Skip to main content

Semi-supervised Graph Learning with Few Labeled Nodes

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13246))

Included in the following conference series:

  • 2912 Accesses

Abstract

Graph-based semi-supervised learning, utilizing both a few labeled nodes and massive unlabeled nodes, has aroused extensive attention in the research community. However, for the graph with few labeled nodes, the performance of Graph Convolutional Networks (GCNs) will suffer from a catastrophic decline due to its intrinsic shallow architecture limitation and insufficient supervision signals. To accommodate this issue, we propose a novel Self-Training model (ST-LPGCN) which reinforces the pseudo label generation on the GCNs with Label Propagation algorithm (LPA). By making full use of the advantages of GCNs in aggregating the local node features and LPA in propagating the global label information, our ST-LPGCN improves the generalization performance of GCNs with few labeled nodes. Specifically, we design a pseudo label generator to pick out the nodes assigned with the same pseudo labels by GCN and LPA, and add them to the labeled data for the next self-training process. To reduce the error propagation of labels, we optimize the transition probability between nodes in LPA under the supervision of the pseudo labels. The extensive experimental results on four real-world datasets validate the superiority of ST-LPGCN for the node classification task with few labeled nodes.

This work is supported by the National Natural Science Foundation of China under Grant No. 62102038; the National Natural Science Foundation of China under Grant No. 61972047, the NSFC-General Technology Basic Research Joint Funds under Grant U1936220.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, A., Shervashidze, N., Narayanamurthy, S.M., Josifovski, V., Smola, A.J.: Distributed large-scale natural graph factorization. In: WWW, pp. 37–48 (2013)

    Google Scholar 

  2. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. In: ICLR (2014)

    Google Scholar 

  3. Cao, S., Lu, W., Xu, Q.: GraRep: learning graph representations with global structural information. In: CIKM, pp. 891–900 (2015)

    Google Scholar 

  4. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: NIPS, pp. 3837–3845 (2016)

    Google Scholar 

  5. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: KDD, pp. 855–864 (2016)

    Google Scholar 

  6. Gui, J., Hu, R., Zhao, Z., Jia, W.: Semi-supervised learning with local and global consistency. Int. J. Comput. Math. 91(11), 2389–2402 (2014)

    Article  MathSciNet  Google Scholar 

  7. Hamaguchi, T., Oiwa, H., Shimbo, M., Matsumoto, Y.: Knowledge transfer for out-of-knowledge-base entities: a graph neural network approach. In: IJCAI, pp. 1802–1808 (2017)

    Google Scholar 

  8. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs. In: NIPS, pp. 1025–1035 (2017)

    Google Scholar 

  9. Hong, H., Guo, H., Lin, Y., Yang, X., Li, Z., Ye, J.: An attention-based graph neural network for heterogeneous structural learning. In: AAAI 2020, pp. 4132–4139 (2020)

    Google Scholar 

  10. Hu, W., et al.: Open graph benchmark: datasets for machine learning on graphs. arXiv preprint arXiv:2005.00687 (2020)

  11. Huang, Q., He, H., Singh, A., Lim, S.N., Benson, A.R.: Combining label propagation and simple models out-performs graph neural networks. arXiv preprint arXiv:2010.13993 (2020)

  12. Hui, B., Zhu, P., Hu, Q.: Collaborative graph convolutional networks: unsupervised learning meets semi-supervised learning. In: AAAI 2020, pp. 4215–4222 (2020)

    Google Scholar 

  13. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 (2016)

  14. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)

    Google Scholar 

  15. Li, Q., Han, Z., Wu, X.: Deeper insights into graph convolutional networks for semi-supervised learning. In: AAAI, pp. 3538–3545 (2018)

    Google Scholar 

  16. Liu, Y., et al.: Learning to propagate labels: transductive propagation network for few-shot learning. In: ICLR (2019)

    Google Scholar 

  17. Pavlopoulos, G.A.: Using graph theory to analyze biological networks. BioData Min. 4, 10 (2011)

    Article  Google Scholar 

  18. Sanchez-Gonzalez, A., et al.: Graph networks as learnable physics engines for inference and control. In: ICML, pp. 4467–4476 (2018)

    Google Scholar 

  19. Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93–106 (2008)

    Google Scholar 

  20. Shi, Y., Huang, Z., Wang, W., Zhong, H., Feng, S., Sun, Y.: Masked label prediction: unified message passing model for semi-supervised classification. arXiv preprint arXiv:2009.03509 (2020)

  21. Song, Z., Yang, X., Xu, Z., King, I.: Graph-based semi-supervised learning: a comprehensive review. arXiv preprint arXiv:2102.13303 (2021)

  22. Sun, K., Lin, Z., Zhu, Z.: Multi-stage self-supervised learning for graph convolutional networks on graphs with few labeled nodes. In: AAAI, pp. 5892–5899 (2020)

    Google Scholar 

  23. Talukdar, P.P., Crammer, K.: New regularized algorithms for transductive learning. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS (LNAI), vol. 5782, pp. 442–457. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04174-7_29

    Chapter  Google Scholar 

  24. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale information network embedding. In: WWW, pp. 1067–1077 (2015)

    Google Scholar 

  25. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR (2018)

    Google Scholar 

  26. Wan, S., Pan, S., Yang, J., Gong, C.: Contrastive and generative graph convolutional networks for graph-based semi-supervised learning. In: AAAI, vol. 35, pp. 10049–10057 (2021)

    Google Scholar 

  27. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: KDD, pp. 1225–1234 (2016)

    Google Scholar 

  28. Wang, H., Leskovec, J.: Unifying graph convolutional neural networks and label propagation. arXiv preprint arXiv:2002.06755 (2020)

  29. Xu, B., Huang, J., Hou, L., Shen, H., Gao, J., Cheng, X.: Label-consistency based graph neural networks for semi-supervised node classification. In: SIGIR, pp. 1897–1900 (2020)

    Google Scholar 

  30. Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K., Jegelka, S.: Representation learning on graphs with jumping knowledge networks. In: ICML, pp. 5449–5458 (2018)

    Google Scholar 

  31. Xu, N., Wang, P., Chen, L., Tao, J., Zhao, J.: MR-GNN: multi-resolution and dual graph neural network for predicting structured entity interactions. In: IJCAI, pp. 3968–3974 (2019)

    Google Scholar 

  32. Yang, Z., Cohen, W., Salakhudinov, R.: Revisiting semi-supervised learning with graph embeddings. In: ICML, pp. 40–48. PMLR (2016)

    Google Scholar 

  33. Zhang, Y., Pal, S., Coates, M., Üstebay, D.: Bayesian graph convolutional neural networks for semi-supervised classification. In: AAAI 2019, pp. 5829–5836 (2019)

    Google Scholar 

  34. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global consistency. In: NIPS, pp. 321–328 (2004)

    Google Scholar 

  35. Zhou, D., Huang, J., Schölkopf, B.: Learning from labeled and unlabeled data on a directed graph. In: ICML, vol. 119, pp. 1036–1043 (2005)

    Google Scholar 

  36. Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with label propagation (2003)

    Google Scholar 

  37. Zhu, X., Ghahramani, Z., Lafferty, J.D.: Semi-supervised learning using Gaussian fields and harmonic functions. In: ICML, pp. 912–919 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Bai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, C., Bai, T., Wu, B. (2022). Semi-supervised Graph Learning with Few Labeled Nodes. In: Bhattacharya, A., et al. Database Systems for Advanced Applications. DASFAA 2022. Lecture Notes in Computer Science, vol 13246. Springer, Cham. https://doi.org/10.1007/978-3-031-00126-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-00126-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-00125-3

  • Online ISBN: 978-3-031-00126-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics