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Abstract. Face-to-face communication leads to better interactions be-
tween speakers than text-to-text conversations since the speakers can
capture both textual and visual signals. Image-grounded emotional re-
sponse generation (IgERG) tasks requires chatbots to generate a response
with the understanding of both textual contexts and speakers’ emotions
in visual signals. Pre-training models enhance many NLP and CV tasks
and image-text pre-training also helps multimodal tasks. However, ex-
isting image-text pre-training methods typically pre-train on images by
recognizing or modeling objects, but ignore the emotions expressed in
the images. In this paper, we propose several pre-training tasks in a uni-
fied framework that not only captures emotions from images but also
learns to incorporate the emotion into text generation. The pre-training
involves single-modal learning to strengthen the ability to understand
images and generate texts. It also involves cross-modal learning to en-
hance interactions between images and texts. The experiments verify our
method in appropriateness, informativeness, and emotion consistency.
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1 Introduction

Most conversation systems [45, 21, 59] lead a text-to-text dialog between users
and chatbots. However, most people prefer face-to-face communication due to
the accessibility of the speaker’s visual signals, like facial expressions and body
language. After analysing those signals, chatbots can garner speakers’ emotional
states and make empathetic responses. Image-grounded emotional response gen-
eration (IgERG) [17] generates a response to context utterances while under-
standing both the users’ textual contexts and emotional states reflected in im-
ages, where images contain users’ facial expressions and gestures. IgERG has

� The two authors contributed equally to this work.
�� Corresponding Author.



Fig. 1. An example of IgERG. Images hint speakers’ emotions of in multi-turn dialogs.

several practical applications, including AI therapist capturing a counselee’s
emotions via facial expressions, and AI baby-sitter conversing with kids who
are moody and unstable.

Deep learning achieves impressive performances on conversation systems but
relies highly on large-scale corpora [56, 44]. IgERG’s training samples are hard
to collect and limited since each sample contains conversations and the aligned
speakers’ visual signals. Pre-training models [9] help many NLP tasks without
large-scale corpus by pre-training on large-scale unsupervised corpora.

Researchers propose multimodal pre-training for tasks involving both textual
and visual data. To facilitate image understanding, they apply pre-training tasks
of object classification [20] and object region modeling [5]. To ensure image-text
alignment, they pre-train them with image captioning [16], text-conditioned ob-
ject classification [23, 51], and image-text entity matching [22]. Those tasks typ-
ically pre-train by recognizing objects in images, modeling objects, and inter-
acting with other modalities (i.e. text) about object-related information. Those
tasks ignore the styles or emotions reflected in the images. Such pre-training fits
downstream tasks that require an understanding of the objects in images (e.g.
image-text retrieval [3] and visual question answering [2]).

However, images imply both object-related and object-independent (e.g. styles,
sentiments, or emotions) information. Object-independent information is more
helpful to some applications, including multimodal sentiment analysis [62], mul-
timodal style transfer [65, 18], and IgERG [17]. Thus, pre-training of captur-
ing object-independent signals enhances those tasks but faces two challenges: 1.
object-independent information is harder to define and describe than objects. In-
tuitively, recognizing a human face is easier than describing the emotion seen in
the facial expressions; 2. if the application involves multiple images (e.g. speakers’
images in multi-turn conversations of IgERG) 1, the development of emotions
reflected from a sequence of images is hard to model and utilize.

In this paper, we propose a multimodal pre-training method that enhances
the ability to capture emotions from a series of images and learns to incorpo-
rate the emotions into text generation. Such pre-training helps image-grounded
emotional response generation (IgERG), where models generate responses given
textual context and a sequence of speakers’ images implying the emotions.

Particularly, to enhance the emotion perception, our model learns to model
a series of emotions from a sequence of images via an image emotion sequen-

1 81.1% samples contain multiple emotions in IgERG.



tially labeling (IESL) and an image emotion classification (IEC) task. We obtain
large-scale coarse data for those tasks via data augmentation, since those tasks
have limited supervised data. To enhance the text generation, we apply BART’s
pre-training and masked language modeling (MLM) task to our pre-training. To
enhance cross-modal interactions between emotion understanding and text gen-
eration, our model learns to incorporate emotions in the generated text by a
controllable image-to-text generation (C-I2T) task. The text generation is con-
trolled by the emotions detected from images. We construct a transformer-based
framework carrying all pre-training tasks. Our contributions are as follows,

– We propose catering to object-independent emotional information in images dur-
ing pre-training, which is a less explored topic.

– We propose several pre-training tasks in a unified framework that prompts image
understanding, text generation, and cross-modal interactions.

– Our model obtains state-of-the-art performance on the IgERG task.
– We construct several multimodal pre-training datasets and will release them.

2 Related Work

Image grounding conversation has two categories. The first one, visual dialog,
leads conversations to discuss the objects or events reflected in images [8, 1].
Shuster et al. [46] assign specific styles to speakers in visual dialog. Agarwal
et al. [1] study the effects of explicitly encoding historical contexts into visual
dialog models. The second category captures speakers’ emotions from images for
an empathetic conversation. Poria et al. [39] and Hazarika et al. [14] discover
speakers’ emotion in conversations. Huber et al. [17] use a Seq2Seq [52] model
to capture scene sentiment and use a facial encoding tool to extract the facial
expressions from the images in conversation. Our task falls in this category. The
above methods do not involve pre-training.

Emotional conversation systems can be categorized into two directions: ex-
pressing chatbot’s emotions and catering to speakers’ emotions. The first direc-
tion aims to enable chatbot to respond conditioned on a given emotion [7, 50, 68].
Colombo et al. [7] append the given emotion label on the input utterance. Song
et al. [50] apply a lexicon-based attention to a Seq2Seq model and encourage
Seq2Seq to implicitly express emotion. The second direction detects speakers’
emotions and make empathetic responses according to speakers’ emotion [38, 42,
12]. Skowron et al. [47] build a chatbot with the ability to detect user’s emo-
tion states. Rashkin et al. [42] propose a pipeline system that predicts emotion
words and feed the explicit emotion words into a neural conversation model.
Lin et al. [28] propose an end-to-end neural conversation model. Lin et al. [29]
and Zhong et al. [67] apply GPT [41] and BERT [9] to empathetic conversation.
Another types of chatbots detect emotions from non-textual modalities [14], in-
cluding tone or body languages. Some chatbots captures speakers’ personalities
in conversation [63, 48, 54].

Pre-trained language models significantly enhance natural language under-
standing (NLU) tasks [9, 60], since language models contains commonsense knowl-



edge [61] or language understanding abilities [33, 37]. BERT [9] achieves state-
of-the-art results on a wide range of NLU tasks. For natural language generation
(NLG), GPT [41] trains to generate texts auto-regressively. BART [19] propose
several text permutation techniques, such as text infilling and sentence shuf-
fling. Multimodal (image-text) pre-training [23] mainly has four kinds of tasks
as follows. 1. object classification: Su et al. [51] extract object representation
with Faster-RCNN [43] model and apply object classification to pre-training. Li
et al. [20] consider linguistic clues in object classification. 2. object region mod-
eling : Li et al. [25] reconstruct the masked image regions by referring to the
remaining part. Chen et al. [5] jointly train the masked region classification and
the masked region modeling. 3. image conditioned text generation: Li et al. [26]
pre-train with image captioning that typically describes the semantic informa-
tion of image with a textual title. 4. image-text matching, encourages models to
align texts and images in the semantic level [20]. Li et al. [22] learn to predict
whether the given image-text pair are semantically aligned. Huang et al. [16]
consider the alignment between multilingual texts and images. Those methods
typically focus on pre-training to understand image objects, but our pre-training
caters to object-independent information (e.g. emotions) in images.

3 Approaches

3.1 Overview

Our downstream task is the image-grounded emotional response generation (IgER
G) that generates a response Ŝn given a series of context sentences S = {S1, S2, ...
, Sn−1} and the speakers’ images corresponding to each sentence I = {I1, I2, ..., In},
where Ii, with speakers’ facial expressions and gestures, reflects the emotional
state of the speaker in the i-th turn. We construct a framework for the pre-
training tasks and the fine-tuning task. As shown in Fig. 2, the framework mainly
consists of four components:

– Image encoder Eimg represents an image Ii with a vector vi.
– Generator is a transformer model [56] to generate text, where the pink and

grey colored blocks in Fig. 2 indicate its encoder and decoder. Its input can be
a sequence of sentences S, a sequence of images I, or the mixture of S and I;
its output is the generated texts. If the input comes across an image Ii, the
generator employs the image encoder to transfer the image into a vector vi as
its input. The generator’s encoder output is defined as ei at the i-th step.

– Image emotion classifier Dimg emo predicts emotion labels based on ei.
– Text emotion evaluator Dtxt emo evaluates texts generated by the generator.

Our tasks involve four types of datasets: 1.image-only datasets: each sample
has one image or a sequence of images I = {I1, I2, ..., Im}, (m >= 1); 2. text-
only datasets: each sample is a raw sentence; 3. image-text datasets: each sample
consist of several sentences S = {S1, S2, ..., Sn} and each sentence has an aligned
image I = {I1, I2, ..., In}; 4. textual emotion datasets: each sample has a sentence
and its emotion label. We propose three kinds of pre-training tasks:



– Pre-train for image emotion discovery learns to detect image emotions on
all datasets involving images, including image-only and image-text datasets.

– Pre-train for text generation learns to generate text on all datasets with
texts, including text-only and image-text datasets.

– Pre-train for cross-modal interaction learns to generate text controlled by
images on image-text datasets.

Fig. 2. Our model architecture with pre-training tasks (MLM, BART, IESL, IEC, and
C-I2T) and fine-tuning tasks (IgERG). The generator, with an encoder (in pink) and a
decoder (in grey), is shared among all subfigures. The image encoder and image emotion
classifier are also shared in all time steps. Subfigure 1 shows the pre-training on text
generation (MLM and BART) mentioned in Sec. 3.2; Subfigure 2 shows the pre-training
of emotion discovery (IEC and IESL) mentioned in Sec. 3.2 and Subfigure 3 shows the
pre-training of C-I2T and the fine-tuning of IgERG mentioned in Sec. 3.2 & 3.3. The
orange and green arrows indicate information flows in image and text modality.

3.2 Pre-training

Pre-training for Image Emotion Discovery We propose two pre-training
tasks: image emotion sequentially labeling (IESL) and image emotion classifi-
cation (IEC) (Fig. 2.2), which enables our model to discover emotions from an
image or a sequence of images. As a result, the image encoder and the generator’s
encoder represent each image Ii with a vector ei that implies emotions.

IESL models a series of emotions reflected in a sequence of images I =
{I1, I2, ..., Im}, where the image sequence is consecutive screenshots from a video.
Its output is a sequence of emotion labels. IESL involves the image encoder
(Eimg), generator’s encoder (GE), and the image emotion classifier (Dimg emo).
The image encoder Eimg first maps each image Ii into a vector vi. The gen-
erator’s encoder GE takes the output vectors {v1,v2, ...,vm} as the input and
treats it as the sequence of “word embeddings” (As a transformer model, the
generator’s encoder inputs are word embeddings). Then, the generator’s encoder
obtains the output vectors {e1, e2, ..., em}. To train the emotion labeling task,
we feed each encoder output ei to the image emotion classifier Dimg emo to pre-
dict the emotion at i-th step. Eq. 1 & 2 show those operations, where EIi is the
emotion label of Ii, K is emotion category number, I is an indicator function. We
introduce the structure of the image encoder and emotion classifier in Sec. 3.4.



vi = Eimg(Ii) for i ∈ [1,m], {e1, e2, ..., em} = GE({v1,v2, ...,vm}), (1)

LIESL =

m∑

i=1

K∑

k=1

I(EIi = k) logP (Dimg emo(ei) = k). (2)

IEC learns to detect the emotion reflected in a single image, where the input is an
image and the output is an emotion label. This task shares the same components
as IESL. As for the training procedure, this task can be treated as a special case
of IESL, where the image sequence length is one. IEC’s advantage is this task
can work on the datasets with only one image in each sample.

We apply data augmentation to build large-scale coarse supervised datasets
since supervised data in the above tasks are limited. We first collect several videos
from TV series and movies, where the characters have rich facial expressions or
gestures during the conversations. Then, we collect unlabeled raw images by
taking screenshots from the TV series videos. Finally, we generate pseudo labels
for the unlabeled images with Face++ API 2, which categorizes images into
seven classes of emotion (e.g. fear). Therefore, each sample in those datasets has
a sequence of images and labels, which is used for both IEC and IESL tasks.

In total, we obtain 5.9M training samples from six datasets for the above
tasks. Except for one dataset that is an existing supervised image emotion
dataset, we apply data augmentations on the other five since they do not have
emotion labels. Among the five datasets, four come from the TV series and one
is an image-text dataset [32].

Pre-training for Text Generation To enhance text generation ability, our
model applies the pre-training of BART [19] and pre-trains on the text data from
the image-text datasets via masked language modeling (MLM) task (Fig. 2.1).
BART pre-trains a model combining bidirectional and auto-regressive transform-
ers. As rerunning BART’s pre-training requires a great number of GPUs 3, we
use the pre-trained BART released by FairSeq 4. BART provides initial param-
eters for the generator. The motivation behind using BART is that BART has
the same architecture as the generator and BART has achieved state-of-the-art
performance on text generation (e.g. dialogue and summarization).

MLM learns to generate randomly masked tokens in a raw sentence [31]. MLM
only employs our generator, where the encoder receives a masked sentence and
the decoder reconstructs the original sentence. We train MLM on 6M sentences
from the image-text dataset, and each sentence is a sample in the pre-training.

Pre-training for Cross-modal Interaction As shown in Fig. 2.3, we propose
a pre-training task, controllable image-to-text generation (C-I2T), to enhance

2 console.faceplusplus.com.cn
3 It roughly requires 64 GPUs for more than 2 weeks.
4 dl.fbaipublicfiles.com/fairseq/models/



the interaction between images and texts. C-I2T learns to incorporate the emo-
tions detected from the images into text generation and encourages emotions in
texts and images to be consistent. The training samples consist of a series of
images I = {Ia, Ia+1, ..., Ib} and a series of sentences S = {Sa, Sa+1, ..., Sb}. The
pre-training requires the model to generate a sentence Ŝb given the corresponding
images {Ia, Ia+1, ..., Ib} and the previous sentences {Sa, Sa+1, ..., Sb−1}.

We concatenate the sentences and images as a long sequence {Ia, Sa, Ia+1, Sa+1

, ..., Sb−1, Ib}, where the sentence and image occurs alternately. Each utter-
ance and its corresponding image gather together and the image is ahead of
the utterance since we treat the image as the condition of its utterance. We
use the image encoder to transfer each image Ii into a vector vi, and genera-
tor’s word embedding layer transfers a sentence with l words into a sequence
of l word vectors {wi1,wi2, ...,wil}. Then, we obtain a sequence of vectors
{va,wa1,wa2, ...,vi,wi1,wi2, ...,w(b−1)l,vb} and feed the sequence into the gen-

erator to generate Ŝb. Feeding a combined image-text sequence into the generator
bridges the cross-modal attention to enhance image-text interaction, since every
two inputs have a connection via self-attention in the generator (i.e. transformer)
including the two inputs in different modalities. The text emotion evaluator
Dtxt emo (See details in Sec. 3.4) predicts emotion of the generated text Ŝb.

C-I2T’s loss has two terms as Eq. 3: a negative likelihood loss LNLL that
encourages generating the ground truth and a cross-entropy loss Lemo that en-
courages the generated text Ŝb to have the same emotion as Ib, where EIb is Ib’s
emotion, Dtxt emo is the text emotion evaluator, and α balances the two losses.

LC-I2T = LNLL + αLemo, Lemo =
K∑

k=1

I(EIb = k) logP (Dtxt emo(Ŝb) = k).(3)

C-I2T uses an image-text dataset collected from the TV series. Each orig-
inal sample is an image-text sequence consisting of a series of images I =
{I1, I2, ..., In} and sentences S = {S1, S2, ..., Sn}. The images I are from the
screenshots of a video clip and the sentences S are the corresponding subtitles.
All the sub-sequences in the image-text sequence act as training samples for
C-I2T: each original sample (image-text sequence) is decomposed into multiple
C-I2T’s samples: {Ia, Ia+1, ..., Ib}, {Sa, Sa+1, ..., Sb} (for ∀a, b ∈ (0, n], a+1 < b).
As mentioned in Sec. 3.2, we generate pseudo emotion EIi for Ii with Face++.

