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Abstract. Development is fundamental for living beings. As robots are
often designed to mimic biological organisms, development is believed to
be crucial for achieving successful results in robotic agents, as well. What
is not clear, though, is the most appropriate scheduling for development.
While in real life systems development happens mostly during the ini-
tial growth phase of organisms, it has not yet been investigated whether
such assumption holds also for artificial creatures. In this paper, we em-
ploy a evolutionary approach to optimize the development—according
to different representations—of Voxel-based Soft Robots (VSRs), a kind
of modular robots. In our study, development consists in the addition of
new voxels to the VSR, at fixed time instants, depending on the devel-
opment schedule. We experiment with different schedules and show that,
similarly to living organisms, artificial agents benefit from development
occurring at early stages of life more than from development lasting for
their entire life.
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1 Introduction and related works

Phenotypic development is pervasive in nature and it can happen in different
dimensions, e.g., lifetime body adaptations to cope with environmental seasonal
changes [I], brain plasticity through learning [2], body training [3], behavioral
environmental regulation [4], etc. Additionally to these forms of development,
there is a very fundamental one: growth. Notably, growth starts during mor-
phogenesis and may continue for a long period during the lifetime of a creature,
according to its species. In humans, the fluctuations of phenotypic growth depend
on genetic and environmental factors during prepubertal and pubertal develop-
ment [5]. Because of the complexity of these factors, the difficulty of establishing
growth standards has been discussed [6]. Moreover, different body traits develop
at distinct ages. For instance, while the significant height growth happens until
adolescence [7], male muscle mass peaks around their 20 to 30 years old [g].
Curiously, while body growth in animals is rapid in early life, it then progres-
sively slows, and the reasons for this are not yet quite understood [7], though
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its association to possible advantages of delaying fertility maturation has been
discussed [9]. Furthermore, animal brain development is lifelong, happening pre-
natally, during infancy and adolescence, and even in adulthood [10]. In fact,
because of its complexity, the human frontal cortex is not fully developed until
the mid twenties [4]. Note that this developmental maturation does not necessar-
ily mean growth in the brain, but a better organization of the neural structures,
requiring some form of pruning [4]. Interestingly, synaptic pruning—i.e., remov-
ing some of the connections in the neural network constituting the brain—has
been shown to be potentially beneficial also for evolved artificial agents [TTI12].

While the dynamics of growth, including the interplay between body and
brain development, is unclear, we could hardly doubt that this complex dynamics
is fundamental for the behavioral complexity observed in diverse species. There-
fore, the field of Evolutionary Robotics has great motivation to study growth
development. Nevertheless, not only is the field focused mostly on evolving the
controller without evolving the body [13], but also has development received
relatively little attention.

Some developmental representations have become popular [T4UT5], but they
have been mostly used for morphogenesis only. One instance of a development
study has demonstrated the benefits of environmental regulation for lifetime phe-
notypic plasticity so that bodies and brains of robots could adapt in response
to environmental changes [I6J17]. Another approach experimented with recon-
figurable robots that relied on manually designed bodies [I§]. Furthermore, a
field of research called morphogenetic engineering has been introduced to pro-
mote models of complex self-architecture systems [I9]. Some other examples of
development studies are the use of pre-programmed lifetime changes that could
be compared to growth: investigating the impact of development on evolvabil-
ity [20021], and exploring the effects of using stages of morphological development
as a way of scaffolding behavior [22].

Although the aforementioned works represent an important step for the in-
vestigations of development within artificial life, there is still a lot to be explored.
There is a pressure for an increase in this type of investigation, with the purpose
of expanding our perspective about how development can be carried out, and in
which conditions determined effects shall be observed.

