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Abstract. Self-supervised representation learning of Multivariate Time
Series (MTS) is a challenging task and attracts increasing research in-
terests in recent years. Many previous works focus on the pretext task
of self-supervised learning and usually neglect the complex problem of
MTS encoding, leading to unpromising results. In this paper, we tackle
this challenge from two aspects: encoder and pretext task, and propose a
unified channel-aware self-supervised learning framework CaSS. Specif-
ically, we first design a new Transformer-based encoder Channel-aware
Transformer (CaT) to capture the complex relationships between differ-
ent time channels of MTS. Second, we combine two novel pretext tasks
Next Trend Prediction (NTP) and Contextual Similarity (CS) for the
self-supervised representation learning with our proposed encoder. Ex-
tensive experiments are conducted on several commonly used benchmark
datasets. The experimental results show that our framework achieves new
state-of-the-art comparing with previous self-supervised MTS represen-
tation learning methods (up to +7.70% improvement on LSST dataset)
and can be well applied to the downstream MTS classification.

1 Introduction

With the fast progress of IoT and coming 5Gs, multivariate time series widely
exists in medical, financial, industrial and other fields as an increasingly impor-
tant data form [6,8]. Compared with univariate time series, multivariate time
series usually contains more information and brings more potentials for data
mining, knowledge discovery and decision making, etc.. However, MTS not only
contains time-wise patterns, but also has complex relationships between different
channels, which makes MTS analysis much more difficult.

In recent years, the self-supervised learning attracts more and more atten-
tion from research and industry communities. The self-supervised pre-training
demonstrates its success in the fields of Natural Language Processing (NLP)
[17] and Computer Visions (CV) [29]. Especially in NLP, adopting a pre-trained
language model is de facto the first step of almost all the NLP tasks. Likewise,
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Fig. 1. A sample of encoding of multivariate time series.

the self-supervised representation learning of time series not only brings per-
formance improvements, but also helps to close the gap between the increasing
amount of data (more abstraction and complexity) and the expensive cost of
manually labeling for supervised learning tasks. Many research efforts have been
devoted to the self-supervised representation learning of time series [15,12,34]
and promising results have been achieved. However, the previous works for MTS
are limited and the challenge still exists.

The self-supervised representation learning usually consists of two aspects:
encoder and pretext task. As shown in Figure 1, in the past works, most of them
only focus on time-wise features where all channel values of one or several time
steps are fused through convolution or fully connected layer directly in the em-
bedding process. There is a lack of deliberate investigation of the relationships
between channel-wise features, which affects the encoder’s ability to capture
the whole characteristics of the MTS. To deal with the problem, the methods
combining with Recurrent Neural Network (RNN) are presented to capture the
individual feature of each channel [3,35]. The recent work of [21] employs Trans-
former [30] to integrate the features of time-wise and channel-wise. Among these
solutions, RNN seems not very suitable for self-supervised leaning due to the
consumption and is usually employed in prediction task [14]. Transformer is
becoming more and more popular and is suitable for time series [34], however
the previous Transformer-based MTS embedding provokes the problem of high
complexity of computing and space, which prevents it from real applications. It
inspires us to design a more effective Transformer-based for MTS to take advan-
tages of the strong encoding ability of Transformer. In the aspect of pretext task,
most of the previous works adopt the traditional time series embedding based
on time-wise features. How to integrate channel-wise features with pretext task
is a challenge.

In this paper, we propose a novel self-supervised learning framework CaSS
from the aspects of encoder and pretext task. First, we propose a new Transformer-
based encoder Channel-aware Transformer (CaT) for MTS encoding which in-
vestigates time-wise and channel-wise features simultaneously. It is noticed that
in practice the number of channels of MTS is fixed while the time length can be
unlimited and the number of channels is usually much less than the time length.
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Therefore as shown in Figure 1, different from previous work [21], we integrate
the time-wise features into the channel-wise features and concatenate all these
novel channel-wise features as the representation of the sample. Second, we de-
sign a new self-supervised pretext task Next Trend Prediction (NTP) from the
perspective of channel-wise for the first time in self-supervised MTS representa-
tion learning. It is considered that in many cases only the rise and fall of future
time rather than the specific value of the time series is necessary. So we cut the
multivariate time series from the middle, and using the previous sequences of
all rest channels to predict the trend for each channel. Different from fitting the
specific value (regression), the prediction of trend (rise and fall) is more suitable
for arbitrary data. We also demonstrate through experiments that compared
with fitting specific values, prediction of trend is more efficient. In addition, we
employ another task called Contextual Similarity (CS) which combines a novel
data augmentation strategy to maximize the similarity between similar samples
and learn together with NTP task. The CS task focuses on the difference be-
tween samples while NTP task focuses on the sample itself and helps to learn
the complex internal characteristics.