Procedure of Pre-training We conduct the above pre-training tasks in a uni-
fied framework. Our pre-training consists of two phases as mentioned in Fig. 2. In
the first phase, we load the pre-trained BART model to initialize the parameters
of our generator and obtain the text emotion evaluator Dtxt emo by fine-tuning
BERT on textual emotion datasets. In the second phase, based on the BART
and Dtxt emo, we jointly pre-train the model on IEC, IESL, C-I2T, and MLM tasks.
To train the second phase, we mix up all the datasets and shuffle all batches of
samples (Samples in a batch come from one dataset). During the second phase



of pre-training, we pre-train IEC and IESL on the samples from datasets involv-
ing images; we pre-train MLM on samples involving texts and we pre-train C-I2T

on samples from image-text datasets. After all the pre-training, the pre-trained
model provides the initial parameters for the downstream IgERG task.

3.3 Fine-tuning on the IgERG Task

IgERG is our downstream task. As shown in Fig. 2.3 , most layers in our pre-
trained model provide the initial parameters for the downstream task, except
the classifier Dimg emo mentioned in Sec. 3.2 and the evaluator Dtxt emo men-
tioned in Sec. 3.2. Fine-tuning on the downstream task follows the pre-training
operations of C-I2T except for the use of Lemo loss. We concatenate the images
and context sentences into a sequence {I1, S1, I2, S2, ..., Sn−1, In} as the input of
our model. The image encoder and generator’s word embedding layer transfers
images and words into vectors. The generator’s encoder receives those vectors
and the generator’s decoder outputs the response Ŝn.

3.4 Structure of Model Components

Our model (Fig. 2) consists of an image encoder, an image emotion classifier,
a text emotion evaluator, and a generator. The image encoder represents an
image Ii with a fixed dimensional vector vi and feeds the vector to the generator.
The image encoder is ResNet-50 [15] without softmax layer. We replace the top
fully-connected layer with another fully-connected layer, in which the output
dimension equals the dimension of the generator’s word embedding. Thus, the
image encoder’s output {v0,v1, ...,vm} is fed into the generator by acting as its
input embeddings. The image encoder is trained by emotion discovery (IEC and
IESL) task (Sec. 3.2), and it is frozen in other pre-training tasks and fine-tuning.

The image emotion classifier Dimg emo predicts the emotion of an image. Its
input is an image vector (i-th image’s encoder output ei). The image emotion
classifier consists of a fully-connected layer and a softmax layer. It transfers ei
into a probability distribution. IEC and IESL train and use this classifier.

The text emotion evaluator Dtxt emo is a BERT-based classifier that predicts
the emotion of the generated text in C-I2T task. It is pre-trained by BERT 5

and fine-tuned on text emotion datasets. Only C-I2T involves this Dtxt emo.
The generator is the core part that accomplishes the pre-training and fine-

tuning tasks. It is trained in all pre-training tasks. The generator is the “trans-
former base” model in [56] with encoder (pink blocks in Fig 2) and a decoder
(grey blocks in Fig 2). Both encoder and decoder have 6 stacked layers.

4 Experiments

4.1 Experimental Settings

Datasets and Hyper-parameters. Our pre-training tasks involve four types
of datasets: 1. for image-only datasets, we use a supervised image emotion

5 huggingface.co/bert-base-uncased



dataset, RAF-DB [24], with 15k samples. We collect 4.9M samples from four
TV series (How I Met Your Mother, This Is Us, The Big Bang Theory, and
Person of Interest). Each of the samples is a sequence of screenshots, and we
assign emotional labels on those samples via Face++ API. 2. The text-only
datasets are BART’s datasets consisting of four datasets [69, 35, 55, 13]. 3. For
image-text datasets, we use OpenViD [32] dataset with 1M samples. It comes
from the movies with subtitles, where the image comes from the sequence of
screenshots and texts are the corresponding subtitles. Notice that, we split
original OpenViD samples to obtain 21M samples for C-I2T as mentioned in
Sec. 3.2. 4. We use three textual emotion datasets [27, 4, 39] with 0.92M sam-
ples in total, and they share the same emotion space with Face++ API. Our
downstream task uses OpenViD [32] dataset with 0.9M/50k/50k samples for
training/validation/testing. In all baselines and our model, following [32], we set
the dimension of word embeddings and hidden layers to 512 and the dimension
of image vector v to 1000. We set the dropout rate to 0.3 and the learning rate
to 3e-5 during pre-training and fine-tuning. The factor α in Eq. 3 is 1. Dtxt emo

is fine-tuned with a learning rate of 1e-5. We released our code 6.

Evaluation Metrics. We evaluate all methods with automatic and human
evaluations. Our automatic metrics consists of: (1) Appropriateness, Bleu-N [36,
21] and Nist-N [10, 40, 53] measure N-gram match between outputs and ground
truthes. CiDEr [57] is widely used in image captioning. (2) Informativeness,
Dist-N [21, 49] evaluates the response diversity via unique n-gram proportion
in all responses. Ent-N [34, 53] is the entropy on word count distribution. (3)
Emotion Const. E-Acc and E-F1 measure the accuracy and F1 score between
the emotion of the last input image and the generated responses. Those metrics
show the consistency of images and texts in terms of emotion.

We conduct human evaluations in three aspects: 1. overall quality Qual (flu-
ency, relevance, and grammaticality) of the generated response, 2. informative-
ness and lexical diversity of results (Info). 3. Emo (in three factors: emotion
consistency between input images and generated texts, emotion being well ex-
pressed in text, and whether the personas reflected in outputs and dialogue
histories are consistent.) We hire five commercial annotators to annotate five
copies of 300 randomly selected test samples with a 5-scale rating.

Baseline Methods. We verify our model by comparing following methods.

– No pre-training. Trs is the transformer model [56] without using images. Trs+FV
and Trs+CV denote the transformer using images via Faster-RCNN [43] and
ResNet [15], respectively. The above baselines come from Meng et al. [32] and
do not involve pre-training. Trs+CV serves as the fine-tuning model of all the
following methods for a fair comparison.

6 Our code is available at: github.com/stupidHIGH/MM-Pre-train.



– Text-only pre-training. BART denotes the model pre-trained with BART [19] on
text data and fine-tuned with Trs+CV’s model, where BART is widely-used pre-
train model for text generation tasks (e.g. dialog and summarization).

– Image-Text pre-training. Oscar[24] is the multimodal pre-training model that
pre-trains to align the object semantics.7 Oscar+BART’s encoder comes from Os-
car and its decoder comes from BART.

Pre-train Type Model
Appropriateness Informativeness Emotion Const

Bleu3 Bleu4 Nist3 Nist4 CIDEr Qual Dist3 Dist4 Ent3 Ent4 Info E-F1 E-Acc Emo

No
Pre-train

Trs 1.79 1.00 0.766 0.771 0.069 2.41 0.003 0.004 3.53 3.56 2.05 0.099 0.228 1.87
Trs+FV 2.07 1.19 0.874 0.880 0.098 2.39 0.027 0.041 4.82 4.99 2.34 0.111 0.217 1.84
Trs+CV 2.04 1.15 0.875 0.882 0.097 2.58 0.020 0.031 5.01 5.18 1.96 0.118 0.246 2.03

Text-only BART 2.77 1.70 1.069 1.086 0.140 3.04 0.155 0.224 6.84 7.28 2.64 0.129 0.288 2.32

Image-Text
Oscar 2.18 1.21 0.865 0.870 0.098 2.88 0.021 0.034 5.78 6.07 2.35 0.121 0.248 2.21

BART+Oscar 1.99 1.07 0.881 0.888 0.104 2.79 0.022 0.037 5.47 5.71 2.31 0.124 0.256 2.09

Image-Emotion-Text Ours 3.00 1.94 1.139 1.158 0.164 3.13 0.216 0.306 7.44 7.93 2.98 0.137 0.312 2.49

Table 1. Overall performance on automatic metrics and human evaluations 8 9 .

4.2 Overall Results

Table 1 shows the performance of all methods. Among the baselines without
pre-training (first 3 rows), Trs+FV and Trs+CV perform better than Trs, which
verifies the image is helpful for our task. Trs+CV’s emotion consistency is a little
higher than Trs+FV, so the following methods employ Trs+CV as the fine-tuning
model.Text pre-training BART obtains much higher performance than no pre-
training models showing the power of pre-training. Text pre-training enhances
Dist scores a lot. The reason is BART learned on a corpus with a large variety of
sentences (160GB data) during its pre-training.

Image-text pre-training baselines (Oscar and Oscar+BART) outperform no
pre-training models in the emotion consistency and get similar performances in
other metrics. It shows image pre-training helps models to understand emotions.
The performance of the two baselines is not as satisfactory as BART, showing the
current image-text pre-training models do not fit for our task. As a model only
pre-trained to align the object semantics between image and text, Oscar does not
consider the object-independent information (e.g. emotion) during pre-training.