Aiming at furnishing the literature with new insights, in this paper we ad-
dress a specific question related to growth development: does the development
schedule impact on the effectiveness of evolved agents? Namely, is a continuous,
lifelong development better or worse than a development that occurs mostly at
the beginning of the life of the agent? To this extent, we design various de-
velopment representations for 2-D simulated modular Voxel-based Soft Robots
(VSRs) [23] which can be optimized via suitable evolutionary algorithms (EAs):
we hence combine development with evolution, allowing robots to undergo alter-
ations on different timescales. Due to their expressive power, VSRs are ideal for
experimenting with morphological development and they have already been used
in [2T24]: differently from the present paper, the two cited works do not study
the development schedule, but the overall impact of development on evolution,



Morphological Development Schedule for Evolved Soft Robots 3

in [21], and the possibility of exploiting environmental feedback for determining
the development, in [24].

Even though our work focuses on morphological development, involving only
the body of the agent, the robot controller is tightly coupled with its morphology:
therefore, we also design evolvable brains which can effectively control different
bodies. To assess the effects of development, we evaluate the performance of
robots in a locomotion task. For providing more context, our study encompasses
also agents which do not undergo development, considered as a baseline. Our
results show that, for all representations, the most appropriate scheduling of
development for artificial agents resembles that of living organisms. Namely, we
find that early development yields to better performing robots than those which
experience continuous growth. Moreover, the comparison with non-developing
robots confirms the potentially beneficial effects of development for artificial
agents.

2 Background: Voxel-based Soft Robots

We experiment with Voxel-based Soft Robots (VSRs), a kind of modular soft
robots. Each VSR module consists of a deformable cube (vozel), which can vary
in volume in order to achieve movement. The final volume of each voxel is deter-
mined by two factors: (a) external forces acting on the voxel, which is deformable
by construction, and (b) a control signal, regulating active expansion/contraction
of the voxel. In this study, we consider a 2-D variant of said robots that are sim-
ulated in discrete time [25]. Working in 2-D reduces the computational cost of
the simulation, while yielding results that are conceptually portable to the 3-D
case.

A VSR is defined by its morphology and its controller, describing respectively
the arrangement of voxels in a 2-D grid and the law which determines each voxel
control signal.

2.1 VSR morphology

The morphology of a VSR describes the voxel arrangement in a 2-D grid. Each
voxel is a soft deformable square, modeled with (a) four masses at the corners, to
prevent excessive deformations and rigidly connect neighbors, (b) spring-damper
systems, to ensure softness and elasticity, and (c) ropes, to avoid uncontrolled
expansion. We refer the reader to [20] for further details on the voxel mechanical
model utilized.

VSRs accomplish movement similarly to biological muscles, thanks to the
contraction and expansion of individual voxels. The behavior of each voxel is
determined by a control signal and by the interaction with other bodies, exerting
their forces on it, e.g., the ground or other voxels. At each simulation time
step k, the controller feeds every i-th voxel with a control signal az(k) € [-1,1],
—1 corresponding to maximum requested expansion, and 1 corresponding to
maximum requested contraction. In the simulator employed [25], contraction
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and expansions are modeled as linear variations of the rest-length of the spring-
damper system, proportional to the control signal received.

Voxels are equipped with sensors. We use three types of sensors, whose read-
ings can be exploited by the VSR controller: (a) area sensors, perceiving the
ratio between the current area of the voxel and its rest area, (b) touch sensors,
sensing if the voxel is in contact with the ground or not, and (c) velocity sensors,
which perceive the velocity of the center of mass of the voxel along the x- and
y-axes (thus corresponding to the union of a v, and a v, sensor). We normalize
sensor readings in such a way that, at each simulation time step, the readings

s{¥) of the i-th voxel are defined in [—1,1]*.

2.2 VSR controller

At each simulation time step k, the VSR controller is fed with the sensor readings
sk = [sgk) sgk) ...] and outputs the control signals a(®) = (agk),agk), ...) for
all voxels.

In this study, we consider two different kinds of controllers: the phase con-
troller [23I27I21] and the neural controller [28)29]. For both controllers, in this
work, even though we compute the control signal at each simulation time step,
we actually apply it to the voxel every tgp = 0.5s and keep it constant in be-
tween variations. In other words, we employ a step like control signal derived
by the original control signal. We do this because we aim at preventing vibrat-
ing behaviors, which have been found to be a strong attractor in evolution of
VSRs [30].

Phase controller. In the phase controller, each control signal is computed from
the current time, according to a sinusoidal function. Namely, the control signal of
the i-th voxel at simulation time step k is computed as agk) = sin (2f kAt + ¢;),
where f is the sine wave frequency, At is the simulation time interval, and ¢;
is the voxel phase. In most works where they have been used, these controllers
have been optimized only in the phases ¢;, whereas f is set a priori to the same
value for each voxel: for this reason, these are called phase controllers.

Note that this is an open-loop type of controller, which does not exploit
sensor readings s(*).

Neural controller. VSR neural controllers are based on Artificial Neural Net-
works (ANNSs), which are employed to process sensor readings and produce voxel
control signals. Neural controllers have been demonstrated beneficial for the
achievement of good performance in VSRs [28/3T], due to their sensing abilities.

We use the distributed neural controller presented in [29], consisting of a num-
ber of fully-connected feed-forward ANNs, i.e., multi-layer perceptrons (MLPs),
one per voxel. At every simulation time step k, each MLP processes the local
sensor readings sgk) together with the information coming from the neighboring

voxels, in order to produce the local control signal agk) and the information to be
passed to neighboring voxels. The information passed between neighboring vox-
els consists of a vector of ngignal values, or a zero-vector of the same size for voxels
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at the boundaries. Such vector is processed with one time step of delay, i.e., ev-
ery MLP processes the vectors produced by neighboring MLPs at the previous

simulation time step. The control signal of the i-th voxel is hence determined as
o mi8) m8) m) m0,] = MLy ([o) mE=) mS1) 0 1)),

(

where mzka, € [—1,1]ienal ig the information output by the i-th voxel for its

neighbor at north (the same for the other three neighbors), mgi_sl ) e [—1, 1]"sianal

is the information output by the neighbor at north for the i-th voxel (that is its
neighbor at south) at previous time step k — 1, and 8 € R? is the vector of the
parameters (or weights) of the MLP.

In this study, we utilize an identical MLP in each voxel, both in terms of
architecture and weights 0. This design choice arises from the fact that this con-
troller can be employed for a variable amount of voxels without any changes, so
it is particularly suitable for a developing body. Moreover, [30] showed experi-
mentally that using the same MLP in each voxel is not worse than using MLPs
with different weights.

3 Development of VSRs

We consider morphological development, i.e., a mechanism according to which,
at given time instants during the life of the VSR, new voxels are added to the
VSR body.

For the purpose of this study, we say that the development of a VSR is
completely described by a schedule and a development function. We define the
schedule as a sequence S = (t]-)j of time instants when the addition of a new
voxel occurs. We define the development function as a function d that, given
a number of voxels n, outputs a VSR d(n) consisting of at most n voxels. We
impose the requirements for the function d that, for all n, (a) the morphology
of the VSR d(n) differs from the morphology of the VSR d(n + 1) for at most
one voxel and (b) d(n) has no more voxels than d(n + 1).

Given a starting size ng, a schedule S, and a development function d, we can
perform a simulation of a VSR d(ng) that starts with a morphology of (at most)
no voxels at t = 0 and, at each ¢; € S, develops to a VSR d(ng + j) that is not
smaller than the previous one.

The main goal of this study is to gain insights into the impact of the schedule
on the effectiveness of evolved developing VSRs. To achieve this goal, we set the
schedule to a few predefined sequences, let the evolution optimize the developing
function, and compare the outcomes.

3.1 Representations for the development function
For broadening the generality of our experimental findings, we consider four

different ways of representing the developing function in a way that allows its
optimization by the means of evolution.
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For the ease of presentation, we describe the development function d in terms
of a function dmorpn, that determines the morphology of the VSR, and a func-
tion dcontroller, that determines the controller of the VSR. Moreover, we directly
describe how the outputs of dmorpn (1, g) and deontrolier(7, g) are computed, given
a genotype g and a number n.

Vector-based morphology representation. Given a real vector v € R"gide,
we obtain a morphology of n voxels as follows.

We denote by M = dmorphology (12, ) the Boolean matrix describing the ob-
tained morphology, where the voxel at position 4, j is present if and only if the
corresponding element m; ; is set. First, we reshape the vector v to a matrix
V of n%,, real values. Second, we determine the greatest element of V' and set
the corresponding element of M. Then, we repeat the following two steps until
min(n,n2,,) elements of M have been set: (1) we consider the subset of M
unset elements that are adjacent to set elements and (2) we set the element of
the subset with the largest corresponding value in V.

Note that, with this representation, it is guaranteed that the morphology will
have exactly n voxels, provided that ngiqe, a parameter of the representation, is
large enough.

Figure 1| provides a schematic representation of an example of application of
this function with nggqe = 5 and n = 4.

0.0 (-0.1|-0.4| 0.4 |-0.5 F F F F F
0.9]10.7]|0.8/0.2(0.5 F F T F F
-0.4(/0.0 [1.83]-0.4| 0.5 F F T F F ]
0.2 1-0.4| 0.9 0.9 [-0.7 F F T T B
i s 7 -0.5/0.9 [-0.8|-0.7|-0.8 F F F F F ‘
(a) Real vec. v. (b) Real matrix V. (c) Bool. mat. M.  (d) VSR.

Fig. 1: Schematic view of the grid-based morphology representation dmorpn (1, V),
with ngge = 5, n = 4, and an example v € R?°. Dark orange is used to highlight
the first element chosen (the one with highest value), whereas lighter orange is
used to indicate the other chosen elements. The gray area indicates the candidate
voxels for a possible future development (i.e., n = 5 with this same v).

Tree-based morphology representation. Given an ordered tree 7' in which
each node is a number in R and has either 0 or 4 child nodes, we obtain a
morphology of up to n voxels as follows.

Each node of the tree corresponds to an element of the matrix M describing
the morphology and the four children of a node correspond to the four neighbor-
ing elements at north, south, east, and west. Given a node corresponding to the
m;,; element, the first child corresponds to m; j_1, the second to m; j41, etc.
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First, we transform T into a tree T’ by mapping each node of T to a
node in 7" being a pair (v,u), where v € R is the node real value and u €
{SET, UNSET, USED }—initially, u = UNSET for every node in 7”. Second, we set
the root u to SET. Then, we repeat the following three steps until n nodes in 7"
have u = SET or there are no more 7" nodes with « = UNSET: (1) we consider
the subset of nodes with u = UNSET and whose parent node has u = SET, (2) we
choose the node in the subset with the largest v, and (3) set uw = SET for the
chosen node and u = USED for all the other nodes representing the same posi-
tion and with u = UNSET. Finally, we obtain the morphology M by setting the
element mg o—for convenience, we assume that the indexes of the elements of
M can assume values in Z—and setting every other element i, j for which there
is a SET node in T” whose relative position to the root is i, j.

Note that, with this representation, a morphology with less than n voxels
could be obtained for a given tree T'. In the extreme case, if T' consists of the
root node only, then the morphology will have just one voxel. On the other hand,
the representation is parameter-free and does not impose an upper bound on the
number of voxels in the VSR. Note also that, for each position of the matrix M
there are up to four nodes in the tree 7', but at most one is used depending
on ancestors of the node: i.e., this representation is redundant [32] and exhibits
epistasis [33].

Figure [2| provides a schematic representation of an example of application of
this function with n = 4.

[ 0.2 ] [ 0s ] -0.2]

N S E w N S E w

(a) Tree T". (b) Bool. matr. M.  (c) VSR.

[09 J[o7 | -02 H 0.1 H 0.4 H 0.1 H 0.5 “ 05 |

Fig. 2: Schematic view of the tree-based morphology representation dmorpn (7, T'),
with n = 4. Colors in 7" nodes represent the value of «, while numbers are the
ones of T' (not shown here for brevity). Dark orange is used to highlight the root
of the tree, whereas lighter orange is for u = SET, white for © = UNSET, and gray
for v = USED. The same colors are used in the Boolean matrix M and in the
obtained VSR morphology. Black cells in M correspond to nodes that are not
present in the tree, hence such cells could never be used with this T, regardless
of n.

Vector-based phase controller representation. Given a real vector v €
R”gide, we obtain a phase controller for a VSR whose morphology M can be
contained in a Mgige X Ngiqe grid of voxels as follows.

First, we reshape the vector v to a matrix V of ngqge X Ngiqe real values.
Second we build a phase controller in which the phase ¢ of the voxel at position
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1,7, if any, is given by the corresponding element in V. If there is no voxel at
1, ], the corresponding element in V' does not contribute to the controller.

Vector-based neural controller representation. Given a real vector v € R?

and a description of the topology of an MLP consisting on the numbers Iy, ..., 1,
of neurons for each layer (with p = S.=7"1;11(l; + 1)), we obtain a neural

controller by simply setting the parameters vector 8 of the MLP to v.

Note that, since the MLP is the same for all voxels, this controller is applica-
ble to any VSR, regardless of its morphology, provided that (a) l; is compatible
with the dimension Ngensor = \sl(»k)| of sensor readings in the voxels and with the
value of Ngignal and (b) I, is compatible with the value of nggnai. More precisely,
given Ngensor and Nsignal, l1 = Nsensor + 4nsigna1 and I, =1+ 4nsignal must hold.
Since Ngensor is determined by the morphology (nsensor = 4 in this work, see Sec-
tion 7 it follows that the free parameters for this representations are ngignal,
m, and the values of I; for 2 < j <m.

Tree-based phase controller representation. This controller representation
is tightly coupled with the tree-based morphology representation: in fact, we only
use it in combination with that representation. Given an ordered tree T' in which
each node is a pair of numbers v, ¢ € R? and has either 0 or 4 child nodes, we
obtain a phase controller for the VSR mapped from the v-part of T according to
the tree-based morphology representation, as follows. Let M be the morphology
obtained as described above, we associate with each voxel in the morphology the
¢ value of the corresponding element in 7.

The rationale for this representation, is to tightly couple v values, determining
the morphology, and ¢ values, determining the controller, by embedding them
in the same tree. Together with appropriate genetic operators, this link should
prevent destructive effects resulting from the misalignment between the part of
the genotype describing the morphology and the one describing the brain [34].

Full development function representations. Summarizing, we consider the
four representations resulting from the following combinations of a dmorpn and
a deontroller Tepresentation:

— Grid-phase, in which the genotype is a vector v € R2"%ide; we obtain the
robot by mapping the leading half of v with the vector-based morphology
representation and the trailing half with the vector-based phase controller
representation.

— Grid-neural, in which the genotype is a vector v € R"5ae P we obtain the
robot by mapping the leading nZ,. elements of v with the vector-based
morphology representation and the trailing p elements with the vector-based
neural controller representation.

— Tree-phase, in which the genotype is a tree T with nodes in R? with either 0
or 4 children: we obtain the robot by mapping the tree of the first elements
of T nodes with the tree-based morphology representation and T with the
tree-based phase controller representation.
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— Tree-neural, in which the genotype is a pair T, v composed of a tree T with
nodes in R with either 0 or 4 children and a vector v € RP: we obtain the
robot by mapping 7" with the tree-based morphology representation and v
with the vector-based neural controller representation.

3.2 Evolution of the development function

To evolve a development function, we employ a single, standard EA that we
adapt, in the initialization and genetic operators, to the four different represen-
tations presented above.

In our EA, we iteratively evolve a population of nyqp solutions for ngen gen-
erations. At each generation, we build the offspring by repeating nyop times the
following steps: (1) we randomly select the crossover (with probability peross)
or the mutation (with probability 1 — peross) genetic operator; (2) we select one
or two parents (depending on the chosen operator) with a tournament selection
of size niour; (3) we apply the operator to the parents obtaining a new individ-
ual. Then, we merge the parents and the offspring, we keep only the npo, best
individuals, and proceed to the next generation.

For initializing the population, we sample U(—1,1) for each element of the
vector-based representations, and we use the ramped half-and-half initialization
(with depth in [dmin, dmax]) for the tree-based representation. For the latter, we
sample U(—1, 1) for the values of the nodes.

Concerning the genetic operators, we do as follows. In the vector-based
representations (grid-phase and grid-neural), we use the extended geometric
crossover, where the child v € R” is determined from the parents vy,v, € R"”
as v = v1 + a(vz — v1) + B, where a € R” is sampled as a; ~ U(—0.5,1.5),
and B € R" is sampled as §8; ~ N (0, 0cross)- As mutation, we use the Gaussian
mutation, where v = v; + 3, with betas sampled from N (0, oyut)-

In the tree-based representations, we use the standard subtree crossover,
which consists in replacing a random subtree of one parent with a randomly
chosen subtree of the other parent: both subtrees are picked to ensure the child
tree has a maximum depth of d.. As mutation, we use the standard subtree
mutation, in which one random subtree is replaced with a newly generated tree,
ensuring a maximum depth of dy.x for the child. Only with the tree-phase
representation, with 50 % probability, we apply a noise sampled from N (0, oput)
to each ¢ element of the tree instead of applying the standard subtree mutation.

In the combined representation (tree-neural), we do crossover by applying
standard subtree crossover and extended geometric crossover to the two parts
of the genotype. Similarly, we do mutation by applying Gaussian mutation and
standard subtree mutation.

4 Experimental evaluation

We performed several experiments to answer to the following research questions:
What is the most appropriate development schedule for artificial agents? Does
it depend on the representation of the development function?
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For answering to said questions, we evolved development functions to develop
VSRs suited for the task of locomotion, in which the goal for the robot is to
travel as far as possible on a terrain in a given amount of time. We employed two
different development schedules, together with no development, to be considered
as a baseline. A detailed description of the experimental procedure and results
follows.

Concerning the representation, we used the following parameters: ngqe = 10,
f=1Hz, ngigna1 =2, m =4, and ly = l3 =13 = 4+4-2 =12 (i.e., we used MLPs
with two inner layers with the same size of the input layer). Regarding the EA,
we used the following parameters: npop = 96 and ngen = 209 (corresponding to
20000 total fitness evaluations), peross = 0.75, Ntour = 10, Ocross = 0.1, Omut =
0.35, dmin = 3, and dmin = 6. We verified that, for the chosen value of np., and
Ngen, €volution was in general capable of converging to a solution, i.e., longer
evolutions would have resulted in negligible fitness improvements.

To evaluate the effectiveness of an individual, i.e., a development function,
given a schedule S, we proceeded as follows. At the beginning of the simulation,
we (1) used the development function to obtain an initial VSR d(ng) from ng
and (2) we placed it right above the terrain at the starting position. Then, at
each t; € S during the simulation, we (1) removed the VSR d(n;_1) from the
simulation, taking note of the z-coordinate zjos of its leftmost voxel, (2) used the
development function to develop the VSR to d(n;) and (3) placed the developed
VSR in the simulation right above the terrain in a position such that its leftmost
part was at xjer. We stopped the simulation after 210s (simulated time), took
note of the run distance Az, as the difference between the initial and final z-
coordinate of the center of mass of the VSR, and used Az as fitness.

We removed and added (i.e., re-spawn) the VSR just before and right after
each development because the new voxel might have been added in positions
that conflict with the current posture of the robot (e.g., under a foot, “inside”
the terrain). As a consequence, each development step led to a re-spawning of
the VSR, where its gait was interrupted.

We characterized the performance of the representations in conjunction with
two development schedules, both encompassing 14 stages: early development
Searly = (10,20, 30, ...,120,130), resembling biological development, and uni-
form development Syniform = (15,30,45...,180,195), accounting for continuous
growth (numbers are in s). In addition, to have a baseline for comparisons, we
also employed a non-developmental schedule S,,o-devo = 0: in this case VSRs were
initialized according to the initial development, and no voxels were ever added
to them. To ensure fairness in terms of re-spawning (as such events could slow
down the VSR), we interrupted the gait to lift the VSR in the air according to
Suniform, €ven though no development was occurring.

Concerning the initial size ng of the VSRs, we aimed at being as fair as
possible, since larger robots could, in principle, benefit from having more power.
Hence, we chose ng.carly = 6, M0, uniform = 8, and 7ng no-devo = 14 in order to
have approximately the same weighted average VSR size during the simulation
(Tearly =~ 14.7, fiyniform = 14.5, and fino-devo = 14). In other words, the chosen
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values of ng resulted in all VSRs having approximately the same integral of size
over the simulations.

For each of the 4 - 3 combinations of representation and schedule, we per-
formed 10 independent, i.e., based on different random seeds, evolutionary op-
timizations, obtaining a total of 120 runs. When comparing results of pairs of
combinations, we performed the Mann-Whitney U test, after having verified the
proper requirements, with the null hypothesis of equality of the means—we re-
port the p-values. Note that, since we performed multiple pairwise comparisons
simultaneously, we applied the required Bonferroni corrections for evaluating the
significance of results.

We used 2D-VSR-Sim [25] for the simulation setting all parameters to de-
fault values; in particular, we set the simulation time interval At = %s. We
made the code for the experiments publicly available at https://github.com/
giorgia-nadizar/VSREvoDevol

4.1 Results and discussion

The experimental results are reported in Figures[3|to[5] The most high level find-
ing of our experiments is displayed in Figure [3] which depicts the distributions
of the fitness Ax of the best individuals at the end of evolution for each repre-
sentation and schedule. From such plots, we are able to compare the outcomes
deriving from Searly and Suniform: given the distributions and the p-values, we
can conclude that, in general, early development is not worse than uniform de-
velopment, and that for phase controllers it is significantly better. We can hence
infer that development in artificial life is somehow similar to development in
real life, and, even though creatures that continuously grow end up being larger,
such trait does not really benefit their overall performance. We hypothesize that
early development is more effective as the optimization of the controller of the
agent is favored by the fact that the brain is able to interact with a fixed body
for a longer amount of time (the last development stage, which is longer than
the other ones). Therefore, we speculate that evolution finds a way to optimize
the controller for the last body, since being optimal during this longer stage
could result in more distance gain, hence in higher fitness. On the other hand,
continuous growth seems to hinder brain development, as evolution cannot find
an optimal controller to almost equally fit all the bodies the controller interacts
with.

Comparison against no development. Reasoning further on Figure [3] it is
interesting to also compare the results achieved by non-developing VSRs. From
the previous assumptions, we would expect such outcomes to be significantly
better than both early and uniformly developed VSRs, as in this case the brain
is optimized for just one body. However, the results shown in the plots are less
clear, as there is no evident winner among the non-developed, early-developed,
and uniformly-developed VSRs. We explain these mixed findings by reasoning
on two factors: the re-spawning and the lack of development. Concerning the
re-spawning, it likely slowed VSRs down, even though they were not really de-
veloping, preventing them from exhibiting a fluid and effective gait. In addition,
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we speculate that the lack of actual development could have been detrimental
for the overall performance achieved, consistently with [21].

Grid-phase Grid-neural Tree-phase Tree-neural
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Fig. 3: Box plots of the fitness Ax of the best development functions at the end of
evolution for different representations (plot columns) and development schedules
(color). p-values are shown above pairs of boxes. We consider o = 0.05/3 ~ 0.017
for statistical significance, due to the Bonferroni correction.

Analysis of VSR velocity. To gain further insight on the obtained results,
we also measured the velocity of VSRs along development: we define v, ; as the
average velocity achieved by a VSR in its i-th stage of development. Figure []
depicts the distribution of the velocity of VSRs during the last development
stage for each representation and schedule. These outcomes are aligned with
the previous findings: early development yields to not slower VSRs compared to
uniform development, whereas non developed VSRs tend to exhibit fuzzier rela-
tionships with the others. However, more interesting conclusions can be drawn if
we interpret Figuretaking into consideration that VSRs in the last (i.e., 14-th)
stage have different sizes according to the chosen schedule, namely 114 early = 19,
N14,uniform = 21, and N4 no-devo = 14. In fact, we can observe that, surprisingly,
larger VSRs do not correspond to higher velocity. To explain this, we resort
to the same motivation provided before. Namely, early development generates
VSRs that are mostly optimized for the last stage of their lives, not only because
the last robots are bigger in size, but also because the body-brain interaction is
longer.

To conclude the velocity analysis, we provide in Figure a display of the v, ;
throughout the simulation. From these plots, the previously laid hypothesis as
to why early development is more successful seems to be confirmed. In addition,
we can note that both early and uniform development follow a general growing
trend for the velocity, suggesting that also size plays a significant role in the
achievement of good performance at locomotion.

Comparison among representations. Last, it is interesting to reason on
the different outcomes produced by the representations we experimented with,
both in terms of fitness Az (Figure |3) and velocity vy 14 in the last develop-
ment stage (Figure . We summarize the outcomes of the statistical signifi-
cance tests between pair of representations in Table [I] where we use colored
dots (the color encoding the development schedule) to annotate distributions
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Fig. 4: Box plots of the last stage velocity v, 14 of the best development functions
at the end of evolution for different representations (plot columns) and devel-
opment schedules (color). p-values are shown above pairs of boxes. We consider
a =0.05/3 = 0.017 for statistical significance, due to the Bonferroni correction.
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Fig. 5: Average velocity v, ; (median with lower and upper quartiles across the
10 repetitions) of the developing VSRs at different stages during the simulation,
for different representations (plot columns) and development schedules (color).

which are significantly different (p-value < o = 0.05/6 ~ 0.008). From the ta-
ble we can immediately notice that the results obtained without development
almost never significantly depend on the employed representation, whereas the
outcomes coming from early or uniform development show more interesting va-
riety among representations. Taking into account Figures |3| and |4] and Tables
and we can conclude that the grid-phase representation is in general not
worse than the others, and is significantly better for a subset of schedules and
representations. We speculate that this could depend on two factors: the direct
representation and the superiority of a phase controller to a neural controller for
developing VSRs. Namely, we hypothesize that it is easier for evolution to find
suitable phases values for a growing body, than optimizing a single MLP to fit
all voxels of a wide gamut of bodies.

To conclude the discussion on the experiments we show in Figure [0 an ex-
ample of a developing VSR obtained at the end of one evolution with the grid-
phase representation and the uniform schedule: in the figure, each frame shows
the VSR during a developing stage. The corresponding video is available at
https://youtu.be/DD4D20EH1sA.
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Table 1: Statistical significance results for different metrics and representations.
Each cell is annotated with a dot if the p-value on the two representations with
the same schedule is < a = 0.05/6 ~ 0.008 (due to the Bonferroni correction).

Fig.6: View of a developing VSR (uniform schedule with the grid-phase repre-
sentation). Each image is taken a2 0.5s after a voxel has been added to the VSR
body, to leave time to the robot to fall and exhibit its posture on the ground.
Voxels color encodes the ratio between its current area and its rest area (red for
contraction, yellow for rest, green for expansion).

5 Concluding remarks

In this work, we investigated the effects of different schedules for morphological
development of Voxel-Based Soft Robots (VSRs), a kind of modular soft robots.
To this extent, we evolved development functions, i.e., functions which can build
and extend VSRs bodies and controllers, to generate and develop VSRs capable
of successfully performing the task of locomotion. Aiming at achieving general
results, our study encompassed four representations for development functions,
based on different combinations of body-brain encodings, and we also included
non-developing VSRs, as a baseline. Our experimental findings show that, simi-
larly to living organisms, VSRs benefit from early development, whereas contin-
uous growth tends to hinder the overall performance of the agent. In particular,
we have noticed that, despite having more power, bigger VSRs deriving from
continuous growth are not more effective than the early developed smaller ones,
concluding that an appropriate development schedule plays a key role in deter-
mining the effectiveness of a VSR.

As an extension of this work, it might be of interest to experiment with
additional representations, e.g., based on neural cellular automata, and to take
into account environmental feedback [24] in development. Moreover, the concept
of early mortality [I6] could be introduced in our framework.
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