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Abstract. Testing with quiz questions has proven to be an effective way
to assess and improve the educational process. However, manually cre-
ating quizzes is tedious and time-consuming. To address this challenge,
we present Leaf, a system for generating multiple-choice questions from
factual text. In addition to being very well suited for the classroom, Leaf
could also be used in an industrial setting, e.g., to facilitate onboarding
and knowledge sharing, or as a component of chatbots, question answer-
ing systems, or Massive Open Online Courses (MOOCs). The code and
the demo are available on GitHub.5
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1 Introduction

Massive Open Online Courses (MOOCs) have revolutionized education by offer-
ing a wide range of educational and professional training. However, an important
issue in such a MOOC setup is to ensure an efficient student examination setup.
Testing with quiz questions has proven to be an effective tool, which can help
both learning and student retention [38]. Yet, preparing such questions is a te-
dious and time-consuming task, which can take up to 50% of an instructor’s
time [41], especially when a large number of questions are needed in order to
prevent students from memorizing and/or leaking the answers.

To address this issue, we present an automated multiple-choice question gen-
eration system with focus on educational text. Taking the course text as an
input, the system creates question–answer pairs together with additional incor-
rect options (distractors). It is very well suited for a classroom setting, and the
generated questions could also be used for self-assessment and for knowledge gap
detection, thus allowing instructors to adapt their course material accordingly. It
can also be applied in industry, e.g., to produce questions to enhance the process
of onboarding, to enrich the contents of massive open online courses (MOOCs),
or to generate data to train question–answering systems [10] or chatbots [22].

5 https://github.com/KristiyanVachev/Leaf-Question-Generation
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2 Related Work

While Question Generation is not as popular as the related task of Question
Answering, there has been a steady increase in the number of publications in
this area in recent years [1,18]. Traditionally, rules and templates have been used
to generate questions [29]; however, with the rise in popularity of deep neural
networks, there was a shift towards using recurrent encored–decoder architec-
tures [2,8,9,33,40,46,47] and large-scale Transformers [7,20,23,27,36].

The task is often formulated as one of generating a question given a tar-
get answer and a document as an input. Datasets such as SQuAD1.1 [37] and
NewsQA [44] are most commonly used for training, and the results are typically
evaluated using measures such as BLEU [32], ROUGE [25], and METEOR [21].
Note that this task formulation requires the target answer to be provided be-
forehand, which may not be practical for real-world situations. To get over this
limitation, some systems extract all nouns and named entities from the input
text as target answers, while other systems train a classifier to label all word
n-grams from the text and to pick the ones with the highest probability to be
answers [45]. To create context-related wrong options (i.e., distractors), typically
the RACE dataset [19] has been used along with beam search [3,11,31]. Note
that MOOCs pose additional challenges as they often cover specialized content
that goes beyond knowledge found in Wikipedia, and can be offered in many
languages; there are some open datasets that offer such kinds of questions in
English [5,6,19,28,42] and in other languages [4,12,13,15,16,24,26,30].

Various practical systems have been developed for question generation. Web-
Experimenter [14] generates Cloze-style questions for English proficiency testing.
AnswerQuest [39] generates questions for better use in Question Answering sys-
tems, and SQUASH [17] decomposes larger articles into paragraphs and gener-
ates a text comprehension question for each one; however, both systems lack the
ability to generate distractors. There are also online services tailored to teachers.
For example, Quillionz [35] takes longer educational texts and generates ques-
tions according to a user-selected domain, while Questgen [34] can work with
texts up to 500 words long. While these systems offer useful question recom-
mendations, they also require paid licenses. Our Leaf system offers a similar
functionality, but is free and open-source, and can generate high-quality distrac-
tors. It is trained on publicly available data, and we are releasing our training
scripts, thus allowing anybody to adapt the system to their own data.

3 System

System architecture: Leaf has three main modules as shown in Figure 1.
Using the Client, an instructor inputs a required number of questions and her
educational text. The text is then passed through a REST API to the Multiple-
Choice Question (MCQ) Generator Module, which performs pre-processing and
then generates and returns the required number of question–answer pairs with
distractors. To achieve higher flexibility and abstraction, the models implement
an interface that allows them to be easily replaced.
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Fig. 1. The general architecture of Leaf.

Question and Answer Generation: To create the question–answer pairs,
we combined the two tasks into a single multi-task model. We fine-tuned the
small version of the T5 Transformer, which has 220M parameters, and we used
the SQuAD1.1 dataset [37], which includes 100,000 question–answer pairs. We
trained the model to output the question and the answer and to accept the
passage and the answer with a 30% probability for the answer to be replaced by
the [MASK] token. This allows us to generate an answer for the input question
by providing the [MASK] token instead of the target answer. We trained the
model for five epochs, and we achieved the best validation cross-entropy loss of
1.17 in the fourth epoch. We used a learning rate of 0.0001, a batch size of 16,
and a source and a target maximum token lengths of 300 and 80, respectively.
For question generation, we used the same data split and evaluation scripts as
in [9]. For answer generation, we trained on the modified SQuAD1.1 Question
Answering dataset as proposed in our previous work [45], achieving an Exact
Match of 41.51 and an F1 score of 53.26 on the development set.

Distractor Generation: To create contextual distractors for the question–
answer pairs, we used the RACE dataset [19] and the small pre-trained T5 model.
We provided the question, the answer, and the context as an input, and obtained
three distractors separated by a [SEP] token as an output. We trained the model
for five epochs, achieving a validation cross-entropy loss of 2.19. We used a
learning rate of 0.0001, a batch size of 16, and a source and a target maximum
token lengths of 512 and 64, respectively. The first, the second, and the third
distractor had BLEU1 scores of 46.37, 32.19, and 34.47, respectively. We further
extended the variety of distractors with context-independent proposals, using
sense2vec [43] to generate words or multi-word phrases that are semantically
similar to the answer.



4 K. Vachev et al.

Fig. 2. Screenshot of Leaf showing the generated questions for a passage from the
Wikipedia article on Oxygen. All distractors in Question 1 are generated by the T5
model, and the last two distractors in Question 2 are generated by the sense2vec model.

User Interface: Using the user interface shown on Figure 2, the instructor
can input her educational text, together with the desired number of questions to
generate. Then, she can choose some of them, and potentially edit them, before
using them as part of her course.

4 Conclusion and Future Work

We presented Leaf, a system to generate multiple-choice questions from text.
The system can be used both in the classroom and in an industrial setting to
detect knowledge gaps or as a self-assessment tool; it could also be integrated
as part of other systems. With the aim to enable a better educational process,
especially in the context of MOOCs, we open-source the project, including all
training scripts and documentation.

In future work, we plan to experiment with a variety of larger pre-trained
Transformers as the underlying model. We further plan to train on additional
data. Given the lack of datasets created specifically for the task of Question
Generation, we plan to produce a new dataset by using Leaf in real university
courses and then collecting and manually curating the question–answer pairs
Leaf generates over time.
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