Considering object-independent information (emotion) in image-text pre-
training, Ours surpasses all the baselines in all metrics. The improvements in
emotion consistency show our pre-training enhances the cross-modal interaction
that expresses image emotions in texts. The significant improvements on Dist
(+39% in Dist3 and +36% in Dist4 ) indicate suitable image-text pre-training
can highly enlarge the informativeness of the generated text. The response gen-
erated by our model tends to have higher quality and appropriateness, as our

7 We choose Oscar as our baseline, since Cho et al.[6] and Li et al. [26] reported Oscar
outperforms most existing multimodal pre-training models, including UNITER [5],
XGPT [58], VL-BART [6] and VL-T5 [6] on VQA, NLVR, and image captioning.

8 Results in rows 1 to 3 match the official github page (github.com/ShannonAI/
OpenViDial), where the authors [32] publish the revised results of their paper.

9 Kappa score [11] among annotators is 0.43 (moderate agreement among annotators).



model improves by 8% and 14% on Bleu3 and Bleu4. Our promotion on emo-
tion consistency verifies that considering the emotion reflected from the images
during pre-training helps the model on understanding and expressing emotions.

4.3 Ablation Studies on Pre-training Tasks

Appropriateness Informativeness Emotion Const
Bleu3 Bleu4 Nist3 Nist4 CIDEr Dist3 Dist4 Ent3 Ent4 E-F1 E-Acc

Ours 3.00 1.94 1.139 1.158 0.164 0.216 0.306 7.44 7.93 0.137 0.312

Ours − IESL 2.82 1.76 1.097 1.116 0.150 0.185 0.268 7.23 7.70 0.136 0.296

Ours − IEC 2.80 1.74 1.065 1.082 0.145 0.163 0.234 6.79 7.19 0.133 0.285

Ours − MLM 2.83 1.77 1.089 1.107 0.147 0.174 0.253 7.01 7.45 0.133 0.291

Ours − C-I2T 2.77 1.73 1.093 1.111 0.146 0.181 0.258 6.99 7.41 0.135 0.302

Table 2. Ablation studies on the effectiveness of different pre-training tasks. “Ours −
X” (row 2 to 5) indicates our full mode without pre-training of task X.

Table 2 shows the ablation studies on our proposed pre-training tasks. We
construct a model variant by removing one specific pre-training task from our
full model. As we propose four tasks, we obtain four variants and compare them
to our full model Ours. For example, Ours−IEC denotes Ours without IEC.

Ours excels all model variants in row 2 to 5. It demonstrates all the proposed
pre-training tasks are necessary and contribute to our full model. Among the
rows 2 to 5, removing IESL from Ours (row 2) decrease the performance on all
metrics. IESL is crucial since it models the change of emotions in a conversa-
tion session, which helps the downstream model capture the tendency of the
speaker’s emotion and generate suitable responses. Removing IEC from the full
model causes the largest performance drop, which shows IEC is much impor-
tant in pre-training. The reason is that it benefits from high-quality supervised
training data with rich emotions (see dataset analysis in Sec 4.5). Knowing that
appropriateness measures the matching between ground truth and generated
texts, it is reasonable to see that Ours − C-I2T performs the second-worst on
appropriateness because C-I2T is the only task that pre-trains to make generated
sentences and the ground truth similar.

4.4 Emotion Expression in Text Generation

To measure the ability to express emotions in the generated texts, we propose
%EW and %F1 for evaluation. %EW denotes the percentage of emotion words
(occurs in an emotion word list9 of each generated response. Considering the
ground truth words, we measure the precision and recall of generated emotion
words that match the ground truth as Eq. 4, where E denotes the emotion word
list, Ŝ denotes a generated sentence, and S denotes a ground truth sentence.
%F1 is the harmonic average of the precision and recall.

Precision =
|Ŝ ∩ E ∩ S|
|Ŝ ∩ E| , Recall =

|Ŝ ∩ E ∩ S|
|E ∩ S| (4)

10 saifmohammad.com/WebPages/lexicons.html



The experimental results shown in Table 3 reflect the effectiveness of emo-
tion expressions in two aspects: the quantity and quality of generated emotion
words. As for the quantity, our model tends to generate far more emotion words
in responses than the baselines (shown in the %EW of Table 3). This advantage
mainly comes from the pre-training of C-I2T, since C-I2T learns to generate
words to express emotions. As for the quality, the results on %F1 verify the gen-
erated emotion words from our model are more likely to match the correct emo-
tions (ground truth emotions). Our model works well owing to the pre-training
of understanding emotions (IEC and IESL) and express emotions (C-I2T).

Trs Trs+CV Trs+FV BART Oscar Oscar+BART Ours
%EW 1.5 3.7 2.7 4.3 4.3 3.5 5.1
%F1 3.1 15.3 10.8 60.2 12.1 12.0 69.4

Table 3. The percentage of emotion words in generated responses from different meth-
ods, which shows the degree of emotion expressed by the model.

4.5 Studies on the Dataset Selection

Label
Emotion

Distribution
Image Content

Appropriateness Informativeness Emotion Const
Bleu3 Bleu4 Nist3 Nist4 CIDEr Dist3 Dist4 Ent3 Ent4 E-F1 E-Acc

R Real Balanced Facial Expressions 2.20 1.27 0.997 1.009 0.107 0.043 0.073 5.449 5.791 0.134 0.325

R FA Pseudo Balanced Facial Expressions 2.18 1.25 1.005 1.007 1.005 0.052 0.087 5.707 6.105 0.136 0.325

T FA Pseudo Unbalanced Face + Gestures 2.09 1.17 0.965 0.976 0.099 0.028 0.047 5.357 5.659 0.129 0.293

P FA Pseudo Unbalanced Few Facial Expressions 2.15 1.18 0.891 0.900 0.092 0.019 0.033 4.981 5.222 0.126 0.276

Table 4. Comparisons among different types of image datasets on IEC. R is to conduct
IEC on RAF-DB dataset with its original labels. R FA, T FA, and P FA denote IEC

on RAF-DB, TV, and Pose dataset with pseudo labels by Face++ API.

Most pre-training methods succeed owing to “big data” and our method also
requires large-scale image datasets for IEC, IESL, and C-I2T. The qualities and
characteristics of those datasets are crucial for our training. However, it’s hard
to select datasets from various image datasets. Here, we analyze the effectiveness
of different types of image emotion datasets, verify the data augmentation, and
give suggestions on dataset selection. In Table 4.5, we choose four datasets with
different types and compare the performances of pre-training IEC on them.

Fig. 3. Emotion distributions of four image datasets in Sec. 4.5.
We choose four datasets considering their image contents and emotion distri-

butions: 1. RAF-DB (R) [24] is a supervised image emotion classification dataset,



where most images describe facial expressions and the emotion distribution is
well balanced. 2. We obtain a new dataset R FA by relabeling the original RAF-
DB via Face++. 3. TV dataset (T FA) is a mixture of four TV series datasets
(Sec. 4.1) labeled by Face++. The images contain speakers’ facial expressions
and gestures and its emotion distribution is unbalanced. 4. Pose dataset (P FA)
is a mixture of portrait photography datasets [66, 30, 64], where the face region
covers a small part of each image. Its emotion distribution is unbalanced since
the only two emotions cover 82% samples. We train all datasets with the same
scale (15k samples) for a fair comparison. Fig. 3 shows emotion distributions
of the above datasets. The distributions of RAF-DB and RAF-DB labeled by
Face++ are similar. For emotion distribution of TV series, the “neutral” takes
up more than half of the emotions. In Pose, “neutral” and “happiness” take up
more than 82% of the emotions , indicating the distribution is quite unbalanced.

We conclude we should select datasets where 1. image contents are mainly
about speakers’ facial expressions, since T FA surpasses P FA; 2. the emotion
distribution should be balanced, as R and R FA excel T FA and P FA. Further,
labels on the supervised data are useful according to the fact that R slightly
outperforms R FA in appropriateness. But the gap between R and R FA is small,
which shows the data augmentation by Face++ also constructs good datasets
when the supervised label is not accessible.

5 Conclusion

In this paper, we propose a multimodal pre-training method that enhances the
ability of text generation models to capture emotions from images and leverage
the emotions for text generation. Our method pre-trains by discovering emotions
in images, generating text, and incorporating the discovered emotions for text
generation. We build a unified model carrying all pre-training tasks. Our pre-
training method is applied to the IgERG task. The experimental results reveal
our pre-training tasks enhance IgERG by a large margin.
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