Skip to main content

Peripheral Instance Augmentation for End-to-End Anomaly Detection Using Weighted Adversarial Learning

  • Conference paper
  • First Online:
  • 2846 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13246))

Abstract

Anomaly detection has been a lasting yet active research area for decades. However, the existing methods are generally biased towards capturing the regularities of high-density normal instances with insufficient learning of peripheral instances. This may cause a failure in finding a representative description of the normal class, leading to high false positives. Thus, we introduce a novel anomaly detection model that utilizes a small number of labelled anomalies to guide the adversarial training. In particular, a weighted generative model is applied to generate peripheral normal instances as supplements to better learn the characteristics of the normal class, while reducing false positives. Additionally, with the help of generated peripheral instances and labelled anomalies, an anomaly score learner simultaneously learns (1) latent representations of instances and (2) anomaly scores, in an end-to-end manner. The experimental results show that our model outperforms the state-of-the-art anomaly detection methods on four publicly available datasets, achieving improvements of 6.15%–44.35% in AUPRC and 2.27%–22.3% in AUROC, on average. Furthermore, we applied the proposed model to a real merchant fraud detection application, which further demonstrates its effectiveness in a real-world setting.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The code: https://github.com/ZhouF-ECNU/PIA-WAL.

References

  1. Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: GANomaly: semi-supervised anomaly detection via adversarial training. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 622–637. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_39

    Chapter  Google Scholar 

  2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: ICML, pp. 214–223 (2017)

    Google Scholar 

  3. Audibert, J., Michiardi, P., Guyard, F., et al.: USAD: unsupervised anomaly detection on multivariate time series. In: SIGKDD, pp. 3395–3404 (2020)

    Google Scholar 

  4. Bay, S.D., Schwabacher, M.: Mining distance-based outliers in near linear time with randomization and a simple pruning rule. In: SIGKDD, pp. 29–38 (2003)

    Google Scholar 

  5. Bergmann, P., Fauser, M., Sattlegger, D., et al.: MCTec AD - a comprehensive real-world dataset for unsupervised anomaly detection. In: CVPR, pp. 9592–9600 (2019)

    Google Scholar 

  6. Boukerche, A., Zheng, L., Alfandi, O.: Outlier detection: methods, models, and classification. ACM Comput. Surv. 53, 1–37 (2020)

    Google Scholar 

  7. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: SIGMOD, pp. 93–104 (2000)

    Google Scholar 

  8. Chen, J., Sathe, S., Aggarwal, C., Turaga, D.: Outlier detection with autoencoder ensembles. In: SDM, pp. 90–98 (2017)

    Google Scholar 

  9. Dal Pozzolo, A., Boracchi, G., Caelen, O., Alippi, C., Bontempi, G.: Credit card fraud detection: a realistic modeling and a novel learning strategy. IEEE Trans. Neural Netw. Learn. Syst. 29, 3784–3797 (2017)

    Google Scholar 

  10. Di Mattia, F., Galeone, P., De Simoni, M., Ghelfi, E.: A survey on GANs for anomaly detection. arXiv preprint arXiv:1906.11632 (2019)

  11. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  12. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al.: Generative adversarial networks. In: NIPS, pp. 2672–2680 (2014)

    Google Scholar 

  13. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: NIPS, pp. 5767–5777 (2017)

    Google Scholar 

  14. Kriegel, H.P., Kroger, P., Schubert, E., Zimek, A.: Interpreting and unifying outlier scores. In: SDM, pp. 13–24. SIAM (2011)

    Google Scholar 

  15. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation-based anomaly detection. TKDD 6, 1–39 (2012)

    Article  Google Scholar 

  16. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: ICCV, December 2015 (2015)

    Google Scholar 

  17. Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set for network intrusion detection systems. In: MilCIS, pp. 1–6 (2015)