In summary, the main contributions of our work are as follows:

– We propose a new Transformer-based encoder Channel-aware Transformer.
It can efficiently integrate the time-wise features to the channel-wise repre-
sentation.

– We design two novel pretext tasks, Next Trend Prediction and Contextual
Similarity for our CaSS framework. To the best of our knowledge, Next
Trend Prediction task is conducted from the perspective of channel-wise for
the first time in self-supervised MTS representation learning.

– We conduct extensive experiments on several commonly used benchmark
datasets from different fields. Compared with the state-of-the-art self-supervised
MTS representation learning methods, our method achieves new state-of-the-
art in MTS classification (up to +7.70% improvement on LSST dataset). We
also demonstrate its ability in few-shot learning.

2 Related Work

2.1 Encoders for Time Series Classification

A variety of methods have been proposed for time series classification. Early
works employ traditional machine learning methods to solve the problem, like
combining Dynamic Time Warping (DTW) [32] with Support Vector Machine
(SVM) [9]. Time Series Forest [11] introduces an approach based on Random
Forest [7]. Bag of Patterns (BOP) [18] and Bag of SFA Symbols (BOSS) [28]
construct a dictionary-based classifier. Although these early works can deal with
the problem to some extent, they need heavy crafting on data preprocessing
and feature engineering. The emergence of deep learning greatly reduces feature
engineering and boosts the performance of many machine learning tasks. So far
Convolutional Neural Network (CNN) is popular in time series classification due
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to its balance between its effect and cost, such as Multi-scale Convolutional Neu-
ral Network (MCNN) [10] for univariate time series classification, Multi-channels
Deep Convolutional Neural Networks (MC-DCNN) [38] for multivariate time se-
ries classification and so on [36,20,37]. Hierarchical Attention-based Temporal
Convolutional Network (HA-TCN) [19] and WaveATTentionNet (WATTNet)
[25] apply dilated causal convolution to improve the encoder’s effect. Among
these CNN methods, Fully Convolutional Network (FCN) and Residual Network
(ResNet) [31] have been proved to be the most powerful encoders in multivari-
ate time series classification task [14]. Due to the high computation complexity,
RNN based encoders are rarely applied solely to the time series classification
[22,35]. It is often combined with CNN to form a two tower structure [16,3].
In recent years, more and more works have tried to apply Transformer to time
series [33,26,39]. However, most of them are designed for prediction task, and
few works cover the classification problem [24,27,21,34].

2.2 Pretext Tasks for Time Series

Manually labeling is a long lasting challenge for the supervised learning, and
recently self-supervised training (no manually labeling) becomes more and more
popular in many research fields including time series analysis. To name a few, [15]
employs the idea of word2vec [23] which regards part of the time series as word,
the rest as context, and part of other time series as negative samples for train-
ing. [12] employs the idea of contrastive learning where two positive samples are
generated by weak augmentation and strong augmentation to predict each other
while the similarity among different augmentations of the same sample is maxi-
mized. [13] is designed for univariate time series. It samples several segments of
the time series and labels each segment pairs according to their relative distance
in the origin series. It also adds the task of judging whether two segments are
generated by the same sample. [4] is based on sampling pairs of time windows
and predicting whether time windows are close in time by setting thresholds to
learn EEG features. [34] is a Transformer-based method which employs the idea
of mask language model [17]. The mask operation is performed for multivariate
time series and the encoder is trained by predicting the masked value. However,
the previous works usually focus on time-wise features and need to continuously
obtain the features of several time steps [15,12,34], which makes them difficult
to be applied to the novel MTS representation.

3 The Framework

In this work, we focus on self-supervised multivariate time series representation
learning. Given M multivariate time series X= {x0,...,xM}, where xi ∈ RC×T

refers to the i-th time series which has C channels and T time steps. For each
multivariate time series xi, our goal is to generate a proper representation zi
which is applicable to the subsequent task.
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Fig. 2. Overall architecture of the channel-aware self-supervised framework CaSS.

Our proposed novel encoder Channel-aware Transformer (CaT) and pretext
tasks constitute our channel-aware self-supervised learning framework CaSS. The
overall architecture is shown in Figure 2. In our framework, CaT is to generate
the novel channel-wise features of the MTS sample, and the generated features
are served as the inputs of Next Trend Prediction task and Contextual Similarity
task. Specifically, we first preprocess the time series samples and apply the two
pretext tasks to learn the encoder (representations), then we employ the learnt
representations to the MTS classification task by freezing the encoder.

4 Channel-aware Transformer

This section describes our proposed Transformer-based encoder Channel-aware
Transformer which is served as the encoder in our self-supervised learning frame-
work. As shown in Figure 3, It consists of Embedding Layer, Co-Transformer
Layer and Aggregate Layer. The two Transformer structures in Co-Transformer
Layer encode the time-wise and channel-wise features respectively, and interact
with each other during encoding. Finally, we fuse the time-wise features into
channel-wise features through Aggregate Layer to generate the final representa-
tion.

4.1 Embedding Layer

Given an input sample x ∈ RC×T , we map it to the D-dimension time vector
space and channel vector space respectively to obtain the time embedding et ∈
RT×D and channel embedding ec ∈ RC×D:

et = xTWt + epos, (1)

ec = xWc, (2)
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Fig. 3. Overall architecture of Channel-aware Transformer (CaT). Q, K, V represent
the query vector, key vector, value vector in attention operation respectively.

where Wt ∈ RC×D, Wc ∈ RT×D are learnable embedding matrices. epos ∈ RT×D

is the positional embedding applying the design of [30].

4.2 Co-Transformer Layer

This part adopts a N -layer two tower structure based on Transformer [21]. Each
layer is composed of Time Layer and Channel Layer, focusing on time-wise and
channel-wise respectively. Supposing in the i-th layer (i = 0, ..., N−1), we obtain
the input ait ∈ RT×D for Time Layer and aic ∈ RC×D for Channel Layer. The
process in Time Layer is:

Qi
t = aitW

i
qt, Ki

t = aicW
i
kt, V i

t = aicW
i
vt, (3)

bit = LayerNorm(MHA(Qi
t,K

i
t , V

i
t ) + ait), (4)

ai+1
t = LayerNorm(FFN(bit) + bit), (5)

and the process in Channel Layer is:

Qi
c = aicW

i
qc, Ki

c = aitW
i
kc, V i

c = aitW
i
vc, (6)

bic = LayerNorm(MHA(Qi
c,K

i
c, V

i
c ) + aic), (7)

ai+1
c = LayerNorm(FFN(bic) + bic), (8)

where W i
qt, W

i
kt, W

i
vt, W

i
qc, W

i
kc, W

i
vc ∈ RD×D are learnable matrices. MHA is

the abbreviation of multi-head attention and FFN is the abbreviation of feed
forward network. Specifically, a0t = et, a

0
c = ec.
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This interactive way helps reduce the time complexity from o((T 2 + C2)D)
to o(2TCD) compared with the non-interactive two tower Transformer-based
encoder which applies self-attention mechanism [30]. In the real world, T is
usually much larger than C, so it can further boost the speed of the encoder.

4.3 Aggregate Layer

Through Co-Transformer Layer, we can obtain time-wise features aNt and channel-
wise features aNc . If all features are forcibly concatenated, the final dimension of
the representation will be too large to be applied in the subsequent work. In real
applications, the channel length is usually much less than the time length, there-
fore we integrate the time-wise features into the channel-wise features through
attention operation. Finally, we concatenate these novel channel-wise features as
the final representation z ∈ R1×(C·D):

QN
c = aNc W

N
qc , KN

c = aNt W
N
kc , V N

c = aNt W
N
vc , (9)

ac = MHA(QN
c ,K

N
c , V

N
c ), (10)

z = [a1c , a
2
c , ..., a

C
c ], (11)

where WN
qc ,W

N
kc ,W

N
vc ∈ RD×D are learnable matrices. [·,·] is the concatenation

operation.

5 Pretext Task

In order to enable our encoder to carry out self-supervised learning more effi-
ciently, we design two novel pretext tasks Next Trend Prediction (NTP) and
Contextual Similarity (CS) based on our novel channel-wise representation.

5.1 Next Trend Prediction

Given a sample xi ∈ RC×T , we randomly select a time point t ∈ [1, T − 1] for

truncation. The sequence before t time step x
NTP (t)
i ∈ RC×t is regarded as the

input of the NTP task and the data after t is padded to T with zeros. For each

channel j, we adopt the trend of the t + 1 time step as the label y
NTP (t)
i,j for

training:

y
NTP (t)
i,j =

{
1, if xi[j, t+ 1] ≥ xi[j, t]
0, if xi[j, t+ 1] < xi[j, t]

, (12)

where xi[j, t] represents the value of t time step of channel j in xi.
After inputting the NTP sample xi into our encoder, we can obtain the repre-

sentation z
NTP (t)
i ∈ RC×D where z

NTP (t)
i,j ∈ RD represents the representation of

the j-th channel. Finally, a projection head is applied to predict the probability
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of the rise and fall. Assuming that every sample generated KNTP input samples
and the corresponding truncating time point set is S ∈ RKNTP . For xi, the loss
of the NTP task can be obtained through the following formula:

`NTP =
∑

t∈S

C∑
j

CE(ϕ0(z
NTP (t)
i,j ), y

NTP (t)
i,j ), (13)

where ϕ0 is the projection head of the NTP task and CE is the Cross Entropy
loss function.

5.2 Contextual Similarity

The purpose of NTP task is to enable the sample to learn the relationships
between its internal channels. Meanwhile, we need to ensure the independence
between different samples, so we further employ the Contextual Similarity task.
The main difference between CS task and Contextual Contrasting task in TS-
TCC [12] lies in the design of the augmentation method. To help the framework
focus more on the dependencies between channels, we further apply asynchronous
permutation strategy to generate negative samples. And we also add the original
sample to the self-supervised training to enhance the learning ability.

In this task, we generate several positive samples and negative samples for
each sample through augmentation strategy. For positive samples, we adopt
the Interval Adjustment Strategy which randomly selects a series of intervals,
and then adjust all values by jittering. Further, we also adopt a Synchronous
Permutation Strategy which segments the whole time series and disrupts the
segment order. It helps to maintain the relations between segments and the
generated samples are regarded as positive. For negative samples, we adopt an
Asynchronous Permutation Strategy which randomly segments and disrupts the
segment order for each channel in different ways. In experiments, for each sample,
we use the interval adjustment strategy and the synchronous disorder strategy to
generate one positive sample respectively, and we use the asynchronous disorder
strategy to generate two negative samples. Assuming that the batch size is B,
we can generate extra 4B augmented samples. Therefore the total number of
the sample in a batch is 5B.

With the i-th sample xi in a batch our encoder can obtain its represen-
tation z0i ∈ R1×(C·D). The representations of inputs except itself are z∗i ∈
R(5B−1)×(C·D), where z∗,mi ∈ R1×(C·D) is the m-th representation of z∗i . Among

z∗i , the two positive samples are z+,1
i , z+,2

i ∈ R1×(C·D). Therefore, for i-th sample,
the loss of the CS task can be obtained through the following formula:

`CS =−
2∑

n=1

log
exp(sim(ϕ1(z0i ), ϕ1(z+,n

i ))/τ)∑5B−1
m=1 exp(sim(ϕ1(z0i ), ϕ1(z∗,mi ))/τ)

, (14)

where τ is a hyperparameter, ϕ1 is the projection head of the CS task, sim is
the cosine similarity.
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The final self-supervised loss is the combination of the NTP loss and CS loss
as follows:

` = α1 · `NTP + α2 · `CS , (15)

where α1 and α2 are hyperparameters.

6 Experiments

6.1 Datasets

To demonstrate the effectiveness of our self-supervised framework, we use the
following four datasets from different fields:

– UCI HAR 3: The UCI HAR dataset [1] contains sensor readings of 6 human
activity types. They are collected with a sampling rate of 50 Hz.

– LSST 4: The LSST dataset [2] is an open data to classify simulated as-
tronomical time series data in preparation for observations from the Large
Synoptic Survey Telescope.

– ArabicDigits 5: The ArabicDigits dataset [5] contains time series of mel-
frequency cepstrum coefficients corresponding to spoken Arabic digits. It
includes data from 44 male and 44 female native Arabic speakers.

– JapaneseVowels 5: In the JapaneseVowels dataset [5], several Japanese
male speakers are recorded saying the vowels ‘a’ and ‘e’. A ‘12-degree linear
prediction analysis’ is applied to the raw recordings to obtain time-series
with 12 dimensions.

The detailed information is shown on Table 1.

Table 1. Detailed information of the used datasets.

Dataset Train Test Time Channel Class

UCI HAR 7352 2947 128 9 6
LSST 2459 2466 36 6 14
ArabicDigits 6600 2200 93 13 10
JapaneseVowels 270 370 29 12 9

3 https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+

Using+Smartphones
4 http://www.timeseriesclassification.com/description.php?Dataset=LSST
5 http://www.mustafabaydogan.com/

https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
http://www.timeseriesclassification.com/description.php?Dataset=LSST
http://www.mustafabaydogan.com/


10 Y. Chen et al.

6.2 Experimental Settings

For supervised learning, we set D = 512, N = 8, attention head = 8, batch size
= 4, dropout = 0.2. We use Adam optimizer with a learning rate of 1e-4.

For self-supervised learning, we set KNTP = 10, D = 512, N = 8, attention
head = 8, batch size = 10, dropout = 0.2, τ = 0.2, α1 = 2, α2 = 1. We use
Adam optimizer with a learning rate of 5e-5.

For fine-tuning after self-supervised learning, we train a single fully connected
layer on top of the frozen self-supervised pre-trained encoder to evaluate the
effect of our self-supervised framework. We set batch size = 4 and use Adam
optimizer with a learning rate of 1e-3.

We evaluate the performance using two metrics: Accuracy (ACC) and Macro-
F1 score (MF1). Every result is generated by repeating 5 times with 5 different
seeds.

We conduct our experiments using PyTorch 1.7 and train models on a NVIDIA
GeForce RTX 2080 Ti GPU.

6.3 Baselines

We compare our framework against the following self-supervised methods. It is
noted that we apply the default hyperparameters of each compared method from
the original paper or the code. The detailed information and the reason why we
choose these methods are as followed:
(1) W2V [15]: This method employs the idea of word2vec. It combines an
encoder based on causal dilated convolutions with a triplet loss and time-based
negative sampling. Finally, they train a SVM on top of the frozen self-supervised
pre-trained encoder. It achieves great results leveraging unsupervised learning
for univariate and multivariate classification datasets. We select K = 10, 20 from
the original experiments.
(2) W2V+: It applies our proposed two tower Transformer-based model as the
encoder while training with the pretext task of W2V. For the requirement of
the time-wise feature, we replace Channel-aware Transformer with Time-aware
Transformer (TaT) which integrates the channel-wise features into the time-wise
features in the Aggregate Layer.
(3) TS-TCC [12]: This method employs the idea of contrastive learning using a
convolutional architecture as encoder. After self-supervised learning, they train a
fully connected layer on top of the frozen self-supervised pre-trained encoder. It
is the state-of-the-art contrastive learning method in the field of self-supervised
of time series.
(4) TS-TCC+: It applies TaT as the encoder like W2V+ while training with
the pretext task of TS-TCC.
(5) TST [34]: This method employs the idea of masked language model using
a Transformer-based encoder. In their work, it achieves outstanding results by
finetuning the whole encoder after pre-training it. For fair comparison, we freeze
the encoder while finetuning.
(6) TST+: It applies TaT as the encoder like W2V+ while training with the
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pretext task of TST.
(7) NVP+CS: To compare with the regression, in our framework we replace
Next Trend Prediction with Next Value Predict (NVP) and regard it as a new
strong baseline. We select 15% time steps to predict the values of the next time
step.
(8) Supervised: Supervised learning on both encoder and fully connected layer.

Table 2. Comparison between CaSS and other self-supervised methods. ↑ mark indi-
cates that the self-supervised result performs better than the supervised result.

HAR LSST ArabicDigits JapaneseVowels

Method ACC MF1 ACC MF1 ACC MF1 ACC MF1

W2V K=10 90.37±0.34 90.67±0.97 57.24±0.24 36.97±0.49 90.16±0.57 90.22±0.52 97.98±0.40 97.73±0.48
W2V K=20 90.08±0.18 90.10±0.16 53.47±0.75 32.84±1.25 90.55±0.77 90.60±0.75 97.98±0.40 97.89±0.43
W2V+ 84.55±0.59 84.34±0.69 54.90±0.58 33.97±0.79 87.59±0.48 87.56±0.49 95.27±0.38 95.25±0.39
TS-TCC 90.74±0.25 90.23±0.29 40.38±0.35 23.93±1.93 95.64±0.37 95.43±0.37 82.25±1.16 82.04±1.17
TS-TCC+ 90.87±0.31 90.86±0.30 50.75±0.23 32.87±0.65 96.87±0.34 96.80±0.28 84.36±0.27 84.09±0.21
TST 77.62±2.48 78.05±2.56 32.89±0.04 7.86±1.63 90.73±0.36 90.90±0.33 97.30±0.27 97.47±0.34

TST+ 87.39±0.49 87.77±0.11 34.49±0.38 14.62±0.32 96.82±0.23 96.82±0.22 97.87±0.23↑ 97.51±0.22
NVP+CS 92.47±0.20 92.38±0.19 32.42±0.14 6.02±0.30 96.50±0.45 96.51±0.55 96.34±0.43 95.49±0.11

CaSS 92.57±0.24↑ 92.40±0.17↑ 64.94±0.02 46.11±0.55 97.07±0.20 97.07±0.20 98.11±0.27↑ 98.14±0.08↑

Supervised 92.35±0.63 92.40±0.58 66.57±0.38 51.60±1.26 98.07±0.38 98.07±0.38 97.71±0.13 97.56±0.07

6.4 Results and Analysis

Comparison with self-supervised methods The experimental results are
shown in Table 2. Overall, our self-supervised learning framework can signifi-
cantly surpass the previous state-of-the-art methods. Especially in LSST and
JapaneseVowels whose time lengths are relative short, methods based on fitting
specific values or features like TST, TS-TCC and NVP cannot perform well,
while our framework can obtain promising and stable performances. It demon-
strates that simple trend predicting is more efficient than regression. W2V and
our framework are suitable for both short and long time length datasets, and
our performances can significantly surpass W2V. This demonstrates the powerful
representation learning ability of our framework. Moreover, our self-supervised
framework is shown to be superior to the supervised way in two of four datasets
while in the other two datasets can achieve similar results. It also proves that
our self-supervised learning framework is capable of learning not only complex
characteristics between samples but also within samples.

For a more convincing comparison, we conduct experiments by replacing the
origin encoder of the previous methods with our proposed encoder. It helps to
offer a more detailed view on the aspects of both encoder and pretext task. It
is shown in Table 2 that applying our encoder like TS-TCC+ and TST+ helps
to improve their effectiveness, which demonstrates the encoding ability of our
encoder. W2V is a method which pays more attention on the local information,
so the causal dilated convolutions which only focuses on previous information is



12 Y. Chen et al.

more suitable than W2V+ which encodes the global information. In the aspect
of pretext task, when combining NTP task and CS task with our encoder, the
self-supervised learning ability is further improved by a large margin compared
to other pretext tasks.
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Fig. 4. Few-shot learning results. We report the comparison between our self-supervised
framework and the supervised way.

Few-shot learning To further prove the effect of our self-supervised frame-
work, we conduct few-shot learning experiments comparing with the supervised
learning. In HAR and LSST datasets, we choose 1%, 5%, 10%, 20%, 50%, 70%,
90% percentage of labeled samples for model training respectively. For Ara-
bicDigits and JapaneseVowels datasets, we adopt a set of smaller percentages in
order to compare the performance of few-shot learning more clearly. The results
are shown in Figure 4. Among these datasets, our self-supervised framework can
significantly surpass the supervised learning by training a single fully connected
layer with limited labeled samples.

6.5 Ablation Study

Ablation study on pretext task To analyze the role of each of our pretext
tasks, we apply the following variants as comparisons:
(1) -NTP: It only applies Contextual Similarity task to self-supervised learning.
(2) -CS: It only applies Next Trend Prediction task to self-supervised learning.
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(3) -neg augment: It removes the negative samples generated by the asyn-
chronous disorder strategy.
(4) reverse neg: It regards the samples generated by the asynchronous disorder
strategy as positive samples.

