive streams

