Skip to main content

Proactive Student Persistence Prediction in MOOCs via Multi-domain Adversarial Learning

  • Conference paper
  • First Online:
Book cover Pattern Recognition (ACPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13188))

Included in the following conference series:

  • 1020 Accesses

Abstract

Automatic evaluation of a student’s STEM learning profile to understand her persistence is of national interest. In this paper, we propose an early “dropout” and behavior prediction model that can identify the potentially ‘marginalized’ student learning patterns to facilitate early instructional intervention in Massive Open Online Courses (MOOC) learning platform. Note that in the MOOC setting, building a comprehensive learning profile of the students is particularly more challenging due to the lack of available information and constrained communication modes. Unlike most existing works, which ignore these environmental constraints of missing information to formulate an over-simplified problem of ‘one-time’ prediction task in a supervised setting, the proposed model introduces a continual automated monitoring and proactive estimation process, which transforms its decision making capacity over time with evolving data patterns. In a semi-supervised scenario, the Multi-Domain Adversarial Feature Representation (mDAFR) strategy promotes the emergence of features, which are discriminative for the main learning task, while remaining largely invariant to the data sources (course from which the data was captured) in consideration. This ensures an enhanced distributed learning capacity over different course environments. Compared to transfer learning, mDAFR reports 11–15% improved classification accuracy in KDDCup dataset, and demonstrates a competitive performance against several state-of-the-art methods in both KDDCup and MOOCDropout datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.biendata.xyz/competition/kddcup2015/.

  2. 2.

    http://moocdata.cn/data/user-activity.

References

  1. Bhattacharjee, S.D., Tolone, W.J., Paranjape, V.S.: Identifying malicious social media contents using multi-view context-aware active learning. Future Gener. Comput. Syst. 100, 365–379 (2019)

    Article  Google Scholar 

  2. Borrella, I., Caballero, S., Ponce-Cueto, E.: Predict and intervene: addressing the dropout problem in a MOOC-based program, pp. 1–9 (June 2019). https://doi.org/10.1145/3330430.3333634

  3. Chen, S., Zhou, F., Liao, Q.: Visual domain adaptation using weighted subspace alignment. In: 2016 Visual Communications and Image Processing (VCIP), pp. 1–4. IEEE (2016)

    Google Scholar 

  4. Dascalu, M.D., et al.: Before and during COVID-19: a cohesion network analysis of students’ online participation in moodle courses. Comput. Hum. Behav. 121, 106780 (2021)

    Google Scholar 

  5. De Raedt, L., Blockeel, H.: Using logical decision trees for clustering. In: Lavrač, N., Džeroski, S. (eds.) ILP 1997. LNCS, vol. 1297, pp. 133–140. Springer, Heidelberg (1997). https://doi.org/10.1007/3540635149_41

  6. Dupéré, V., Dion, E., Leventhal, T., Archambault, I., Crosnoe, R., Janosz, M.: High school dropout in proximal context: the triggering role of stressful life events. Child Dev. 89(2), e107–e122 (2018)

    Google Scholar 

  7. Fei, M., Yeung, D.: Temporal models for predicting student dropout in massive open online courses. In: 2015 IEEE International Conference on Data Mining Workshop (ICDMW), pp. 256–263 (2015)

    Google Scholar 

  8. Feng, W., Tang, J., Liu, T.X.: Understanding dropouts in MOOCs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 517–524 (2019)

    Google Scholar 

  9. Frost, N., Moshkovitz, M., Rashtchian, C.: ExKMC: expanding explainable \( k \)-means clustering. arXiv preprint arXiv:2006.02399 (2020)

  10. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning, ICML 2015, vol. 37, pp. 1180–1189. JMLR.org (2015)

    Google Scholar 

  11. Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 22–30. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24775-3_5

  12. Goodfellow, I.J., et al.: Generative adversarial networks. arXiv preprint arXiv:1406.2661 (2014)

  13. Halawa, S., Greene, D., Mitchell, J.: Dropout prediction in MOOCs using learner activity features. Proc. Second Eur. MOOC Stakehold. Summit 37(1), 58–65 (2014)

    Google Scholar 

  14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Google Scholar 

  15. Jeon, B., Park, N., Bang, S.: Dropout prediction over weeks in MOOCs via interpretable multi-layer representation learning. arXiv preprint arXiv:2002.01598 (2020)

  16. Jordan, K.: Massive open online course completion rates revisited: assessment, length and attrition (June 2015). https://doi.org/10.13140/RG.2.1.2119.6963

  17. Li, Z., Hoiem, D.: Learning without forgetting. CoRR abs/1606.09282 (2016). http://arxiv.org/abs/1606.09282

  18. Nagrecha, S., Dillon, J.Z., Chawla, N.V.: MOOC dropout prediction: lessons learned from making pipelines interpretable. In: Proceedings of the 26th International Conference on World Wide Web Companion, pp. 351–359 (2017)

    Google Scholar 

  19. Pascanu, R., Gülçehre, Ç., Cho, K., Bengio, Y.: How to construct deep recurrent neural networks. CoRR abs/1312.6026 (2013)

    Google Scholar 

  20. Patricia, N., Caputo, B.: Learning to learn, from transfer learning to domain adaptation: a unifying perspective. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1442–1449 (2014)

    Google Scholar 

  21. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    Google Scholar 

  22. Prenkaj, B., Velardi, P., Distante, D., Faralli, S.: A reproducibility study of deep and surface machine learning methods for human-related trajectory prediction. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 2169–2172 (2020)

    Google Scholar 

  23. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Google Scholar 

  24. Tang, C., Ouyang, Y., Rong, W., Zhang, J., Xiong, Z.: Time series model for predicting dropout in massive open online courses. In: Penstein Rosé, C., et al. (eds.) AIED 2018, Part II. LNCS (LNAI), vol. 10948, pp. 353–357. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93846-2_66

  25. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7167–7176 (2017)

    Google Scholar 

  26. Wang, W., Yu, H., Miao, C.: Deep model for dropout prediction in MOOCs. In: Proceedings of the 2nd International Conference on Crowd Science and Engineering, pp. 26–32 (2017)

    Google Scholar 

  27. Whitehill, J., Mohan, K., Seaton, D., Rosen, Y., Tingley, D.: MOOC dropout prediction: how to measure accuracy? In: Proceedings of the Fourth 2017 ACM Conference on Learning@ Scale, pp. 161–164 (2017)

    Google Scholar 

  28. Wood, L., Kiperman, S., Esch, R., Leroux, A., Truscott, S.: Predicting dropout using student- and school-level factors: an ecological perspective. Sch. Psychol. Q. 32, 35–49 (2017). https://doi.org/10.1037/spq0000152

  29. World Economic Forum, W.: Fourth industrial revolution (2020). https://www.weforum.org/agenda/archive/fourth-industrial-revolution

  30. Xiao, Z., Wang, L., Du, J.Y.: Improving the performance of sentiment classification on imbalanced datasets with transfer learning. IEEE Access 7, 28281–28290 (2019). https://doi.org/10.1109/ACCESS.2019.2892094

  31. Zhuang, F., et al.: A comprehensive survey on transfer learning. Proc. IEEE 109(1), 43–76 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sreyasee Das Bhattacharjee or Junsong Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das Bhattacharjee, S., Yuan, J. (2022). Proactive Student Persistence Prediction in MOOCs via Multi-domain Adversarial Learning. In: Wallraven, C., Liu, Q., Nagahara, H. (eds) Pattern Recognition. ACPR 2021. Lecture Notes in Computer Science, vol 13188. Springer, Cham. https://doi.org/10.1007/978-3-031-02375-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02375-0_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02374-3

  • Online ISBN: 978-3-031-02375-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics