Skip to main content

Deep Rejoining Model for Oracle Bone Fragment Image

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13189))

Included in the following conference series:

Abstract

Image based object fragments rejoining can avoid touching and damaging objects, and be applied to recover fragments of oracle bones, artifacts, paper money, calligraphy and painting files. However, traditional methods are insufficient in terms of judging whether two images’ texture are rejoinable. In this paper, we propose a deep rejoining model (DRM) for automatic rejoining of oracle bone fragment images. In our model, an edge equal distance rejoining method (EEDR) is used to locate the matching position of the edges of two fragment images and crop the target area image (TAI), then a convolution neural network (CNN) is used to evaluate the similarity of texture in TAI. To improve the performance of similarity evaluation, a maximum similarity pooling (MSP) layer is proposed in CNN, and the fully connected layer outputs the two-class probability of whether the rejoining is eligible or not. Our experiments show that DRM achieved state-of-the-arts performance in rejoining oracle bone fragment images and has stronger adaptability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chou, H., Opstad, D.: Computer matching of oracle bone fragments: a preliminary report on a new research method. Archaeology 26(33), 176–181 (1973)

    Google Scholar 

  2. Tong, E., Zhang, S., Cheng, J.: Preliminary report on the use of computers to rejoin fragments of Shang Daibujia. J. Sichuan Univ. (Nat. Sci. Edn.) 2, 57–65 (1975)

    Google Scholar 

  3. Zhang, C., Wang, A.: A computer-aided oracle bone inscription rubbing conjugation method. Electron. Design Eng. 20(17), 1–3 (2012)

    Google Scholar 

  4. Liu, Y., Wang, T., Wang, J.: The application of the technique of 2D fragments stitching based on outline feature in rejoining oracle bones. In: International Conference on Multimedia Information Networking and Security, pp. 964–968 (2010)

    Google Scholar 

  5. Wang, A., Liu, G., Ge, W., et al.: Oracle computer-aided conjugation system design. Comput. Eng. Appl. 46(21), 59–62 (2010)

    Google Scholar 

  6. Tublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. IEEE Int. Conf. Comput. Vis. 58(11), 2564–2571 (2011)

    Google Scholar 

  7. Leutenegger, S., Chli, M.Y., Siegwart, R.: BRISK: binary robust invariant scalable keypoints. IEEE Int. Conf. Comput. Vis. 58(11), 2548–2555 (2012)

    Google Scholar 

  8. Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: fast retina keypoint. IEEE Conf. Comput. Vis. Pattern Recogn. 157(10), 510–517 (2012)

    Google Scholar 

  9. Zhang, Z., Yang, D., Lian, M.: Circumferential binary feature extraction and matching search algorithms. IEEE Signal Process. Lett. 25(7), 1074–1078 (2018)

    Article  Google Scholar 

  10. Zhang, H., Xue, J., Dana, K.: Deep TEN: texture encoding network. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2896–2905 (2017)

    Google Scholar 

  11. Xue, J., Zhang, H., Dana, K.: Deep texture manifold for ground terrain recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 558–567 (2018)

    Google Scholar 

  12. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation Tech report. In: IEEE International Conference on Computer Vision, pp. 580–587 (2014)

    Google Scholar 

  13. Girshick, R.: Fast R-CNN. In: IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  14. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  15. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 386–397 (2020)

    Article  Google Scholar 

  16. Szegedy, C., Liu, W., Jia, Y., et al.: A going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  17. Szegedy, C., Vanhoucke, V., Ioffe, S., et al.: Rethinking the inception architecture for computer vision. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  18. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception–V4, inception – ResNet and the impact of residual connections on learning. In: The 31th AAAI Conference on Artificial Intelligence, pp. 4278–4284 (2016)

    Google Scholar 

  19. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  20. Ruiz, L., Gama, F., Marques, A.G., Ribeiro, A.: Invariance-preserving localized activation functions for graph neural networks. IEEE Trans. Signal Process. 68, 127–141 (2020)

    Article  MathSciNet  Google Scholar 

  21. Cao, W., Yan, Z., He, Z., et al.: A comprehensive survey on geometric neural networks. IEEE Access 8, 35929–35949 (2020)

    Article  Google Scholar 

  22. Lin, Y.: Exploiting Information Science Technology to Rejoin An-yang Oracle bones/Shells, pp. 32–41. Tsinghua University, Taiwan (2006)

    Google Scholar 

  23. Zhang, Z., Yang, D.: Internal and external similarity aggregation stereo matching algorithm. In: The 11th International Conference on Digital Image Processing, vol. 11179, p. 62 (2019)

    Google Scholar 

  24. Mei, X., Sun, X., Dong, W., Wang, H., et al.: Segment-tree based cost aggregation for stereo matching. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 313–320 (2013)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (62106007, 61806007), Department of Science and Technology of Henan Province (212102310549) and Anyang Normal University Science and Technology Research Project (2021C01GX012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Wang, YT., Li, B., Guo, A., Liu, CL. (2022). Deep Rejoining Model for Oracle Bone Fragment Image. In: Wallraven, C., Liu, Q., Nagahara, H. (eds) Pattern Recognition. ACPR 2021. Lecture Notes in Computer Science, vol 13189. Springer, Cham. https://doi.org/10.1007/978-3-031-02444-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02444-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02443-6

  • Online ISBN: 978-3-031-02444-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics