Skip to main content

Decision Tree Based IoT Attack Detection in Programmable Data Plane Using P4 Language

  • Conference paper
  • First Online:
Advanced Information Networking and Applications (AINA 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 450))

  • 955 Accesses

Abstract

The Internet of Things (IoT) is a massively growing domain. With this the threats are also growing. Software Defined Networking (SDNs) is an emerging architecture which separates the control plane and the data plane of a network. It is being put to practice in networks around the world to mitigate issues. With growing heterogeneity in IoT protocols, it is cumbersome and costly to use SDNs. The Programming Protocol-independent Packet Processors (P4) is an open source, domain-specific programming language for network devices, specifying how data plane devices (switches, routers, NICs, filters, etc.) process packets. To overcome the challenges of IoT, P4 language is ideal as it provides flexibility for programming the data plane. We propose a light and fast approach to use decision tree to detect attacks from network traces and form small header fields to implement high accuracy attack detection in the programmable data plane using the P4 language.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kolias, C., Kambourakis, G., Stavrou, A., Voas, J.: DDoS in the IoT: mirai and other botnets. Computer 50(7), 80–84 (2017)

    Article  Google Scholar 

  2. Andrea, I., Chrysostomou, C., Hadjichristofi, G.: Internet of things: security vulnerabilities and challenges. In: 2015 IEEE Symposium on Computers and Communication (ISCC), pp. 180-187. IEEE (July 2015)

    Google Scholar 

  3. McKeown, N., et al.: OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008)

    Article  Google Scholar 

  4. Lotfollahi, M., Siavoshani, M.J., Zade, R.S.H., Saberian, M.: Deep packet: a novel approach for encrypted traffic classification using deep learning. Soft. Comput. 24(3), 1999–2012 (2020)

    Article  Google Scholar 

  5. Bosshart, P., et al.: P4: programming protocol-independent packet processors. ACM SIGCOMM Comput. Commun. Rev. 44(3), 87–95 (2014)

    Article  Google Scholar 

  6. Uddin, M., Mukherjee, S., Chang, H., Lakshman, T.V.: SDN-based multi-protocol edge switching for IoT service automation. IEEE J. Sel. Areas Commun. 36(12), 2775–2786 (2018)

    Article  Google Scholar 

  7. Alaba, F.A., Othman, M., Hashem, I.A.T., Alotaibi, F.: Internet of things security: a survey. J. Netw. Comput. Appl. 88, 10–28 (2017)

    Article  Google Scholar 

  8. Cao, X., Shila, D.M., Cheng, Y., Yang, Z., Zhou, Y., Chen, J.: Ghost-in-zigbee: energy depletion attack on zigbee-based wireless networks. IEEE Internet Things J. 3(5), 816–829 (2016)

    Article  Google Scholar 

  9. Pongle, P., Chavan, G.: A survey: attacks on RPL and 6LoWPAN in IoT. In: 2015 International Conference on Pervasive Computing (ICPC), pp. 1–6. IEEE (January 2015)

    Google Scholar 

  10. Mayzaud, A., Badonnel, R., Chrisment, I.: A taxonomy of attacks in RPL-based internet of things. Int. J. Netw. Secur. 18(3), 459–473 (2016)

    Google Scholar 

  11. Fu, K., Xu, W.: Risks of trusting the physics of sensors. Commun. ACM 61(2), 20–23 (2018)

    Article  Google Scholar 

  12. Shoukry, Y., Martin, P., Yona, Y., Diggavi, S., Srivastava, M.: Pycra: physical challenge-response authentication for active sensors under spoofing attacks. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1004–1015 (October 2015)

    Google Scholar 

  13. Antonakakis, M., et al.: Understanding the mirai botnet. In: 26th USENIX Security Symposium (USENIX Security 17), pp. 1093–1110 (2017)

    Google Scholar 

  14. Li, C., et al.: Detection and defense of DDoS attack-based on deep learning in OpenFlow–based SDN. Int. J. Commun. Syst. 31(5), e3497 (2018)

    Google Scholar 

  15. Napiah, M.N., Idris, M.Y.I.B., Ramli, R., Ahmedy, I.: Compression header analyzer intrusion detection system (CHA-IDS) for 6LoWPAN communication protocol. IEEE Access 6, 16623–16638 (2018)

    Article  Google Scholar 

  16. Midi, D., Rullo, A., Mudgerikar, A., Bertino, E.: Kalis-A system for knowledge-driven adaptable intrusion detection for the Internet of Things. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp. 656–666. IEEE (June 2017)

    Google Scholar 

  17. Nguyen, T.D., Marchal, S., Miettinen, M., Fereidooni, H., Asokan, N., Sadeghi, A.R.: D\(\ddot{{\rm I}}\)oT: a federated self-learning anomaly detection system for IoT. In: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), pp. 756–767. IEEE (July 2019)

    Google Scholar 

  18. Miettinen, M., Marchal, S., Hafeez, I., Asokan, N., Sadeghi, A.R., Tarkoma, S.: IoT sentinel: automated device-type identification for security enforcement in iot. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp. 2177–2184. IEEE (June 2017)

    Google Scholar 

  19. Wang, W., Zhu, M., Wang, J., Zeng, X., Yang, Z.: End-to-end encrypted traffic classification with one-dimensional convolution neural networks. In: 2017 IEEE International Conference on Intelligence and Security Informatics (ISI), pp. 43–48. IEEE (July 2017)

    Google Scholar 

  20. Wang, Z.: The applications of deep learning on traffic identification. BlackHat USA 24(11), 1–10 (2015)

    Google Scholar 

  21. Luo, T., Tan, H.P., Quek, T.Q.: Sensor OpenFlow: enabling software-defined wireless sensor networks. IEEE Commun. Lett. 16(11), 1896–1899 (2012)

    Article  Google Scholar 

  22. Galluccio, L., Milardo, S., Morabito, G., Palazzo, S.: SDN-WISE: design, prototyping and experimentation of a stateful SDN solution for WIreless SEnsor networks. In: 2015 IEEE Conference on Computer Communications (INFOCOM), pp. 513–521. IEEE (April 2015)

    Google Scholar 

  23. Lin, Y.B., Wang, S.Y., Huang, C.C., Wu, C.M.: The SDN approach for the aggregation/disaggregation of sensor data. Sensors 18(7), 2025 (2018)

    Article  Google Scholar 

  24. Dang, H.T., et al.: Whippersnapper: a p4 language benchmark suite. In: Proceedings of the Symposium on SDN Research, pp. 95–101 (April 2017)

    Google Scholar 

  25. Haykin, S.: Neural Networks: A Comprehensive Foundation, Prentice Hall PTR. Upper Saddle River, NJ, USA (1994)

    MATH  Google Scholar 

  26. Oord, A.V.D., et al.: Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499 (2016)

  27. Yu, R., et al.: Nisp: Pruning networks using neuron importance score propagation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9194–9203 (2018)

    Google Scholar 

  28. Verhelst, M., Moons, B.: Embedded deep neural network processing: algorithmic and processor techniques bring deep learning to iot and edge devices. IEEE Solid-State Circuits Mag. 9(4), 55–65 (2017)

    Article  Google Scholar 

  29. Roffo, G., Melzi, S., Cristani, M.: Infinite feature selection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4202–4210 (2015)

    Google Scholar 

  30. Bertsekas, D.P.: Dynamic Programming and Optimal Control, I and II, Athena Scientific, Belmont. Massachusetts, New York-San Francisco-London (1995)

    Google Scholar 

  31. Beigi, E.B., Jazi, H.H., Stakhanova, N., Ghorbani, A.A.: Towards effective feature selection in machine learning-based botnet detection approaches. In: 2014 IEEE Conference on Communications and Network Security, pp. 247–255. IEEE (October 2014)

    Google Scholar 

  32. Lashkari, A.H., Kadir, A.F.A., Gonzalez, H., Mbah, K.F., Ghorbani, A.A.: Towards a network-based framework for android malware detection and characterization. In: 2017 15th Annual conference on privacy, security and trust (PST), pp. 233–23309. IEEE (August 2017)

    Google Scholar 

  33. Le, A., Loo, J., Luo, Y., Lasebae, A.: The impacts of internal threats towards routing protocol for low power and lossy network performance. In: 2013 IEEE Symposium on Computers and Communications (ISCC), pp. 000789–000794. IEEE (July 2013)

    Google Scholar 

  34. Libelium. (n.d.) Waspmote. http://www.libelium.com/products/waspmote/

  35. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Icml (January 2010)

    Google Scholar 

  36. Nanda, S., Zafari, F., DeCusatis, C., Wedaa, E., Yang, B.: Predicting network attack patterns in SDN using machine learning approach. In: 2016 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), pp. 167–172. IEEE (November 2016)

    Google Scholar 

  37. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  38. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp. 265–283 (2016)

    Google Scholar 

  39. Lantz, B., Heller, B., McKeown, N.: A network in a laptop: rapid prototyping for software-defined networks. In: Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, pp. 1–6 (October 2010)

    Google Scholar 

  40. Consortium, P.L., et al.: Behavioral model (bmv2) (2018)

    Google Scholar 

  41. Neural Network Source codes and datasets (2020). https://github.com/vxxx03/ICDCS2020

  42. Biondi, P., et al.: Scapy (2011). https://scapy.net/

  43. Qin, Q., Poularakis, K., Tassiulas, L.: A learning approach with programmable data plane towards IoT security. In: 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS), pp. 410–420. IEEE (November 2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Poddar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Poddar, R., Babu, H. (2022). Decision Tree Based IoT Attack Detection in Programmable Data Plane Using P4 Language. In: Barolli, L., Hussain, F., Enokido, T. (eds) Advanced Information Networking and Applications. AINA 2022. Lecture Notes in Networks and Systems, vol 450. Springer, Cham. https://doi.org/10.1007/978-3-030-99587-4_57

Download citation

Publish with us

Policies and ethics