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Abstract. Major League Baseball (MLB) has a storied history of using
statistics to better understand and discuss the game of baseball, with
an entire discipline of statistics dedicated to the craft, known as saber-
metrics. At their core, all sabermetrics seek to quantify some aspect of
the game, often a specific aspect of a player’s skill set - such as a bat-
ter’s ability to drive in runs (RBI) or a pitcher’s ability to keep batters
from reaching base (WHIP). While useful, such statistics are fundamen-
tally limited by the fact that they are derived from an account of what
happened on the field, not how it happened. As a first step towards alle-
viating this shortcoming, we present a novel, contrastive learning-based
framework for describing player form in the MLB. We use form to refer
to the way in which a player has impacted the course of play in their
recent appearances. Concretely, a player’s form is described by a 72-
dimensional vector. By comparing clusters of players resulting from our
form representations and those resulting from traditional sabermetrics,
we demonstrate that our form representations contain information about
how players impact the course of play, not present in traditional, pub-
licly available statistics. We believe these embeddings could be utilized
to predict both in-game and game-level events, such as the result of an
at-bat or the winner of a game.

Keywords: Machine Learning · Player Valuation

1 Introduction

As the sport of baseball grew in popularity, fans, players, and managers desired
a more pointed way of discussing, and arguing over, the game. The more math-
ematically inclined fans realized that they could use statistics to describe how
players have historically performed, and how those performances have translated
in to advantages for their team - and thus, sabermetrics was born1.

While sabermetrics have undoubtedly changed how players, fans, and front
offices alike interact with the game - introducing new statistics, such as WAR,
OPS+, SIERRA, and BABIP among others, and inspiring new strategies, such
as the defensive infield shift, offensive launch angles, etc. - such statistics are
fundamentally limited in their descriptive power by the fact that they are derived
from an account of what happened on the field, not how it happened.

1 A somewhat simplified history
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To see why a description of what happened is less desirable than a description
of how it happened, consider two at-bats: one between pitcher A & batter B, and
another between pitcher X & batter Y. In the former, pitcher A got ahead in the
count 0-2, but batter B battled back to a full-count, eventually hitting a ball to
deep right-field and reaching first base comfortably. For the latter, pitcher X fell
behind 2-0 in the count, before batter Y hit a dribbler down the third base line
and beat the throw to first. The most simple way of describing the two at bats
would be to say a single was recorded in both cases, which would do nothing to
differentiate between the two at bats. Information could be included about how
many pitches were thrown in each at-bat, but that still doesn’t tell the whole
story. For example, it wouldn’t convey that batter B was able to battle back
from an 0-2 count and reach base or the way in which either pitcher sequenced
their pitches. Furthermore, it would not convey that batter B had power-hit a
fly-ball to deep-right nor that batter Y had the speed to beat out the throw to
first.

Typically, sabermetrics have been used to describe some aspect of a player’s
game over a relatively large time-scale. Intuitively, in a statistical sense, this
makes sense - they are statistics derived from a sample population, and the
larger the sample population, the more accurate the computed sample statistic
will be with respect to describing the population at large. The interpretations
of these sabermetrics often “break down” when working with a small number
of samples. For example, it would not make much sense to use batting average
or WHIP to describe the players participating in the at-bats mentioned above.
Pitcher A and pitcher B will have a WHIP of ∞ while batter X and batter
Y will have a batting average of 1.000. They aren’t incorrect, however - they
accurately describe what happened, but do little to reveal how it happened. For
this reason, we believe it is sub-optimal to derive a description of a player’s
short-term performance using traditional sabermetrics.

In 2015, Statcast systems were added to all 30 MLB stadiums [2]. These
systems record highly detailed information about many aspects of the game in-
cluding player positioning in the field, thrown pitch types, pitch velocity, pitch
rotation, hit distance, batted ball exit velocity, and launch angle, among oth-
ers, for every pitch thrown in every game. Analysis of this Statcast data has al-
ready influenced how the game is understood, drawing more attention to batters’
launch angle, for example. We believe new insights can be found by analyzing
Statcast data as a sequence of records instead of records in isolation.

