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Abstract

The notion of concept drift refers to the phenomenon that the distribution, which is underlying
the observed data, changes over time; as a consequence machine learning models may become
inaccurate and need adjustment. Many unsupervised approaches for drift detection rely on
measuring the discrepancy between the sample distributions of two time windows. This may be
done directly, after some preprocessing (feature extraction, embedding into a latent space, etc.),
or with respect to inferred features (mean, variance, conditional probabilities etc.). Most drift
detection methods can be distinguished in what metric they use, how this metric is estimated,
and how the decision threshold is found. In this paper, we analyze structural properties of the
drift induced signals in the context of different metrics. We compare different types of estimators
and metrics theoretically and empirically and investigate the relevance of the single metric
components. In addition, we propose new choices and demonstrate their suitability in several
experiments.

∗We gratefully acknowledge funding by the BMBF TiM, grant number 05M20PBA.
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1 Introduction
One popular assumption in classical machine learning is that the observed data is generated i.i.d.
according to some unknown underlying and stationary probability PX . Yet, stationarity is often
violated for realistic learning tasks such as machine learning based on (streaming) social media entries
or measurements of IoT devices, which are subject to continuous change [2, 23]. Here, concept drift, i.e.
changes of the underlying distribution PX occurs, caused e.g. by seasonal changes, changed demands,
ageing of sensors, etc. Learning with drift can be dealt with in different ways. Often, data are treated
via windowing techniques, and the model is continuously adapted based on the characteristics of the
data in an observed time window. Thereby, many approaches deal with supervised scenarios and
they aim for a small interleaved train-test error. In recent years, some approaches deal with concept
drift in unsupervised settings [7, 17]. One fundamental problem, which is part of supervised learning
schemes as well as unsupervised drift modelling and which will be in the focus of this publication, is
the challenge of drift detection and determination of the time point when drift occurs.

According to [17] most drift detection schemes proceed in four stages: 1) collecting data, 2) building
a descriptor of the data in two time windows, 3) computing a similarity based on the obtained the
descriptor, 4) normalize the similarity, e.g. by considering an appropriate statistical test. This work
focuses on the second and third stage of this scheme, which constitute the most crucial ones. The
first stage can be solved in many problem-specific ways without a major effect on the next stages.
The decision process in stage four can be bounded independently of the concrete realization: the
difference of the output of stage three under the null hypothesis (no drift) and the alternative (drift)
constitutes such a bound.

The aim of the present work is to determine the influence of the two major ingredients of stage
2 and 3, namely the used descriptor (stage 2) and the similarity measure applied to the descriptor
(stage 3) and to evaluate their influence on the capability to detect drift and localize it in time. We
will empirically show that the chosen similarity measure is of minor importance. The descriptor has
an impact. In lay terms, it is more important how to estimate rather than what to estimate. This
claim will be investigated from a theoretical and an empirical perspective using different estimation
schemes.

Beyond this general comparison, we provide a new method to construct dataset-specific models
to solve stages two and three in an efficient way: random projection-based and moment tree-based
binning. This is of particular interest since dataset-agnostic similarity measures face the challenge of
an inherent trade-off between decision accuracy and convergence speed.

This work is structured as follows: first (Section 2) we recall relevant work from the literature and
define the problem setup – in particular, we describe different approaches to tackle the four stages
(Section 3). We also provide a general argument when an estimator is capable of drift detection (see
Theorem 2). In the last section (Section 5) we evaluate the metrics and estimators – showing their
strengths and weaknesses – and show the suitability of our proposed approaches.

2 Problem Setup
In the usual time invariant setup of machine learning, one considers a generative process PX , i.e. a
probability measure, on the data space X . In this context, one views the realizations of PX -distributed,
independent random variables X1, ..., Xn as samples. Depending on the objective, learning algorithms
try to infer the data distribution based on these samples, or, in the supervised setting, the posterior
distribution. We will not distinguish between these settings and only consider distributions in general,
subsuming supervised and unsupervised modeling [24].
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Many processes in real-world applications are time dependent, so it is reasonable to incorporate
time into our considerations. One prominent way to do so, is to consider an index set T , representing
time, and a collection of probability measures pt on X , indexed over T , which may change over time
[9]. We will usually assume T = [0, 1]. In the following, we investigate the relationship of those pt.
Drift refers to the fact that pt varies for different time points, i.e.

∃t0, t1 ∈ T : pt0 6= pt1 .

In this context, we consider a sequence of samples (X1, T1), (X2, T2), ..., with Xi ∼ pTi
and Ti ≤ Ti+1,

as a stream. Notice, that we will usually use the shorthand drift instead of concept drift.
In this contribution we will mainly focus on the case of one single abrupt drift, i.e. there exist

probability measures P and Q and a time point t0 ∈ T , such that

pt =

{
P, t ≤ t0
Q, t > t0

.

In this context we can ask two questions, which are referred to as drift detection:

1. Whether there is drift, i.e. does P 6= Q hold?

2. If so, when does the drift occur, i.e. what is t0?

2.1 A General Scheme for Drift Detection
As most drift detection methods are applied in a streaming context, one usually considers time-
dependent data samples S(t), observed during a time period W (t). To detect drift, one estimates
the similarity of the distributions of a (presumably before drift) reference time-interval (or window)
W−(t) and a current time-interval W+(t), which are obtained by splitting W (t). The estimation is
done using the sub-samples S−(t) and S+(t) called windows of S(t) that correspond to W−(t) and
W+(t), respectively. The way this is done varies depending on the specific algorithm. In this section
we discuss some of the most prominent choices for the relevant stages 1-4 of this drift detection
scheme as described in [17].

Stage 1: Acquisition of data: As stated above most approaches are based on sliding windows,
however, the concrete implementation can vary. In particular, the reference window is realized in
different ways: as sliding window, stationary, growing window, implicitly within a model, etc. To
illustrate the idea we describe the examples of (a variant of) ADWIN and a simple version of an
implicit reference window:

Example 1. ADWIN [3] uses only one sliding window S(tnow). To test for drift this window is split
successively into to halves, S−(t; tnow) and S+(t; tnow). Then, these are compared using a suitable
distance measure d̂, i.e. the statistic of ADWIN is given by supt d̂(S−(t; tnow), S+(t; tnow)). In the
original version ADWIN “prepocesses” the data by comparing the result of a fixed classification model
against reference labels. However, extensions with other statistical tests are straightforward.

Example 2. A simple approach with implicit reference window consists of a reference mean µ̂ref =
µ(S−(t)) and a sliding window S+(t) of fixed size corresponding to W+(t). If there is no drift, the
mean in the current window and the reference should be the same, i.e. µ(S+(t)) ≈ µ̂ref. Based in
this assumption a drift detection can be performed using a t-test. Once a sample drops out of the
current window S+(t) it is used to update µ̂ref.
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Figure 1: Two stage scheme of estimating distribution similarity from data. Distance of distributions
(d̂) can be estimated by building a descriptor (A) and then computing a similarity (s).

Apart from these examples, some approaches use preprocessing such as a deep latent space
embedding. We do not explain those possibilities in more detail. Instead, we focus on the case of two
windows only and try to evaluate the suitability of different distance measures for the task at hand.

Stage 2: Building a descriptor: Comparing two distributions directly based on a sample is
usually complicated. Therefore, the process is split into two parts which are visualized in Fig. 1: First
a descriptor of the distributions is built (this corresponds to A in Fig. 1), and then the similarity of
the distribution is computed based on that descriptor (s in Fig. 1). Possible descriptors are grid- or
tree-based binnings, neighbor-, and kernel approaches. We list some of the most popular descriptors
together with suitable similarity measures in Section 3.

Stage 3: Computing similarity: As stated in the last paragraph, computing the similarity of
two samples is often reduced to a comparison of descriptors which are based on those samples (s in
Fig. 1). Although, several approaches for building descriptors exist, many admit the same or at least
comparable similarity measures. For example, if we consider binning descriptors, it does not matter
whether the bins are obtained from a grid or a tree, or if the grid or tree is adjusted to the presented
data or not.

Stage 4: Normalization: As the obtained similarities typically depend on both, the method,
i.e. stages 1-3, and also the concrete distribution at hand, it is necessary to normalize the result to
obtain a useful scale. One of the most common ways to do this is by a relation of the similarity to
the statistic of a statistical test; in this case the p-value offers a normalized scale. In the literature a
large variety of approaches are considered. However, independently of the concrete normalization,
the presence of drift can be observed from the output of stage 3; more formally the post hoc optimal
normalization after stage 3 provides an upper bound on the quality of any concrete normalization.
Therefore, we will focus on the output after stage 3 in the following.

Beyond stage 4: Ensemble and hierarchical approaches: Some authors [17] suggest to
combine multiple drift detectors. They are usually arranged in an ensemble, e.g. by combining
multiple p-values after stage 4 into a single one, or hierarchical, e.g. by combining a computationally
inexpensive but imprecise detector with a precise but computationally expensive validation. Although,
those approaches differ on a technical level, they do not from a theoretical perspective, as the suggested
framework is sufficiently general.
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2.2 Formal Setup and Research Question
Before we can formally specify question 1 and 2, we first have to define the sampling process:

Definition 1. Let X be a data space and T ⊂ R. Let (pt, PT ) be a drift process [14] on X and
T , i.e. a distribution PT on T and a Markov kernel pt from T to X . A window S drawn from pt
during a time interval W ⊂ T is a sample S = {(x1, t1), · · · , (xn, tn)} drawn i.i.d. from ptPT [ · |W ],
assuming PT (W ) > 0.

We use the following notation: If the choice of W is not specified, we will assume W = T .
For the sub-intervals W−(t) := (−∞, t] ∩W and W+(t) := (t,∞) ∩W , we define the sub-windows
S−(t) := {(x′, t′) ∈ S | t′ ∈W−(t)} and S+(t) analogously.

Question 1: “Whether”: It was shown in [13, Theorem 2] that drift is equivalent to different
sub-window distributions, i.e. it exists a t ∈ W such that pW−(t) 6= pW+(t), here pW denotes the
distribution during W . Since we do not observe the underlying distributions, but only a window S,
it is reasonable to quantify this using estimating of the distance

d̂(S−(t), S+(t)) := (s ◦A)(S, t)

which should be (significantly) larger than 0 if and only if there is drift. Here we decompose d̂ as
described before into a descriptor A and a similarity s. Control of the uncertainty of the sampling
process when detecting drift can be formalized as follows:

Definition 2. Let (pt, PT ) be a drift process, and S denote a window drawn from it. An estimator
(A, s) is a pair of measurable maps, one mapping windows to descriptors, i.e. A : ∪n(X × T )n × T → B,
the other mapping descriptors to similarities, i.e. s : B → R. We refer to B as the description space.

An estimator is drift detecting, iff it raises correct alarms with a high probability in the following
sense: There exists a 0 < δ < 1/2 and a number n such that with probability at least 1− δ over all
choices of S, with |S| > n, it hold s ◦A(S, t) > 0 for some t if and only if there is drift.

An estimator is surely drift detecting, iff it raises correct alarms with arbitrarily high certainty,
that is the above statement holds for all 0 < δ < 1.

Notice, that this definition is applicable for general drift, including gradual, incremental, and
periodic. Furthermore, the difference between drift detection and sure drift detection only occurs in
the limit of the size of S. As long as we are restrained to windows of fixed sample size, both notions
are effectively the same.

Question 2: “When”: We are interested in finding the time point t0 where the drift actually
occurs. This is often estimated by the point t̂0 with largest difference of the sub-windows, i.e.

t̂0 = arg max
t∈T

d̂(S−(t), S+(t)).

The precision of this estimator can be quantified by mean ratio of samples between the true drift
event t0 and its estimate t̂0. This can be captured in the following definition:

Definition 3. Let (pt, PT ) be a drift process with a single abrupt drift event at t0 with 0 <
PT (W−(t0)) < 1. Let S be a window drawn from pt.

We define the precision as 1− PT ( [t0, t̂0) ∪ (t̂0, t0] ).1

1Recall that [a, b) = (a, b] = ∅ for a ≥ b.
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We say that an estimator (A, s) is precise, iff for all 0 < δ < 1 and ε > 0 there exists a number n,
such that with at least probability 1− δ over all choices of S, with |S| > n, the precision is larger
than 1− ε, assuming drift was detected.

Notice, that the restriction to a single drift event in the definition of precision is necessary to
avoid the ambiguity of which event t̂0 is to be compared to.

As finding the best split t̂0 requires the evaluation of multiple potential split points t, an efficient
computation is important. As we have to compute the similarity at each time point, efficiency holds
if the same descriptor can be used for multiple splits points, i.e. d̂(S−(t), S+(t)) = (s ◦ A)(S, t) =
s(A0(S), t), where A0 is independent of the split point. Using this idea we obtain the following
definition:

Definition 4. We say that an estimator (A, s) is c-complex, iff s ∈ O(c) regarding computational
complexity and A factorizes as A0 × idT , that means it holds (s ◦A)(S, t) = s(A0(S), t).

Notice, that the computational efficiency of s crucially depends on the codomain of A0. For
example factorization also holds if we choose the set of all functions from T to R and s as the
evaluation map.

The notion of complexity restricts how much A(S, t) can be adapted to the split point t. Yet, the
incorporation of the temporal information contained in S is desirable as it usually leads to better
descriptors. We therefore say that an estimator is “arrival time respecting” if the descriptor uses
temporal information beyond the split point:

Definition 5. An estimator (A, s) is arrival time respecting, iff the obtained descriptor depends on
the timing within the sub-windows, i.e. it exists a split of a window S = S−∪̇S+, and permutations
π−, π+, such that A(S− ∪ S+, t) 6= A(S̃− ∪ S̃+, t), where S̃− = {(xi, tπ−(i)) | i = 1, ..., n−} is the
time-permuted version of S− = {(xi, ti) | i = 1, ..., n−} and analogous for S̃+.

3 Similarity Estimators
We are interested in popular instantiations of stages 2 and 3 and their properties. Binning can be
considered as one of the simplest strategies to estimate a probability distribution. Essentially, the
input space is segmented and the number of samples per bin is counted. The ratio of these samples
as compared to all provides an estimate for the actual probability. Based thereon, distance measures
like total variation [24], Hellinger distance [6], or Kullback-Leibler divergence [20, 5] can be computed.
We will also consider the Jensen-Shannon metric which is based on the Kullback-Leibler divergence.
Binning on a grid was used in the work [24], for example, to estimate the rate of change in data
streams.

Since the number of required bins grows exponentially with the number of dimensions, one
might consider multiple, separate binnings in low dimensional projections for high dimensional
data. Typical choices are projections onto the coordinate axis / marginals [6] and onto the principal
components [20]. While this strategy reduces the descriptor complexity, it is not capable of capturing
drift that affects the correlation of features or of components with small variance, respectively. As
this poses a problem for drift detection in the real world, we propose a new technology: random
projection binning considers binnings along randomly chosen projection axes.

Instead of using an equally spaced grid structure, one can also consider a recursive splitting of the
dataset similar to a decision tree with leaves forming the bins. Depending on the way of splitting,
these are Random Trees, where the dimension and the split point are chosen completely randomly, or
kdq-Trees [5], where one successively splits the dimensions along the center. As such splits often lead
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Table 1: Summary of estimators (Drift Detecting: No 7, Drift detecting (3), Surely drift detecting
3, Arrival Time Respecting: No 7, Yes 3)

Descriptor (B) Metric(s) DD ATR Complexity
Marginal Bin. [6]

Total variation [24],
Hellinger [6],
Jensen-Shannon,
DKL [5]

7 7 O(1) cumulative histogram
Random Proj. Bin. (3) 7 O(1) cumulative histogram
Random Tree (Bin.) 3 7 O(1) cumulative histogram
kdq-Tree [5] (Bin.) 3 7 O(1) cumulative histogram
Moment Tree (Bin.) 3 3 O(1) cumulative histogram
k-NN LDD [16], DKL [19] 3 7 O(k) neighborhood graph

Kernel embedding
of distribution [21] MMD [11] 3 7 O(|W |)

Cholesky decompo-
sition of kernel ma-
trix

to slow convergence, we propose to use a comparably new alternative: Moment Trees [15], which are
designed for conditional density estimation. Here, they are trained to predict the (distribution of)
time given data, i.e. PT |X . Notice, that due to the relation of a supervised problem, one can perform
a parameter tuning, which is not possible for the other approaches.

Neighborhood-based approaches offer a popular and robust choice in non-parametric methods
which have been widely used for various estimators, including Kullback-Leibler divergence [19]. In
drift detection the Local Drift Degree (LDD) [16] is one method that is explicitly based on k-nearest
neighbors (k-NN).

Another, non-parametric approach are kernels. Maximum Mean Discrepancy (MMD) [11] is a
kernel-based metric, which was also applied to drift detection [21]. These methods are summarized
in Table 1. We investigate their theoretical properties and experimental behavior in the following.

4 Theoretical Analysis
We will now discuss some of the properties of the approaches presented in Section 3 from a theoretical
point of view. We will see that, regarding question 1 and 2, common estimators for drift detection
are well suited. In the following we will always assume a drift process (pt, PT ) on X , T , with T ⊂ R.

Linear projections: Many, in particular, simple methods use projections as a first step. However,
as already discussed by [20] not every possible projection is also suitable. Indeed, most approaches
from the literature are not:

Remark 1. Linear projections with respect to marginals [6] or principal components [20] are not drift
detecting, independent of the further processing. This stays true if pt is compactly supported.

Conversely, random projections are sufficient for drift detection:

Theorem 1. Let X = Rd and assume that pt is compactly supported, then random projection (with
w ∼ N (0, I)) with random bins is drift detecting.

Proof. All proofs can be found in the appendix.

However, we will observe that they do not perform well for a large dimensionality. We conjecture
that this is a consequence of the fact that they are not arrival time respecting, and not adapted to
the specific problem at hand.
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Learneable models: Many popular machine learning models are also applied to estimate
similarities in drift detection. Interestingly, the uniform learnability that qualifies them as valid
machine learning models, also assures that the derived estimators are surely drift detecting and
precise:

Theorem 2. Let X be a measurable space and let H be a hypothesis class of binary classifiers on X .
Consider the estimators induced by

1

2
− inf
h∈H

E[`w(h, (X,1[T ∈W+(t)]))],

where `w denotes the 0-1-loss with class reweighting, i.e. `w(y′, (x, y)) = 1/P[Y = y] if y 6= y′ and
0 otherwise. If H is PAC-learnable, then the estimator is precise. If in addition, for all binary
classification tasks on X there exists a h ∈ H that performs better than random, then the estimator is
also surely drift detecting.

To connect this result to the existing literature, observe that (for X = Rd and universal H) the
estimator is equivalent to the total variation norm. Thus, if an estimator is based on a uniform
learneable model class, it is surely drift detecting and precise, but in general this requires us to retrain
the model for each split point t. At this point the fact that some models do not need adaptation can
increase efficiency. Indeed, for Random Trees and kdq-Trees we find the following statements:

Corollary 1. On X = [0, 1]d Random Trees and kdq-Trees with total variation norm are surely drift
detecting, precise, and O(1)-complex with cumulative histograms as descriptors.

To obtain a similar result for Moment Trees, we make use of the fact that they can be used for
conditional density estimation [15]: The obtained tree is suitable for all classification task for the form
1[T > t], which is exactly what is considered by Theorem 2. We therefore conjecture that Moment
Trees with total variation norm is drift detecting, precise, arrival time respecting, and O(1)-complex
with cumulative histograms as descriptors.

5 Empirical Evaluation
Based on the theory provided in Section 4, we can derive worst case bounds similar to standard
results from classical learning theory for drift detection. Yet, we are also interested in average case
bounds obtained from empirical estimations.

We apply the estimators as described in Table 1. For the binning approaches we used different
numbers of bins, and equidistant and equilikely bins. In case of Random Projection, we also vary the
number of projections. In case of the k-NN and tree approaches we vary the number of neighbors
and trees. In case of Moment Trees we consider different degrees, ensembles of independently grown
Decision Trees and Random Forests. For MMD we use the biased estimator with Gauss kernel.
Notice, that due to the setup no parameter tuning can be performed during a run. In any case we
consider all possible combinations according to Table 1. For arrival time respecting methods we also
consider skipping the last 10% of the reference window during training.

We use the following datasets: “Rotating hyperplane” (RHP) [18], “SEA” [22], “stagger” [10],
“RandomRBF” (rbf) [18], “Electricity Market Prices” (elec) [12], “Forest Covertype” (cover) [4] and
“Nebraska Weather” (weather) [8]. For labeled datasets, the label is integrated as an additional feature,
hence real drift becomes distributional drift. To obtain a sample window with drift we sample two
concepts (S− ∼ pW− ×U([0, 1/2]) and S+ ∼ pW+

×U([1/2, 1])) and concatenate them (S = S−∪S+);
we then permute these samples to obtain a counterpart without drift (S̃ = {(xi, tπ(i)) | i = 1, · · · , n}

8
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Figure 2: Effect of parameters on statistical power (pperm) and precision accuracy (ppa(∆)). Estimators
are: Marginal binning, Random Projection, Random Tree, Independent Moment Trees (DT), Random
Forest Moment Trees (RF), MMD, LDD.

where S = {(xi, ti) | i = 1, · · · , n}). In case of real world datasets we obtain two different concepts
(before and after drift) by randomly sampling from before and after a given time stamp (we used a
two sample test to assure that the obtained batches are indeed different, while the random selection
assures no drift within the sub-windows). Analysis of different split points on the same window use
the same binning/tree; for other windows (including drift vs. no drift) we create a new binning/tree.

We investigate the effect of windows length, additional noise dimensions, offsets/imbalance
(removing oldest 0%, 12.5%, 25% of whole window; drift is at 50%), and displacement of the split
point t = t0 + ∆ (split at t = 50%, 53%, 56%, 62%, 75% of the whole window; drift is at t0 = 50%).
We repeat each experiment 1000 times.

Question 1: “Whether” We evaluate how well an estimator d̂ = s ◦ A detects drift. For this
purpose, we estimate the probability that the estimation with drift is larger than the one without,
i.e. pperm = P[d̂(S−, S+) > d̂(S̃−, S̃+)], and we evaluate the probability that the estimation with and
without drift can be distinguished using a threshold, i.e. pthre = supb P[d̂(S−, S+) > b ≥ d̂(S̃−, S̃+)],
where S−, S+ and S̃−, S̃+ are obtained from S and S̃, respectively, using the same split point t. Since
pperm is the probability that a random permutation increases the estimate, it is an upper bound

9



Table 2: Empirical upper bounds: pperm (left), pthre (right). Estimators are: Moment Tree (Random
Forest), Random Projection Binning, Marginal Binning, Random Tree, MMD, and LDD.

dataset RF Rnd Pj Marg Rnd Tree MMD LDD

SEA 0.56 0.53 0.51 0.49 0.59 0.55 0.62 0.56 0.54 0.49 0.53 0.50
cover 1.00 0.92 0.99 0.88 1.00 0.96 0.99 0.90 1.00 0.95 0.97 0.86
elec 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00 1.00
rbf 1.00 0.99 1.00 0.99 1.00 0.93 1.00 0.96 0.98 0.90 1.00 1.00
RHP 0.97 0.86 1.00 0.93 0.48 0.48 1.00 0.93 0.50 0.52 1.00 0.96
stagger 1.00 1.00 1.00 0.97 1.00 0.96 1.00 1.00 1.00 0.92 1.00 0.98
weather 0.99 0.84 0.86 0.70 0.85 0.69 0.83 0.67 0.80 0.65 0.91 0.73

for the statistical power (TP/T) of any normalization. Similarly, pthre is an upper bound for the
balanced accuracy ((TP/T + TN/N)/2) of (distribution dependent) threshold-based normalization.
Unlike a comparison to 0, this procedure does not suffer from possible estimator biases.

The results for one setup (length 150, split at drift point, no offset, total variation norm and
LDD (in case of k-NN), where hyper-parameters are selected to optimize pthre in a previous run)
are presented in Table 2. An analysis of feature importances shows that the used descriptor has the
largest impact on the results, followed by the dataset. Window length and split point displacement
are in medium range, the effects of the used distance measure, and the offset are marginal.

As can be seen, all methods perform about equally good. Exceptions are Random Trees and
Marginal Binning, which are the only methods that are better than random on the SEA dataset
(Moment Tree and LDD are also able to solve SEA for larger windows sizes), and Moment Trees
(RF) which is the only method that could solve the weather dataset. To show the impact of the
window length, we plot the results for different window length for the weather dataset (see Fig. 2a).
As can be seen for most methods, using more samples increases the statistical power. The results
on the impact of noise for the Electricity dataset are presented in Fig. 2c. Only Moment Trees can
handle the noisy version.

Question 2: “When” To evaluate precision of an estimator d̂ we empirically evaluate the
probability that the estimation at the real split point t0 is larger than the one at the displaced split
point t0 + ∆, i.e. ppa(∆) = P[d̂(S−(t0), S+(t0)) > d̂(S−(t0 + ∆), S+(t0 + ∆))]. We refer to this as
precision accuracy. Notice, that this corresponds to an ADWIN [3] like split point search. The
feature importances provides the same results as before. The results (under the same parameters as
in Table 2) are shown in Table 3. We also illustrate the behavior for the weather dataset in Fig. 2b
for different ∆.

As can be seen the larger the split point displacement (∆), the higher the precision accuracy.
Furthermore, except for two datasets and only with ∆ = 3%, Moment Trees show the best performance.
Furthermore, they tend to approach perfect precision accuracy rather quickly.

6 Conclusion
In this paper we studied the theoretical and empirical properties of several metrics that are used in
drift detection. We also introduced two new metric estimators based on Random Projection Binning
and Moment Trees. We found that in most cases the estimation method is more important than
the used distance measure, when it comes to drift detection. Also, most datasets can be solved by
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Table 3: Precision accuracy: ∆ = 3% (left) and ∆ = 12% (right). Estimators are: Moment Tree
(Random Forest), Random Projection, Marginal Binning, Random Tree, MMD, and LDD.

dataset RF Rnd Pj Marg Rnd Tree MMD LDD

SEA 0.42 0.58 0.42 0.33 0.52 0.52 0.42 0.38 0.50 0.48 0.50 0.53
cover 0.80 0.97 0.69 0.79 0.76 0.90 0.77 0.89 0.80 0.93 0.71 0.83
elec 1.00 1.00 0.94 1.00 0.94 1.00 0.95 1.00 0.80 0.90 0.95 1.00
rbf 0.96 1.00 0.93 0.99 0.81 0.91 0.89 0.97 0.81 0.90 0.94 1.00
RHP 0.73 0.93 0.75 0.90 0.48 0.48 0.76 0.90 0.50 0.47 0.75 0.92
stagger 0.93 1.00 0.84 0.94 0.71 0.82 0.94 0.99 0.82 0.91 0.78 0.94
weather 0.68 0.93 0.52 0.53 0.56 0.60 0.54 0.54 0.62 0.67 0.64 0.74

all methods, when it comes to drift detection. Regarding localizing the drift point, Moment Trees
outperform the other methods.
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A Proofs for Section 4 (Theoretical Analysis)

A.1 A proof of Theorem 1
Theorem 1 is actually a direct consequence of the following lemma:

Lemma 1. Let X and X ′ be Rd-valued, compactly supported random variables. If PX 6= PX′ then
the set of projections that cannot distinguish them, i.e. {w ∈ Sd−1 | Pw>X = Pw>X′}, is a null-set
(with respect to the Haar measure).

Proof. Denote by µα,D =
∫ ∏

i x
αi
i dD(x) the αth moment of D. Let P = PX and Q = PX′ .

Since P and Q are both compactly supported, there exist moments of minimal degree d which
differ for P and Q, i.e. ∃α ∈ Nn0 : d = |α| :=

∑
i αi, µα,P 6= µα,Q. Consider the function

p(w) =
∫

(w>x)ddP (x) −
∫

(w>x)ddQ(x). It is easy to see that p(λw) = λdp(w) for any λ ∈ R, so
in particular the zero sets of p form lines through the origin. Furthermore, by multiplying out and
sorting, we see that p is a polynomial whose coefficients are essentially given by the difference of the
moments of P and Q of total degree d. Assuming that p(w) = 0 for all w would imply that p = 0
and thus all coefficients of p are zero, which is the case if and only if µα,P = µα,Q for all α; this
is a contradiction. Thus, there has to exist a w for which p(w) 6= 0. As the zeros of a (non-zero)
polynomial always form a Lebesgue null-set and thus cannot intersect the sphere in more then a
Haar null-set due to the resulting non-null-set of the corresponding rays, the statement follows.

Proof of Theorem 1. If has no drift, then for any projection w and any split point b it holds P[w>X >
b | T ∈ W−(t)] = P[w>X > b | T ∈ W+(t)]. We may compare the empirical estimates of those
probabilities using a statistical test and then consider the (inverse) p-value minus a constant that
relates to the desired threshold.

So assume pt has drift. By [13, Theorem 2] there exists a t, such that pW−(t) 6= pW+(t); it then
follows from Lemma 1 that the set of all projections for which both measures coincide is a Haar zero
set. As scaling does not change this we may sample our projection vectors from a normal distribution.

Let F and G denote the cdfs of the projected pW−(t) and pW+(t), respectively. As F 6= G there
exists a b such that F (b) 6= G(b); we will prove, that there exists some ε > 0 such that F (b′) 6= G(b′)
for all b′ ∈ [b, b+ ε) which implies the statement. Assume this is not the case, then for every ε > 0
there exists a point ξ with b < ξ < b + ε and F (ξ) = G(ξ). We may use those ξ to construct a
sequence xn such that xn > xn+1 > b, xn → b and F (xn) = G(xn) (start with an arbitrary ε to
find x0 = ξ, then choose xn+1 as the ξ obtained for ε = (xn − b)/2). Since F and G are cadlag, it
holds that F (b) = limn F (xn) = limnG(xn) = G(b), which is a contradiction. However, [b, b+ ε) is
a Lebesgue non-null-set, thus with probability larger than zero we pick a random split b such that
P[w>X > b | T ∈ W−(t)] 6= P[w>X > b | T ∈ W+(t)]. We may now proceed as in the non-drifting
case.

A.2 A proof of Theorem 2 and Corollary 1
Proof of Theorem 2. We first show that there exists an empirical estimator that converges (nearly)
uniformly over T × H to E[`w(h,1[T ∈ W+(t)])] as |S| → ∞. Then we conclude that this implies
the statement.
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Step 1: Convergence Interpret H as a set of functions from X to {−1, 1}. We may rewrite

E[`w(h,1[T ∈W+(t)])] =
1

2
(P[h(X) = 1|T ∈W−(t)] + P[h(X) = −1|T ∈W+(t)])

=
1

2

(
E
[
h(X) + 1

2

∣∣∣∣T ∈W−(t)

]
− E

[
h(X)− 1

2

∣∣∣∣T ∈W+(t)

])
=

1

4
(E [h(X)|T ∈W−(t)]− E [h(X)|T ∈W+(t)]) +

1

2

and then use the canonical estimator

1

|S±(t)|
∑

x∈S±(t)

h(x) ≈ E[h(x)|T ∈W±(t)],

for each of the expectations separately.
Denote by n = |S|, FT the cdf of PT , by F̂T (t|S) = |S−(t)|/n its canonical estimator, and by

T̂ (τ |S) :=
(
F̂T (·|S)

)−1
([τ, 1]) \

(
F̂T (·|S)

)−1
([1− τ, 1])

In particular, {F̂T (t|S) | t ∈ T̂ (τ |S)} ⊂ [τ, 1− τ ] for all τ ∈ (0, 1/2). We will show that there exists a
sequence τn such that the canonical estimator converges uniformly over T̂ (τn|S)×H and τn → 0 as
n→∞.

Fix a 0 < τ < 1/2 and λ > 1. For Aτ,λ = {{FT (t) | t ∈ T̂ (τ |S)} ⊂ [τ/λ, 1− τ/λ]} it holds

P(ACτ,λ) = P

({
inf

t∈T̂ (τ |S)
FT (t) < τ/λ

}
∪

{
sup

t∈T̂ (τ |S)
FT (t) > 1− τ/λ

})
= P({FT (inf T̂ (τ |S)) < τ/λ} ∪ {FT (sup T̂ (τ |S)) > 1− τ/λ})
= P({FT (inf T̂ (τ |S))− τ < τ/λ− τ}
∪ {FT (sup T̂ (τ |S))− (1− τ) > 1− τ/λ− (1− τ)})
≤ P({FT (inf T̂ (τ |S))− F̂T (inf T̂ (τ |S))︸ ︷︷ ︸

≥τ

< τ/λ− τ︸ ︷︷ ︸
=−τ(1−1/λ)

}

∪ {FT (sup T̂ (τ |S))− F̂T (sup T̂ (τ |S))︸ ︷︷ ︸
≤1−τ

> 1− τ/λ− (1− τ)︸ ︷︷ ︸
=τ(1−1/λ)

})

≤ P

[
max

t∈{inf T̂ (τ |S)),sup T̂ (τ |S))}
|FT (t)− F̂T (t|S)| ≥ τ

(
1− 1

λ

)]

≤ P

[
sup

t∈T̂ (τ |S)
|FT (t)− F̂T (t|S)| ≥ τ

(
1− 1

λ

)]

≤ P
[
sup
t∈T
|FT (t)− F̂T (t|S)| ≥ τ

(
1− 1

λ

)]
≤ 2 exp(−2nτ2(1− 1/λ)2),

where the last inequality is the Dvoretzky-Kiefer-Wolfowitz inequality and the second equality follows
from the fact that FT is monotonously increasing.
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Now for all ω ∈ Aτ,λ, for all t ∈ T̂ (τ |S) it holds P[T ∈W±(t)] ≥ τ/λ, |S±(t)|/n ≥ τ . Furthermore,
for all h ∈ H it holds∣∣∣∣∣∣ 1

|S±(t)|
∑

x∈S±(t)

h(x)− E[h(X)|T ∈W±(t)]

∣∣∣∣∣∣
≤

∣∣∣∣∣
(
|S±(t)|
n

)−1
· 1

n

n∑
i=1

h(xi)IW±(t)(ti)− P[T ∈W±(t)]−1 · E[h(X)IW±(t)(T )]

∣∣∣∣∣
≤

∣∣∣∣∣
(
|S±(t)|
n

)−1
− P[T ∈W±(t)]−1

∣∣∣∣∣ · ∣∣E[h(X)IW±(t)(T )]
∣∣︸ ︷︷ ︸

≤1

+

∣∣∣∣∣ 1n
n∑
i=1

h(xi)IW±(t)(ti)− E[h(X)IW±(t)(T )]

∣∣∣∣∣
(
|S±(t)|
n

)−1
︸ ︷︷ ︸

≤1/τ

,

which can be seen using the triangle and Jensen’s inequality. As x 7→ 1/x and x 7→ 1/(1 − x) are
Lipschitz continuous with Lipschitz constant λ2/τ2 on [τ/λ, 1− τ/λ], we may upper bound the first
summand by∣∣∣∣∣

(
|S−(t)|
n

)−1
− P[T ∈W−(t)]−1

∣∣∣∣∣ ≤ λ2/τ2 ·
∣∣∣∣ |S−(t)|

n
− P[T ∈W−(t)]

∣∣∣∣ and∣∣∣∣∣
(
|S+(t)|
n

)−1
− P[T ∈W+(t)]−1

∣∣∣∣∣ ≤ λ2/τ2 ·
∣∣∣∣ |S+(t)|

n
− P[T ∈W+(t)]

∣∣∣∣
= λ2/τ2 ·

∣∣∣∣ |S−(t)|
n

− P[T ∈W−(t)]

∣∣∣∣ ,
using that |S+(t)|/n = 1− |S−(t)|/n and P[T ∈ W+(t)] = 1− P[T ∈ W−(t)]. From the Dvoretzky-
Kiefer-Wolfowitz it follows

P

[
sup

t∈T̂ (τ |S),h∈H

∣∣∣∣∣
(
|S−(t)|
n

)−1
− P[T ∈W−(t)]−1

∣∣∣∣∣
+

∣∣∣∣∣
(
|S+(t)|
n

)−1
− P[T ∈W+(t)]−1

∣∣∣∣∣ ≥ ε,Aτ,λ
]

≤ P
[
2λ2/τ2 sup

t∈T

∣∣∣∣ |S−(t)|
n

− P[T ∈W−(t)]

∣∣∣∣ ≥ ε,Aτ,λ]
= P

[
sup
t∈T

∣∣∣∣ |S−(t)|
n

− P[T ∈W−(t)]

∣∣∣∣ ≥ 2λ2/τ2ε,Aτ,λ

]
≤ P

[
sup
t∈T

∣∣∣∣ |S−(t)|
n

− P[T ∈W−(t)]

∣∣∣∣ ≥ 2λ2/τ2ε

]
≤ 2 exp(−2n(2ετ2/λ2)2)

Now, consider the induced hypothesis class

H−(t) := {(x, s) 7→ h(x)IW−(t′)(s) | t
′ ≤ t}, and

Ĥ−(τ |S) = H−(inf T̂ (τ |S)).
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Notice, that for t < t′ we have H−(t) ⊂ H−(t′) ⊂ H−(1) =: H−. Furthermore, for a set D ⊂ X × T
with projections DX , DT we have |(H−(t))|D| ≤ |H|DX | · (|DT |+ 1) for all t, so in particular for all
Ĥ−(τ |S) independent of S, up to |S|, and τ . In particular, we can upper bound the second summand
using Vapnik’s inequality w.r.t. Ĥ−(τ |S) by

P

[
sup

t∈T̂ (τ |S),h∈H

∣∣∣∣∣ 1n
n∑
i=1

h(xi)IW−(t)(ti)

− E[h(X)IW−(t)(T )]

∣∣∣∣∣P[T ∈W−(t)]−1 ≥ ε,Aτ,λ

]

≤ P

[
sup

t∈T̂ (τ |S),h∈H

∣∣∣∣∣ 1n
n∑
i=1

h(xi)IW−(t)(ti)− E[h(X)IW−(t)(T )]

∣∣∣∣∣ ≥ ετ/λ,Aτ,λ
]

= P

[
sup

h′∈Ĥ−(τ |S)

∣∣∣∣∣ 1n
n∑
i=1

(h′(xi, ti) + 1)− E[(h′(X,T ) + 1)]

∣∣∣∣∣ ≥ ετ/λ,Aτ,λ
]

≤ P

[
sup

h′∈Ĥ−(τ |S)

∣∣∣∣∣ 1n
n∑
i=1

(h′(xi, ti) + 1)− E[(h′(X,T ) + 1)]

∣∣∣∣∣ ≥ ετ/λ
]

≤ 4Γ(2n) exp(−n(ετ/λ)2/72)

Notice, that all those statements also hold for the analogous hypothesis class H+(t) (defined using
W+(t)) with t > t′ and 0 (instead of 1) which corresponds to the approximation of E[h(X)|T ∈W+(t)].

Combining both bounds, we obtain an upper bound for the error

P

[
sup

t∈T̂ (τ |S)
sup
h∈H

∣∣∣∣∣E[`w(h, (X,1[T ∈W+(t)]))]

− 1

n

n∑
i=1

`w(h, (xi,1[ti ∈W+(t)])|S)

∣∣∣∣∣ ≥ ε1 + ε2

]

≤ P

[
sup

t∈T̂ (τ |S)
sup
h∈H

∣∣∣∣∣E[`w(h, (X,1[T ∈W+(t)]))]

− 1

n

n∑
i=1

`w(h, (xi,1[ti ∈W+(t)])|S)

∣∣∣∣∣ ≥ ε1 + ε2, Aτ,λ

]
+ P(ACτ,λ)

≤ 2 · 4Γ(2n) exp(−n(ε1τ/λ)2/72) + 2 exp(−2n(2ε2τ
2/λ2)2)

+ 2 exp(−2nτ2(1− 1/λ)2).

Setting λ =
√
τ , ε1 =

√
144 · τ, ε2 =

√
τ/2 and assuming 0 ≤ τ ≤ (3−

√
5)/2 we obtain

≤ 2 · 4Γ(2n) exp(−2nτ3) + 2 exp(−2nτ3) + 2 exp(−2n τ2(1− 1/
√
τ)2︸ ︷︷ ︸

≥τ3

)

≤ 2 · (4Γ(2n) + 2) · exp(−2nτ3).
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Thus, by setting τn = (3−
√

5)/(2 4
√
n) we have τn → 0, εn =

√
144τn +

√
τn/2→ 0 and

P

[
sup

t∈T̂ (τn|S)
sup
h∈H

∣∣∣∣∣E[`w(h, (X,1[T ∈W+(t)]))]

− 1

n

n∑
i=1

`w(h, (xi,1[ti ∈W+(t)])|S)

∣∣∣∣∣ ≥ εn
]

≤ 2 · (4Γ(2n) + 2) · exp
(
−18n

7
4

)
→ 0

as n → ∞ since log(Γ(2n)) ∈ O(log(n)), due to Sauer’s lemma and the fundamental theorem of
learning theory.

Step 2: Application If there is no drift, then the above estimator will tend to zero. If there
is drift, then there is a t0 with 0 < FT (t0) < 1 such that the distributions before and after differ.
Since τn → 0 there exists an n such that t0 ∈ T̂ (τn|S) with probability at least 1− δ/3 so that the
estimate will converge to a value larger or equal to

sup
h∈H

∣∣∣∣∫ h(x)dpW−(t)(x)−
∫
h(x)dpW+(t)(x)

∣∣∣∣ !
≥ 0

and in particular eventually exceed εn with probability at least 1 − δ/3, assuming H provides
estimators that are better than a random guess so that > holds in !. So we detect the drift with at
least 1− 2/3δ.

On the other hand, if there is only one drift point, then the difference |pW−(t)(A)− pW+(t)(A)| is
maximal at t0 = t for any A. It follows that the estimator is precise.

Proof of Corollary 1. We can consider a decision tree as a composition h = v ◦ l of a map l : X →
{1, ..., n}, assigning every point to the leaf it belongs to, and a map v : {1, ..., n} → {0, 1}, assigning
a value to every leaf. For a fixed tree structure l, we can obtain a hypothesis class Hl by composing l
with every possible value map v. As Hl is always finite and l is constructed independently of S, we
can apply Theorem 2 to show the statement. Thus, it remains to show that Hl contains a model
capable of detecting the drift P-a.s., but since we know that both models are consistent (consider
the proof of [1, Theorem 2] for Random Trees and notice that the proof can easily be adapted for
kdq-Trees) and convergence in probability implies convergence a.s. along a subsequence, which is
equivalent in this case as if l′ is a sub-tree of l then Hl′ ⊂ Hl, this is clear.
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