The experimental results are shown in Table 3. It can be seen that in our
pretext tasks, NTP task and CS task can well cooperate with each other. Specif-
ically, NTP task occupies the most important position in small datasets while
CS task is more important in datasets with large number of samples. On the one
hand, it shows the importance of the internal relationships between channels to
multivariate time series. On the other hand, it demonstrates that self-supervised
learning should not only focus on the characteristics of the sample itself, but
also need to maintain the independence from other samples. In addition, neg-
ative sample enhancement can bring a more stable effect to the encoder and
further enhance the effect of self-supervised learning method. The conversion of
the negative samples into positive samples will lead to the decline of the effect,
which shows that in the time series, the time relationships between channels can
not be disturbed.

Table 3. Ablation study on pretext task.

HAR LSST ArabicDigits JapaneseVowels

Method ACC MF1 ACC MF1 ACC MF1 ACC MF1

-NTP 90.96±0.59 90.71±0.59 61.05±1.20 41.30±0.40 95.55±0.36 95.50±0.41 94.87±0.27 94.87±0.22
-CS 76.94±0.66 75.96±0.67 53.00±0.81 33.50±1.97 90.71±0.06 90.72±0.08 97.71±0.13 97.69±0.13
-neg augment 87.06±0.25 86.79±0.23 61.88±0.57 45.21±0.10 96.32±0.32 96.32±0.32 97.98±0.13 97.79±0.16
reverse neg 83.02±0.22 82.65±0.15 63.30±0.65 45.40±0.50 92.62±0.43 92.61±0.44 97.42±0.16 97.22±0.09
CaSS 92.57±0.24 92.40±0.17 64.94±0.02 46.11±0.55 97.07±0.20 97.07±0.20 98.11±0.27 98.14±0.08

Ablation study on encoder To analyze the effect of each component in the
encoder, we apply the following variants for comparisons by supervised learning:
(1) Self Aggregate: It contains two Transformers with self-attention mecha-
nism to encode time-wise and channel-wise features independently. Finally the
time-wise features are fused into channel-wise features through Aggregate Layer.
(2) Channel Self : A single Transformer is applied with self-attention mecha-
nism to encode channel-wise features.
(3) -Aggregate Layer: The channel-wise features of the last Co-Transformer
Layer are applied without fusing the time-wise features.

The experimental results are shown in Table 4. It can be seen that, if time-
wise and channel-wise features are only fused in the last aggregate layer without
interactions in the previous stage, they cannot be well integrated and bring the
loss of information. As contrast, the interactions between the two Transformers
can significantly bring the performance improvement. The results of Channel Self
illustrate the importance of each channel’s independent time pattern. Finally, the
existence of Aggregate Layer can also better integrate the features of time-wise
and channel-wise while alleviating the redundancy of features.
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Table 4. Ablation study on encoder.

HAR LSST ArabicDigits JapaneseVowels

Method ACC MF1 ACC MF1 ACC MF1 ACC MF1

Self Aggregate 91.88±0.35 91.85±0.38 66.10±0.24 42.80±0.83 96.64±0.22 96.63±0.23 97.17±0.13 96.94±0.10
Channel Self 93.15±0.91 93.13±0.95 56.45±0.48 31.31±0.50 97.48±0.11 97.47±0.12 97.57±0.27 97.42±0.22
-Aggregate Layer 92.35±0.12 92.36±0.13 63.97±0.59 42.65±0.18 97.68±0.32 97.68±0.32 97.57±0.27 97.38±0.23
CaT 92.35±0.63 92.40±0.58 66.57±0.38 51.60±1.26 98.07±0.38 98.07±0.38 97.71±0.13 97.56±0.07

7 Conclusion

Self-supervised learning is essential for multivariate time series. In this work, we
propose a new self-supervised learning framework CaSS to learn the complex
representations of MTS. For the encoder, we propose a new Transformer-based
encoder Channel-aware Transformer to capture the time-wise and channel-wise
features more efficiently. For the pretext task, we propose Next Trend Predic-
tion from the perspective of channel-wise for the first time and combine it with
Contextual Similarity task. These novel pretext tasks can well cooperate with
our encoder to learn the characteristics. Our self-supervised learning framework
demonstrates significant improvement on MTS classification comparing with pre-
vious works, and can significantly surpass supervised learning with limited la-
beled samples.
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