2 Related Work

For an extended description of the many sabermetrics, we direct the interested
reader toward Understanding sabermetrics by Costa, Huber, and Saccoman. Be-
low, we describe similar work towards obtaining player representations and re-
lated work in machine learning (ML).
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2.1 (batter|pitcher)2vec

The (batter|pitcher)2vec model was proposed in 2018, motivated by recent ad-
vances in natural language processing (NLP) [1]. Player embeddings were learned
by modeling at-bats - Given an ID for the batter and pitcher taking part in an
at-bat, the model was asked to learn embeddings that describe each player and
can be used to predict the result of said at-bat. The model was trained using
MLB at-bats from 2013 through 2016. Once an embedding was learned for each
player, the author demonstrated how they can be used to make predictions as
to the result of an unseen at-bat with more accuracy than previous methods.

2.2 Transformers, BERT, & Image-GPT

The transformer architecture rose in popularity thanks in large part to its use
in the BERT language model [9][5]. The motivating principal behind BERT is
the notion that the meaning of words can be inferred by analyzing the context
in which they naturally appear, and the transformer architecture, along with a
special training regimen, enable BERT to do just that.

To learn the language, BERT browses the internet and performs two tasks
when it comes across a piece of text: 1) Masked Language Modeling (MLM) and
2) Next Sentence Prediction (NSP). MLM is essentially BERT creating fill-in-
the-blank questions for itself. For example, if BERT comes across the text “I
love you,” it may create a fill-in-the-blank question in the form of “I love .”
By analyzing the context surrounding the blank, the model is likely to fill the
blank with “you.” Instead, if the fill-in-the-blank question were “I go to the gym
every day. I love ,” the context may induce the model to fill the blank with
“exercise.” By learning to fill in the blank correctly, BERT is learning to infer
from the context the meaning associated with different words.

The NSP task helps BERT learn the emergent meaning associated with var-
ious sequences of characters. Given two sentences, the model is asked to make
a binary prediction as to whether or not these sentences appeared next to each
other “in the wild.” For example, if the example above was separated and given
to the model as two sentences in “I go to the gym every day” and “I love ex-
ercise,” the model would be expected to respond affirmatively. By repeatedly
performing this test, the model will begin to understand the semantics emerging
from the sequence of words and characters - if you do something every day, you
likely “love” it, and the “gym” is associated with “exercise,” for example.

Upon seeing the success BERT and similar models had working with natural
language, Chen et al. noted that their MLM training objective closely resembled
that of Denoising Autoencoders, which were originally designed to work with
images, and explored the extent to which transformers could be used to learn
image representations using a similar training scheme [3]. Instead of learning to
“fill in the blank” as BERT would, this model, dubbed Image-GPT, would learn
to impute the missing pixels in a corrupted image. In much the same fashion
that BERT understands language as a collection of characters and words and
learns their meaning by analyzing the context in which they appear, Image-GPT
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perceives images as a collection of pixels with varying intensities of red, green,
and blue, and learns the role they play in the emergent semantics of the image
by analyzing the context in which they appear.

BERT and Image-GPT demonstrate that when paired with an appropriate
training objective, transformers can be effective learners of atomic-element rep-
resentations by leveraging the context in which these atomic-elements appear.
Here, we use atomic-element to refer to the lowest unit of information the model
is capable of expressing or understanding - for BERT, groups of English char-
acters are the atomic-elements, while pixel values are the atomic-elements for
Image-GPT. Furthermore, they demonstrate how the same model that learned
these atomic-element representations also learns how to discern an emergent
meaning when these representations are viewed in conjunction with one another.

2.3 Contrastive Learning

Contrastive Learning is a training scheme often used in Computer Vision (CV)
applications where a model’s training objective is to minimize a contrastive loss
objective among a batch of sample records [4]. The motivating theory behind
contrastive learning is that similar inputs should result in similar outputs from
a representation-learning model - in our application, similar sequences of at-bats
should be described with similar form vectors. When learning via self-supervised
contrastive loss, for example, the model is given two different views of a single
image, and encouraged to produce similar outputs [7]. Furthermore, the output
produced by two views of the same image are expected to be dissimilar to outputs
resulting from views of different source images. The different views are often
obtained by a combination of randomly cropping, rotating, resizing, inverting,
or otherwise distorting the source image.

The self-supervised contrastive loss objective is given in equation 1, where
I ≡ {0, 1, ..., 2N − 1} is the set of indices in the batch, j(i) is the positive
sample(s) for record i, · is the inner product, τ ∈ R+ is a scaling temperature
value, and a ∈ A(i) is the set including the positive and negative samples for
record i [6]. Record j is a considered positive sample for record i if it is derived
from the same source image, otherwise it is considered a negative sample.

Lself =
∑
i∈I

Lself
i = −

∑
i∈I

log
exp(zi · zj(i)/τ)∑

a∈A(i) exp(zi · za/τ)
(1)

3 Our Method

The principal motivation behind our work towards describing player form is very
much the same as that of contrastive learning - players who impact the game
in similar ways should be described using similar form vectors.We do not have
ground truth player form labels (vectors), but we do know the same batter at
two very close points in time should be described similarly. In the sections that
follow, we describe how data was collected, our player form model was trained,
and discrete player forms were obtained.
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3.1 Data Collection and Organization

While data was originally collected by the Statcast system, we use the Python
package pybaseball2 to collect data used for our study and populate a local
sqlite3 database. We collected two types of data using this package: 1) pitch-
by-pitch data and 2) season-by-season statistics. Pitch-by-pitch data was col-
lected for the 2015 through 2018 seasons, and contains information such as pitch
type, batted ball exit velocity, and launch angle among others. Season-by-season
statistics were collected for the 1995 season through 2018, and contain position-
agnostic information such as WAR and age in addition to position-specific infor-
mation such as WHIP for pitchers and OPS for batters.

# Games 9,860
# PA 750k
# Pitches 2.9M
# Batters 1,690
# Pitchers 1,333

Table 1. Dataset summary

Each record in our pitch-by-pitch table is ac-
companied by three key values- 1) game pk, 2)
AB number, and 3) pitch number. The game pk is
a unique value associated with each game played
in the MLB. Within each game, each at-bat has a
corresponding AB number, and each pitch thrown
in an at-bat an associated pitch number. By using
these three pieces of information, we can completely
reconstruct the sequence of events which constitute
an MLB game. A summary of our collected dataset
is given in table 3.1.

3.2 Describing In-game Events

Typically, one would use terms like single, home run, or strikeout to describe the
outcome of an at bat. Using this terminology to describe the outcome of at-bats
to our model would be insufficient, however, as it tells an incomplete story. For
example, did other runners advance on the play?

For this reason, we describe the outcome of a pitch in terms of the change
in the gamestate, where the gamestate refers to 1) ball-strike count, 2) base
occupancy, 3) number of outs, and 4) score. These changes in gamestate will
constitute the vocabulary that our model will learn to understand. In total, we
identify 325 possible changes in gamestate and the result of any thrown pitch
can be described by one of these changes in gamestate. We colloquially refer to
these gamestate changes as gamestate deltas. From our pitch-by-pitch table, we
also have information describing the thrown pitch and batted ball which induced
this change in the game state, such as pitch type, pitch rotation, location over
the plate, and batted ball distance and launch angle among others.

In aggregate, the gamestate deltas describe what happened and how, but do
not describe who was involved. We describe the pitcher, batter, and historical
matchup between the two using traditional sabermetrics.

2 https://github.com/jldbc/pybaseball
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Batter Pitcher Matchup
Career 167 141 137
Season 137 137 137
Last 15 137 137 N/A

This Game 137 137 137

Table 2. Supplemental statistics at
different time scales.

We use statistics derived from four dif-
ferent temporal scales when describing the
pitcher, batter, and matchup between the
two. A summary of these supplemental fea-
tures are given in table 3.2

When presenting this information to the
model, the 1,541 supplemental features are
projected to a lower dimension such that
roughly half the data at each input index
describes the gamestate delta and the other
half describes the players involved in the
at-bat, thrown/batted ball, and stadium.

3.3 Player Form Learning

We seek to describe player form - how a player has impacted the game in their
recent appearances - so we must identify a window of activity (consecutive ap-
pearances) we wish to describe for each player. Once this window is identified,
we can then create two views (sets of consecutive appearances) of the player’s
influence on the game in this window of activity. These two views describe the
same player over a relatively small period of time; so they should induce similar
outputs from our player form model. Furthermore, views from the same win-
dow of activity for the same player should be dissimilar to views derived from
windows of activity of other players, and even other windows for the same player.

For batters, we define a window of activity as a sequence of 20 consecutive
at-bats for that batter. Then, for each window of activity, we derive the first
view as the first 15 at-bats in the window, and the second view as the final 15
at-bats in the window. For pitchers, we define a window of activity as a sequence
of 100 consecutive at-bats for which they pitched, and a view as 90 at-bats. That
is, the first 90 at-bats in the window serve as the first view while the final 90
at-bats serve as the second view. Batters have an average 4.2 plate appearances
per game3, and starting pitchers face an average of 23.3 batters per start from
2015-20184, so view sizes were selected such that each view covered roughly four
games per player.

Present in each input sequence will also be a special [CLS] token, which will
be used in a similar fashion as BERT’s [CLS] token. That is, our model will
learn to process the input data such that the processed [CLS] embedding will
sufficiently describe the entirety of the input.

Our model describes players over a short period of time, i.e., 15 at-bats, while
(batter|pitcher)2vec describes players over a much larger time scale, four seasons.
However, we would still be able to describe players over a much larger time-scale

3 https://fivethirtyeight.com/features/relievers-have-broken-baseball-we-have-a-plan-
to-fix-it/

4 https://blogs.fangraphs.com/starting-pitcher-workloads-have-been-significantly-
reduced-in-2020/
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by viewing consecutive sequences of 15 at-bats in the aggregate, making our
model much more versatile - the same model can be used to derive a description
of a player over the course of 15 at bats, or four seasons.

Model Architecture We use a multi-layer, bidirectional transformer encoder,
based on the original implementation used in BERT [9][5]. Our model consists
of 8 transformer layers, 8 attention heads in each layer, and a model dimension
of 512. Our model learns embeddings to describe many aspects of the input
data, including gamestate deltas, stadiums, player positions, pitch types, and
pitch locations over the plate. The remaining information at each input index is
derived from a two-layer projection of the supplemental player inputs, described
in section 3.2, and real-valued attributes of the thrown pitch and batted ball.

Additionally, the model learns embeddings, which help position the inputs
with respect to one another, such as the at-bat number within the window and
the pitch number within said at-bat. Separate models are trained to describe
pitcher and batter forms with no shared weights.

Training We use two tasks to train our model: 1) Masked Gamestate Modeling
(MGM) and 2) Self-supervised Contrastive Learning. The MGM task is akin
to MLM, with roughly 15% of gamestate delta tokens in the input sequence
masked and the model asked to impute the missing values. In addition to learning
the relation between gamestate delta tokens - e.g., three consecutive balls are
often shortly followed by a fourth - the model also learns the relation between
different types of batters and pitchers participating in the at-bat. For example, if
the supplemental inputs describe a shutdown pitcher, poor batter, and pitcher-
friendly stadium, the corresponding gamestate delta is likely to be to the pitcher’s
benefit.

The self-supervised contrastive learning task is used to train our model to
induce representations that are similar for views from the same window and
dissimilar for views of from different windows. Concretely, our model produces
a 72-dimensional representation for each view, which is used in computing the
self-supervised contrastive loss. An example of how the model processes a batch
of inputs is presented in figure 1.

We use an Adam optimizer with β1 = 0.9, β2 = 0.999, and learning rate of
5e−4. When learning to describe batters, our model is trained using a batch size
of 78 for 90,000 iterations, with 7,500 of the iterations being warm-up. A pitchers’
form is described by a larger number of at-bats, so we train our pitcher model
using a batch size of 36 for 35,000 iterations with 2,500 iterations of warm-up.

3.4 Discretizing Player Forms

We compute a form representation for all players in the starting lineup at game-
start for all regular season games from 2015-2018. Then, to identify players who
have impacted the game in a similar capacity at various points in time, we
perform agglomerative clustering with Ward linkage on the form representations
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Fig. 1. Example of how our model processes a batch of data while learning to describe
batters. Each record in the batch consists of 15 at-bats and a special [CLS] token,
and each at-bat consists of one or more pitches. For each pitch, the model is given
statistics describing the pitcher and batter involved, metrics describing thrown pitch
type and batted ball (when applicable), and embeddings describing the stadium and
the resulting gamestate delta. The model is asked to predict the masked gamestate delta
tokens using the context in which the masked token appears. Once processed by the
model, the embedding for the [CLS] assumed to describe the 15 corresponding at-bats.
These embeddings are projected to a 72-dimension space before being used to compute
the self-supervised contrastive loss.

to obtain discrete form ID’s [8]. For a point of comparison, we follow a similar
clustering process using traditional sabermetrics to describe players. That is,
the players’ corresponding supplemental inputs, mentioned in 3.2, without the
in-game split. We perform Principal Component Analysis on the statistics used
to describe each type of player prior to clustering.

4 Results

While a more thorough analysis is required to better understand the repre-
sentations produced by our model, comparing clusters of players derived from
traditional sabermetrics and from form representations can give an intuition as
to the information contained in the representations.

Figure 2 presents a comparison of cluster membership over time for four
batters: Bryce Harper, Mike Trout, Giancarlo Stanton, and Neil Walker. Harper
and Trout are somewhat similar, high impact outfielders, while Stanton can tend
to be more of a streaky power hitter, and Walker is perhaps more of a utility
infielder. In analyzing the plot describing stat-clusters in figure 2, we see minimal
overlap between Harper and Trout. This is an undesirable representation of form,
as in our estimation, Harper and Trout tend to impact the game in a similar way.
Conversely, we seem to notice a strong association between Harper and Trout in
the plot describing their form-clusters in figure 2.

Figure 3 presents a comparison of cluster membership over time for four
starting pitchers: Gerrit Cole, Alex Wood, Trevor Bauer, and Justin Verlander.
Cole had rather poor performances throughout 2016 and some of 2017 before
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Fig. 2. Discrete batter forms at game-start for games in the 2015 through 2018.

Fig. 3. Discrete pitcher forms at game-start for games in the 2015 through 2018.

snapping back in to All-Star form with Houston in 2018 and 2019. In looking at
Cole’s stat-clusters in figure 3, we see that he is consistently mapped to cluster
8 from 2016 onward. This would seem to be an undesirable to describe how he
impacted the game, then, as he clearly impacted the game in very different ways
in 2016 & 2017 versus 2018. While at the moment we cannot say for certain
what signal is contained in our form representations we see they describe 2016
Cole differently than 2018 Cole.

5 Conclusion & Future Work

We believe this work serves as a strong starting point in a line of work towards a
new way of describing how MLB players - and athletes in other sports - impact
the course of play, in a manner not contained in existing, publicly available
statistics. Moving forward, we would like to gain a stronger understanding of the
contents of the produced form representations and how they can be leveraged
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towards specific ends, such as predicting the result of an at-bat, the winner of an
MLB game, or the occurrence of an injury. Furthermore, it would be interesting
to take a closer look at the embeddings learned by our model. It would be
interesting to explore the relation between different stadiums, for example, from
the perspective of both the batter and pitcher.
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