    Google Scholar 

  18. Ngo, P.C., Winarto, A.A., Kou, C.K.L., Park, S., Akram, F., Lee, H.K.: Fence GAN: towards better anomaly detection. In: ICTAI, pp. 141–148 (2019)

    Google Scholar 

  19. Pang, G., Cao, L., Chen, L., Liu, H.: Learning representations of ultrahigh-dimensional data for random distance-based outlier detection. In: SIGKDD, pp. 2041–2050 (2018)

    Google Scholar 

  20. Pang, G., van den Hengel, A., Shen, C., Cao, L.: Toward deep supervised anomaly detection: reinforcement learning from partially labeled anomaly data. In: SIGKDD, pp. 1298–1308 (2021)

    Google Scholar 

  21. Pang, G., Shen, C., Cao, L., Hengel, A.V.D.: Deep learning for anomaly detection: a review. ACM Comput. Surv. 54, 1–38 (2021)

    Article  Google Scholar 

  22. Pang, G., Shen, C., van den Hengel, A.: Deep anomaly detection with deviation networks. In: SIGKDD, pp. 353–362 (2019)

    Google Scholar 

  23. Perera, P., Nallapati, R., Xiang, B.: OCGAN: one-class novelty detection using GANs with constrained latent representations. In: CVPR, pp. 2898–2906 (2019)

    Google Scholar 

  24. Ruff, L., et al.: Deep semi-supervised anomaly detection. In: ICLR (2020)

    Google Scholar 

  25. Ruff, L., et al.: Deep one-class classification. In: ICML, pp. 4393–4402 (2018)

    Google Scholar 

  26. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_12

    Chapter  Google Scholar 

  27. Seeböck, P., et al.: Unsupervised identification of disease marker candidates in retinal OCT imaging data. IEEE Trans. Med. Imaging 38, 1037–1047 (2018)

    Article  Google Scholar 

  28. Villani, C.: Optimal Transport: Old and New. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-71050-9

  29. Wang, H., Pang, G., Shen, C., Ma, C.: Unsupervised representation learning by predicting random distances. In: IJCAI, pp. 2950–2956 (2020)

    Google Scholar 

  30. Woolson, R.: Wilcoxon signed-rank test. In: Wiley Encyclopedia of Clinical Trials, pp. 1–3 (2007)

    Google Scholar 

  31. Zenati, H., Foo, C.S., Lecouat, B., Manek, G., Chandrasekhar, V.R.: Efficient GAN-based anomaly detection. In: ICLR (2018)

    Google Scholar 

  32. Zenati, H., Romain, M., Foo, C.S., Lecouat, B., Chandrasekhar, V.: Adversarially learned anomaly detection. In: ICDM. pp. 727–736 (2018)

    Google Scholar 

  33. Zhang, Y.L., Li, L., Zhou, J., Li, X., Zhou, Z.H.: Anomaly detection with partially observed anomalies. In: WWW, pp. 639–646 (2018)

    Google Scholar 

  34. Zheng, P., Yuan, S., Wu, X., Li, J., Lu, A.: One-class adversarial nets for fraud detection. In: AAAI, pp. 1286–1293 (2019)

    Google Scholar 

  35. Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: SIGKDD, pp. 665–674 (2017)

    Google Scholar 

  36. Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., et al.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: ICLR (2018)

    Google Scholar 

Download references

Acknowledgements

This research was supported in part by NSFC grant 61902127 and Natural Science Foundation of Shanghai 19ZR1415700.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zong, W., Zhou, F., Pavlovski, M., Qian, W. (2022). Peripheral Instance Augmentation for End-to-End Anomaly Detection Using Weighted Adversarial Learning. In: Bhattacharya, A., et al. Database Systems for Advanced Applications. DASFAA 2022. Lecture Notes in Computer Science, vol 13246. Springer, Cham. https://doi.org/10.1007/978-3-031-00126-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-00126-0_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-00125-3

  • Online ISBN: 978-3-031-00126-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics