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Abstract. In the process of Systematic Literature Review, citation screen-
ing is estimated to be one of the most time-consuming steps. Multiple
approaches to automate it using various machine learning techniques
have been proposed. The first research papers that apply deep neural
networks to this problem were published in the last two years. In this
work, we conduct a replicability study of the first two deep learning pa-
pers for citation screening [16,8] and evaluate their performance on 23
publicly available datasets. While we succeeded in replicating the results
of one of the papers, we were unable to replicate the results of the other.
We summarise the challenges involved in the replication, including diffi-
culties in obtaining the datasets to match the experimental setup of the
original papers and problems with executing the original source code.
Motivated by this experience, we subsequently present a simpler model
based on averaging word embeddings that outperforms one of the mod-
els on 18 out of 23 datasets and is, on average, 72 times faster than the
second replicated approach. Finally, we measure the training time and
the invariance of the models when exposed to a variety of input features
and random initialisations, demonstrating differences in the robustness
of these approaches.

Keywords: Citation Screening, Study Selection, Systematic Literature
Review (SLR), Document Retrieval, Replicability

1 Introduction

A systematic literature review is a type of secondary study that summarises all
available data fitting pre-specified criteria to answer precise research questions.
It uses rigorous scientific methods to minimise bias and generate clear, solid
conclusions that health practitioners frequently use to make decisions [12].

Unfortunately, conducting systematic reviews is slow, labour intensive and
time-consuming as this relies primarily on human effort. A recent estimate shows
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that conducting a full systematic review takes, on average, 67 weeks [4], although
another past study reports that the median time to publication was 2.4 years
[22]. Furthermore, according to [21], 23% of published systematic reviews need
updating within two years after completion.

Citation screening (also known as selection of primary studies) is a crucial
part of the systematic literature review process [23]. During this stage, reviewers
need to read and comprehend hundreds (or thousands) of documents and decide
whether or not they should be included in the systematic review. This decision
is made on the basis of comparing each article content with predefined exclusion
and inclusion criteria. Traditionally it consists of two stages, the first round
of screening titles and abstracts, which is supposed to narrow down the list of
potentially relevant items. It is followed by a task appraising the full texts, a
more detailed (but also more time-consuming) revision of all included papers
from the first stage based on the full text of articles.

Multiple previous studies tried to decrease the completion time of systematic
reviews by using text mining methods to semi-automate the citation screening
process (see a recent systematic review on this topic: [9]). Using the machine
learning paradigm, citation screening could be reduced to a binary classification
problem. Then, the task is to train a model using the seed of manually labelled
citations that can distinguish between documents to be included (includes) and
those to be excluded (excludes). One of the challenges is a significant class im-
balance (for 23 benchmark datasets, the maximum percentage of included doc-
uments is 27%, and on average, it is only 7%). Additionally, existing approaches
require training a separate model for each new systematic review.

In this work, we replicate two recent papers related to automated citation
screening for systematic literature reviews using neural networks [16,8]. We chose
these studies since, to our knowledge, they are the first ones to address this
problem using deep neural networks. Both papers represent citation screening
as a binary classification task and train an independent model for each dataset.
We evaluate the models on 23 publicly available benchmark datasets. We present
our challenges regarding replicability in terms of datasets, models and evaluation.
In the remaining sections of this article, we will use the name Paper A to refer
to the study by Kontonatsios et al. [16] and Paper B to indicate work by van
Dinter et al. [8].

Moreover, we investigate if the models are invariant to different data features
and random initialisations. 18 out of 23 datasets are available as a list of Pubmed
IDs of the input papers with assigned categories (included or excluded). As we
needed to recreate data collection stages for both papers, we wanted to measure
if the choice of the document features would influence the final results of the
replicated models.

Both papers utilise deep learning due to their claimed substantial superiority
over traditional (including shallow neural network) models. We compare the
models with previous benchmarks and assess to what extent do these models
improve performance over simpler and more traditional models. Finally, we make
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our data collection and experiment scripts and detailed results publicly available
on GitHub1.

2 Related Work

Out of all stages of the systematic review process, the selection of primary stud-
ies is known as the most time-consuming step [2,20,24]. It was also automated
the most often in the past using text mining methods. According to a recent
survey on the topic of automation of systematic literature reviews [9], 25 out
of 41 analysed primary studies published between 2006 and 2020 addressed
(semi-)automation of the citation screening process. Another, older systematic
review from 2014 found in total 44 studies dealing implicitly or explicitly with
the problem of screening workload [18].

Existing approaches to automation of the citation screening process can be
categorised into two main groups. The first one uses text classification models
[25,17] and the second one screening prioritisation or ranking techniques that
exclude items falling below some threshold [10,6]. Both groups follow a similar
approach. They train a supervised binary classification algorithm to solve this
problem, e.g. Support Vector Machines (SVMs) [25,6], Näıve Bayes [17] or Ran-
dom Forest [15]. A significant limitation of these approaches is the need for a
large number of human decisions (annotations) that must be completed before
developing a reliable model [24].

Kontonatsios et al. [16] (Paper A) was the first one to apply deep learning
algorithms to automate the citation screening process. They have used three
neural network-based denoising autoencoders to create a feature representation
of the documents. This representation was fed into a feed-forward network with
a linear SVM classifier trained in a supervised manner to re-order the cita-
tions. Van Dinter et al. [8] (Paper B) presented the first end-to-end solution
to citation screening with a deep neural network. They developed a binary text
classification model with the usage of a multi-channel convolutional neural net-
work. Both models claim to yield significant workload savings of at least 10%
on most benchmark review datasets.

A different procedure to automating systematic reviews was presented during
the CLEF 2017 eHealth Lab Technology Assisted Reviews in Empirical Medicine
task [13,14]. Here, the user needs to find all relevant documents from a set of
PubMed articles given a Boolean query. It overcomes the need for creating an
annotated dataset first but makes it harder to incorporate reviewers’ feedback.

The recently published BERT model [7] and its variants have pushed the state
of the art for many NLP tasks. Ioannidis [11] used BERT-based models to work
on document screening within the Technology Assisted Review task achieving
better results than the traditional IR baseline models. To our knowledge, this
was the first use of a generative neural network model in a document screening
task.

1 https://github.com/ProjectDoSSIER/CitationScreeningReplicability

https://github.com/ProjectDoSSIER/CitationScreeningReplicability
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3 Experiment setup

3.1 Models

DAE-FF Paper A presents a neural network-based, supervised feature extrac-
tion method combined with a linear Support Vector Machine (SVM) trained to
prioritise eligible documents. The data preprocessing pipeline contains stopword
removal and stemming with a Porter stemmer. The feature extraction part is
implemented as three independent denoising autoencoders (DAE) that learn to
reconstruct corrupted Bag-of-Words input vectors. Their concatenated output is
used to initialise a supervised feed-forward neural network (FF). These extracted
document vectors are subsequently used as an input to an L2-regularised linear
SVM classifier. Class imbalance is handled by setting the regularisation param-
eter C = 1× 10−6.

Multi-Channel CNN Paper B presents a multi-channel convolutional neural
network (CNN) to discriminate between includes and excludes. It uses static,
pre-trained GloVe word embeddings [19] to create an input embedding matrix.
This embedding is inserted into a series of parallel CNN blocks consisting of a
single-dimensional CNN layer followed by global max pooling. Outputs from the
layers are concatenated after global pooling and fed into a feed-forward network.
The authors experimented with a different number of channels and Conv1D
output shapes. Input documents are tokenised and lowercased, punctuation and
non-alphabetic tokens are removed. Documents are padded and truncated to a
maximum length of 600 tokens. Class imbalance is handled with oversampling.
For our replicability study, we have chosen the best performing Model 2.

fastText We also test a shallow neural network model which is based on fast-
Text word embeddings [3]. This model is still comparable to more complex deep
learning models in many classification tasks. At the same time, it is orders of
magnitude faster for training and prediction, making it more suitable for active
learning scenarios where reviewers could alter the model’s predictions by anno-
tating more documents. To make it even simpler, we do not use pre-trained word
embeddings to vectorise documents. Data preprocessing is kept minimal as we
only lowercase the text and remove all non-alphanumerical characters.

Hyperparameters Paper A optimised only the number of training epochs
for their DAE model. In order to do so, they used two datasets: Statins and
BPA reviews and justified this choice with differences between smaller datasets
from Clinical and Drug reviews and SWIFT reviews. Other hyperparameters
(including the minibatch size and the number of epochs for the feed-forward
model) are constant across all datasets. Paper B used the Statins review dataset
to tune a set of hyperparameters, including the number of epochs, batch size,
dropout, and dense units.
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3.2 Data

All 23 datasets are summarised in Table 1, including the dataset source, number
of citations, number and percentage of eligible citations, maximum WSS@95%
score (Section 3.3) and the availability of additional bibliographic metadata.
Every citation consists of a title, an abstract, and an eligibility label (included
or excluded). Moreover, 18 datasets contain also bibliographic metadata. The
percentage of eligible citations (includes) varies between datasets, from 0.55%
to 27.04%, but on average, it is about 7%, meaning that the datasets are highly
imbalanced.

Table 1. Statistics of 23 publicly available datasets used in the experiments on auto-
mated citation screening for Systematic Literature Reviews.

Dataset name
Introduced

in
# Citations

Included
citations

Excluded
citations

Maximum
WSS@95%

Bibliographic
metadata

1 ACEInhibitors 2544 41 (1.6%) 2503 (98.4%) 93.47% Yes
2 ADHD 851 20 (2.4%) 831 (97.6%) 92.77% Yes
3 Antihistamines 310 16 (5.2%) 294 (94.8%) 89.84% Yes
4 Atypical Antipsychotics 1120 146 (13.0%) 974 (87.0%) 82.59% Yes
5 Beta Blockers 2072 42 (2.0%) 2030 (98.0%) 93.07% Yes
6 Calcium Channel Blockers 1218 100 (8.2%) 1118 (91.8%) 87.20% Yes
7 Estrogens 368 80 (21.7%) 288 (78.3%) 74.35% Yes
8 NSAIDs 393 41 (10.4%) 352 (89.6%) 85.08% Yes
9 Opioids 1915 15 (0.8%) 1900 (99.2%) 94.22% Yes
10 Oral Hypoglycemics 503 136 (27.0%) 367 (73.0%) 69.16% Yes
11 Proton PumpInhibitors 1333 51 (3.8%) 1282 (96.2%) 91.32% Yes
12 Skeletal Muscle Relaxants 1643 9 (0.5%) 1634 (99.5%) 94.45% Yes
13 Statins 3465 85 (2.5%) 3380 (97.5%) 92.66% Yes
14 Triptans 671 24 (3.6%) 647 (96.4%) 91.57% Yes
15 Urinary Incontinence

Drug
(Cohen et al.,

2006 )

327 40 (12.2%) 287 (87.8%) 83.38% Yes

Average Drug 1249 56 (7.7%) 1192 (92.3%) 87.67% 15/15

16 COPD 1606 196 (12.2%) 1410 (87.8%) 83.36% No
17 Proton Beam 4751 243 (5.1%) 4508 (94.9%) 90.14% No
18 Micro Nutrients

Clinical
(Wallace et al.,

2010) 4010 258 (6.4%) 3752 (93.6%) 88.87% No

Average Clinical 3456 232 (7.9%) 3223 (92.1%) 87.45% 0/3

19 PFOA/PFOS 6331 95 (1.5%) 6236 (98.5%) 93.56% Yes
20 Bisphenol A (BPA) 7700 111 (1.4%) 7589 (98.6%) 93.62% Yes
21 Transgenerational 48638 765 (1.6%) 47873 (98.4%) 93.51% Yes
22 Fluoride and neurotoxicity 4479 51 (1.1%) 4428 (98.9%) 93.91% No
23 Neuropathic pain — CAMRADES

SWIFT
(Howard et al.,

2016)
29207 5011 (17.2%) 24196 (82.8%) 78.70% No

Average SWIFT 19271 1206 (4.6%) 18064 (95.4%) 90.66% 3/5

Average (All datasets) 5454 329 (7.0%) 5125 (93.0%) 88.29% 18/23

Cohen et al. [5] was the first one to introduce datasets for training and eval-
uation of citation screening. They constructed a test collection for 15 different
systematic review topics produced by the Oregon Evidence-based Practice Cen-
tre (EPC) related to the efficacy of medications in several drug classes.

Another three datasets for evaluation of automated citation screening were
released by Wallace et al. [25]. These systematic reviews are related to the clinical
outcomes of various treatments. Both drug and clinical reviews contain a small
number of citations (varying from 310 to 4751).

The third group of datasets was introduced by Howard et al. [10] and consists
of five substantially larger reviews (from 4479 to 48 638 citations) that have been
used to assess the performance of the SWIFT-review tool. They were created
using broader search strategies which justifies a higher number of citations.

Paper A trained and evaluated their model on all 23 datasets coming from
three categories. Paper B used 20 datasets from the Clinical and SWIFT cat-
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egories. Paper B states that, on average, 5.2% of abstracts are missing in all
20 datasets, varying between 0% for Neuropathic Pain and 20.82% for Statins.
Compared to previous papers, Paper B reports fewer citations for three datasets
(Table 6 in the original paper): Statins, PFOA/PFOS and Neuropathic Pain.
This difference is insignificant compared to the dataset size, e.g. 29207 versus
29202 for Neuropathic Pain, so it should not influence the model evaluation.

3.3 Evaluation

Evaluation of automated citation screening can be very challenging. Traditional
metrics used for classification tasks like precision, recall, or F-score cannot cap-
ture what we intend to measure in this task. For an automated system to be
beneficial to systematic reviewers, it should save time and miss as few relevant
papers as possible. Previous studies suggested that recall should not be lower
than 95%, and at the same time, precision should be as high as possible [5].

Work saved over sampling at r% recall (WSS@r%) is a primary metric for
evaluation of automated citation screening. It was first introduced and described
by Cohen et al. [5] as “the percentage of papers that meet the original search
criteria that the reviewers do not have to read (because they have been screened
out by the classifier).” It estimates the human screening workload reduction by
using automation tools, assuming a fixed recall level of r%. WSS@r%, given a
recall of r%, is defined as follows:

WSS@r% =
TN + FN

N
− (1− r)

where TN is the number of true negatives, FN is the number of false negatives,
and N is the total number of documents. Based on previous studies, we fix the
recall at 95% and compute the WSS@95% score.

One drawback of this metric described by [5] is that it does not take into
account time differences caused by varying lengths of documents and also the
time needed to review a full-text article compared to only reading the title and
the abstract.

A further drawback of WSS is that the maximum WSS value depends on the
ratio of included/excluded samples. A perfectly balanced dataset can achieve a
maximum value of WSS@95% = 0.45, whereas a highly imbalanced dataset with
a 5%/95% split can obtain a maximum WSS@95% score of 0.9. Consequently,
it does not make sense to compare the results nor average them across different
datasets (as done in Paper A and B).

For our replicability study, we decided to use the implementations of the
WSS metric provided by Papers A and B.

Cross-validation Both papers use a stratified 10×2 cross-validation for evalu-
ation. In this setting, data is randomly split in half: one part is used to train the
classifier, and the other is left for testing. This process is then repeated ten times,
and the results are accumulated from all ten runs. We also use this approach to
evaluate the quality of all three models.



Automation of Citation Screening: a Replicability Study 7

3.4 Code

The authors of both papers uploaded their code into public GitHub repositories:
2,3. Both models were written in Python 3 and depend primarily on Tensor-
Flow and Keras deep learning frameworks [1]. The whole implementation was
uploaded in four commits for Paper A and one for Paper B (excluding commits
containing only documentation). Except for the code, there is no information
about versions of the packages used to train and evaluate the models. This miss-
ing information is crucial for replicability, as, for TensorFlow alone, in 2020,
there were 27 different releases related to 6 different MINOR versions4.

The model prepared by Paper B uses also pre-trained 100-dimensional GloVe
word embeddings which we downloaded separately from the original authors’
website5 according to the instructions provided by the Paper B GitHub Readme.

Both papers did not include the original datasets they used to train and eval-
uate their models. Paper A provided sample data consisting of 100 documents
which presents the input data format accepted by their model, making it easier
to re-run the experiments. Paper B does not include sample data but describes
where and how to collect and process the datasets.

4 Results and discussion

4.1 Replicability study

WSS@95% scores from older benchmarks and original papers, along with our
replicated results, are presented in Table 2. For all datasets, both Paper A and
B provide only mean WSS@95% score from cross-validation runs. Therefore, we
were not able to measure statistical significance between our replicated results
and the original ones. To quantify the difference, we decided to calculate the
absolute delta between reported and replicated scores: |x−y|. Both models report
a random seed for the cross-validation splits but not for the model optimisation.
Usage of different seeds for model optimisation might be one of the reasons why
we were not able to achieve the same results.

For two datasets (Bisphenol A (BPA) and Triptans), Paper A reports two
different results for the DAE-FF model (Tables 5 and 6 in the original paper).
We suppose this was only a typing mistake, as we managed to infer the actual
values based on the averaged WSS@95% score from all datasets available in the
original paper.

The average delta between our replicated results and the original ones from
Paper A is 3.59%. Only for three datasets is this value higher than 10%. If
we consider different seeds used for training models, these results confirm the
successful replication of Paper A’s work.

2 https://github.com/gkontonatsios/DAE-FF
3 https://github.com/rvdinter/multichannel-cnn-citation-screening
4 https://pypi.org/project/tensorflow/#history
5 https://nlp.stanford.edu/data/glove.6B.zip

https://github.com/gkontonatsios/DAE-FF
https://github.com/rvdinter/multichannel-cnn-citation-screening
https://pypi.org/project/tensorflow/#history
https://nlp.stanford.edu/data/glove.6B.zip
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Table 2. WSS@95% results for replicated models compared with original results and
benchmark models. WSS@95% scores are averages across ten validation runs for each
of the 23 review datasets. Underlined scores indicate the highest score within the three
tested models, bold values indicate the highest score overall.

Dataset name
Cohen
(2006)

Matwin
(2010)

Cohen
(2008/
2011)

Howard
(2016)

Paper A
Paper A

replicated
Absolute

delta
Paper B

Paper B
replicated

Absolute
delta

fastText
classifier

ACEInhibitors .566 .523 .733 .801 .787 .785 0.16% .783 .367 41.59% .783
ADHD .680 .622 .526 .793 .665 .639 2.58% .698 .704 0.57% .424

Antihistamines .000 .149 .236 .137 .310 .275 3.48% .168 .135 3.32% .047
Atypical Antipsychotics .141 .206 .170 .251 .329 .190 13.92% .212 .081 13.15% .218

Beta Blockers .284 .367 .465 .428 .587 .462 12.52% .504 .399 10.51% .419
Calcium Channel Blockers .122 .234 .430 .448 .424 .347 7.66% .159 .069 9.03% .178

Estrogens .183 .375 .414 .471 .397 .369 2.80% .119 .083 3.56% .306
NSAIDs .497 .528 .672 .730 .723 .735 1.18% .571 .601 2.98% .620
Opioids .133 .554 .364 .826 .533 .580 4.71% .295 .249 4.58% .559

Oral Hypoglycemics .090 .085 .136 .117 .095 .123 2.80% .065 .013 5.21% .098
Proton PumpInhibitors .277 .229 .328 .378 .400 .299 10.13% .243 .129 11.38% .283

Skeletal Muscle Relaxants .000 .265 .374 .556 .286 .286 0.04% .229 .300 7.14% .090
Statins .247 .315 .491 .435 .566 .487 7.93% .443 .283 16.03% .409

Triptans .034 .274 .346 .412 .434 .412 2.24% .266 .440 17.38% .210
Urinary Incontinence .261 .296 .432 .531 .531 .483 4.81% .272 .180 9.21% .439

Average Drug .234 .335 .408 .488 .471 .431 5.13% .335 .269 10.37% .339

COPD — — — — .666 .665 0.07% — .128 — .312
Proton Beam — — — — .816 .812 0.39% — .357 — .733

Micro Nutrients — — — — .662 .663 0.08% — .199 — .608

Average Clinical — — — — .715 .713 0.18% — .228 — .551

PFOA/PFOS — — — .805 .848 .838 0.97% .071 .305 23.44% .779
Bisphenol A (BPA) — — — .752 .793 .780 1.34% .792 .369 42.31% .637
Transgenerational — — — .714 .707 .718 1.14% .708 .000 70.80% .368

Fluoride and neurotoxicity — — — .870 .799 .806 0.68% .883 .808 7.48% .390
Neuropathic pain — — — .691 .608 .598 1.03% .620 .091 52.89% .613

Average SWIFT — — — .766 .751 .748 1.03% .615 .315 39.38% .557

Average (all datasets) — — — — .564 .537 3.59% — .273 17.63% .414

For Paper B, the average delta is 17.63%. For 10 out of 20 datasets, this
delta is more than 10%. For the two largest datasets: Transgenerational and
Neuropathic Pain we were not able to successfully train the Multi-Channel CNN
model. All of these results raise concerns about replicability.

Paper B also tried to replicate the DAE-FF model from Paper A. They stated
that “(...) we aimed to replicate the model (...) with open-source code via GitHub.
However, we could not achieve the same scores using our dataset. After emailing
the primary author, we were informed that he does not have access to his datasets
anymore, which means their study cannot be fully replicated.”. Our results are
contrary to findings by Paper B: we managed to replicate the results of Paper
A successfully without having access to their original datasets. Unfortunately,
Paper B does not present any quantitative results of their replicability study.
Therefore, we cannot draw any conclusions regarding those results as we do not
know what Paper B authors meant by “cannot be fully replicated”.

Figure 1 presents results for ADHD and Proton Beam datasets for all three
models. The Multi-Channel CNN model has the widest range of WSS@95%
scores across cross-validation runs. This is especially evident on the datasets
from the Clinical group (i.e. Proton Beam), for which the DAE-FF and fastText
models yield very steady results across every cross-validation fold. This could
mean that the Multi-Channel CNN model is less stable, and its good performance
is dependant on random initialisation.
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(a) ADHD review dataset.
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(b) Proton Beam review dataset.

Fig. 1. Example boxplots with WSS@95% scores for three models. Input features are
titles and abstracts.

Next, we compare our replicated results and the original ones from Paper
A and B to previous benchmark studies. Paper A only compares their model
to custom baseline methods and does not mention the previous state of the art
results. None of the tested neural network-based models can improve on the
results by Howard et al. [10], which uses a log-linear model with word-score and
topic-weight features to classify the citations. This means that even though deep
neural network models can provide significant gains in WSS@95% scores, they
can still be outperformed by classic statistical methods.

4.2 Impact of input features

As we encountered memory problems when training the Paper B model on Trans-
generational and Neuropathic pain datasets, we exclude these two datasets from
our comparisons in the remaining experiments.

None of the papers provided the original input data used to train the models.
We wanted to measure if the results depend on how that input data was gathered.
We implemented two independent data gathering scripts using the biopython
package as suggested by Paper B to obtain 18 out of 23 datasets. One imple-
mentation relied on the Medline module, where a document was represented as
a dictionary of all available fields. The second implementation returned all pos-
sible fields (title, abstract, author and journal information) concatenated in a
single string. Furthermore, we examined how robust the models are, if the input
data contained only titles or abstracts of the citations. Results are presented in
the Table 3.

The best average WSS@95% results are obtained for all three models when
they use all available features (Figure 2). All models achieved better results when
using just the abstract data compared to the titles alone. This reaffirms our com-
mon sense reasoning that titles alone are not sufficient for citation screening.
However, there are some specific datasets for which best results were obtained
when the input documents contained only titles or abstracts. While this experi-
ment does not indicate why this is the case, we can offer some potential reasons:
(1) it could be that eligible citations of these datasets are more similar in terms
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Table 3. Influence of input document features on the WSS@95% score for three tested
models. “All features” means a single string containing all possible fields. For each
row, bold values indicate the highest score for each model, underlined scores are best
overall.

DAE-FF Multi-Channel CNN fastText classifier

Dataset name
All

features
Title and
Abstract

Abstract
only

Title
only

All
features

Title and
Abstract

Abstract
only

Title
only

All
features

Title and
Abstract

Abstract
only

Title
only

ACEInhibitors .785 .709 .658 .806 .367 .461 .648 .525 .783 .776 .765 .441
ADHD .639 .500 .404 .651 .704 .528 .692 .580 .424 .470 .444 .200

Antihistamines .275 .168 .265 .016 .135 .204 .114 .105 .047 .124 .175 .192
Atypical Antipsychotics .190 .221 .230 .046 .081 .086 .050 .013 .218 .188 .185 .095

Beta Blockers .462 .451 .390 .408 .399 .243 .134 .211 .419 .419 .407 .262
Calcium Channel Blockers .347 .337 .297 .137 .069 .083 .004 .117 .178 .139 .060 .244

Estrogens .369 .358 .331 .145 .083 .076 .051 .092 .306 .199 .108 .241
NSAIDs .735 .679 .690 .658 .601 .443 .358 .225 .620 .506 .512 .535
Opioids .580 .513 .499 .280 .249 .420 .413 .287 .559 .558 .534 .245

Oral Hypoglycemics .123 .129 .107 .019 .013 .021 .004 .005 .098 .049 .042 .016
Proton PumpInhibitors .299 .291 .153 .285 .129 .121 .059 .118 .283 .228 .174 .360

Skeletal Muscle Relaxants .286 .327 .430 .125 .300 .329 .242 .202 .090 .142 .180 .210
Statins .487 .434 .392 .255 .283 .231 .120 .082 .409 .376 .281 .228

Triptans .412 .253 .320 .199 .440 .404 .407 .129 .210 .205 .211 .075
Urinary Incontinence .483 .531 .482 .372 .180 .161 .046 .099 .439 .310 .170 .434

Average Drug .431 .394 .373 .293 .269 .254 .223 .185 .339 .313 .283 .252

COPD .665 .665 .676 .677 .128 .372 .087 .093 .312 .553 .546 .545
Proton Beam .812 .810 .790 .799 .357 .489 .408 .559 .733 .761 .771 .771

Micro Nutrients .663 .648 .665 .677 .199 .255 .251 .268 .608 .602 .605 .601

Average Clinical .713 .708 .670 .718 .228 .372 .249 .307 .551 .638 .640 .639

PFOA/PFOS .713 .839 .847 .696 .305 .405 .391 .109 .779 .796 .778 .292
Bisphenol A (BPA) .780 .754 .715 .631 .369 .300 .612 .182 .637 .630 .499 .079

Fluoride and neurotoxicity .806 .838 .758 .726 .808 .688 .654 .452 .390 .375 .292 .250
Average SWIFT .766 .782 .774 .684 .494 .464 .552 .247 .602 .600 .523 .207

Average (All datasets) .520 .498 .481 .410 .295 .301 .274 .212 .407 .400 .368 .301

of titles or abstract; (2) it could be that these models are not able to retrieve
relevant information when there is too much noise. Intra- and inter-class dataset
similarity need to be further evaluated in future studies.

As presented in Table 2, the fastText classifier model was not able to out-
perform the original results from Paper A and B. However, compared to our
replicated results of Paper B, the fastText classifier achieves higher WSS@95%
scores on 18 out of 23 datasets. It is also more robust to random initialisation
compared to Multi-Channel CNN.

All features Title and Abstract Title only Abstract only
Features

0

5

10

15

20

25

30

Co
un

t

Model
DAE-FF
Multi-Channel CNN
fastText classifier

Fig. 2. A count of experiments in which a model using a specific input feature achieved
the best results. Models that use all available features scored the best results 49% of
times for a specific (model, dataset) combination.
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4.3 Training time

We computed the training time for each of the models. The relationship be-
tween dataset size and model training time is visualised in Figure 3. For the
DAE-FF model, we calculated both the training procedure of denoising autoen-
coder, feed-forward networks, and linear SVM. The DAE component is the most
time-absorbing component as it consumes, on average, 93.5% of the total train-
ing time. For the fastText and Multi-Channel CNN models, we calculated the
training procedure of the binary classifier.

For small datasets containing less than 1000 documents, one validation fold
for fastText took on average 2 seconds, for Multi-Channel CNN 13 seconds,
and DAE-FF 82 seconds. Training time difference increases for larger models,
where the speed of fastText is even more significant. For the largest dataset,
Transgenerational, the mean training time for fastText is 78 seconds, for Multi-
Channel CNN 894 seconds and for DAE-FF, it is 18,108 seconds. On average, the
fastText model is 72 times faster than DAE-FF and more than eight times faster
than Multi-Channel CNN, although this dependency is not linear and favours
fastText for larger datasets.

103 104

Dataset size

101

102

103

104

Tr
ai

ni
ng

 ti
m

e 
[s

]

Model name
DAE-FF
Multi-Channel CNN
fastText classifier

Fig. 3. The relationship between dataset size and a model training time for the three
evaluated models. Both training time and dataset size are shown on a logarithmic scale.

4.4 Precision@95%recall

Finally, we measure the precision at a recall level of 95%, a metric proposed
by Paper A. Table 4 shows mean scores for each model across all three re-
view groups. Similarly to the WSS@95% metric, the best performing model is
DAE-FF achieving a mean precision@95%recall on 21 datasets equal to 0.167.
This method outperforms Multi-Channel CNN and fastText models by 3.2% and
4.6%, respectively. Paper A reported average precision@95%recall equal to 19%
over 23 review datasets, which is comparable with our findings. Paper B does not
report this score, so we cannot compare our results regarding the Multi-Channel
CNN model.
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Table 4. Precision at 95% recall results for the three models averaged on 21 bench-
mark datasets. We did not measure the precision for the two largest SWIFT datasets:
Transgenerational and Neuropathic pain.

DAE-FF Multi-Channel CNN fastText classifier

Average Drug .143 .121 .112

Average Clinical .324 .221 .230

Average SWIFT .127 .091 .058

Average (21 datasets) .167 .135 .121

5 Conclusions

This work replicates two recent papers on automated citation screening for sys-
tematic literature reviews using deep neural networks. The model proposed by
Paper A consists of a denoising autoencoder combined with feed-forward and
SVM layers (DAE-FF). Paper B introduces a multi-channel convolutional neu-
ral network (Multi-Channel CNN). We used the 23 publicly available datasets
to measure the quality of both models. The average delta between our replicated
results and the original ones from Paper A is 3.59%. Considering that we do not
know the random seed used for the training of original models, we can conclude
that the replication of Paper A was successful. The average delta for Paper B is
17.63%. In addition to that, this model is characterised by a significant variance,
so we cannot claim successful replication of this method.

Subsequently, we evaluated the fastText classifier and compared its perfor-
mance to the replicated models. This shallow neural network model based on
averaging word embeddings achieved better WSS@95% results when compared
to replicated scores from Paper B and, at the same time, is on average 72 and 8
times faster during training than both Paper A and B models.

None of the tested models can outperform all the others across all the datasets.
DAE-FF achieves the best average results, though it is still worse when com-
pared to a statistical method with the log-linear model. Models using all avail-
able features (title, abstract, author and journal information) perform best on
the average of 21 datasets when compared to just using a title, abstract or both.

Availability of the code alone does not guarantee a replicable experimental
setup. If the project was not documented for the specific software versions, it
might be challenging to reconstruct these requirements based exclusively on the
code, especially if the experiments were conducted some time ago. In the case of
code written in Python, explicitly writing environment version with, for example,
requirements.txt or conda’s environment.yml files should be sufficient in most of
the cases to save time for researchers trying to replicate the experiments.

Acknowledgements. This work was supported by the EU Horizon 2020 ITN/ETN
on Domain Specific Systems for Information Extraction and Retrieval – DoSSIER
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