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Abstract. Point set registration is an essential step in many computer
vision applications, such as 3D reconstruction and SLAM. Although
there exist many registration algorithms for different purposes, how-
ever, this topic is still challenging due to the increasing complexity of
various real-world scenarios, such as heavy noise and outlier contamina-
tion. In this paper, we propose a novel probabilistic generative method
to simultaneously align multiple point sets based on the heavy-tailed
Laplacian distribution. The proposed method assumes each data point
is generated by a Laplacian Mixture Model (LMM), where its centers
are determined by the corresponding points in other point sets. Differ-
ent from the previous Gaussian Mixture Model (GMM) based method,
which minimizes the quadratic distance between points and centers of
Gaussian probability density, LMM minimizes the sparsity-induced L1

distance, thereby it is more robust against noise and outliers. We adopt
Expectation-Maximization (EM) framework to solve LMM parameters
and rigid transformations. We approximate the L1 optimization as a
linear programming problem by exponential mapping in Lie algebra,
which can be effectively solved through the interior point method. To
improve efficiency, we also solve the L1 optimization by Alternating Di-
rection Multiplier Method (ADMM). We demonstrate the advantages
of our method by comparing it with representative state-of-the-art ap-
proaches on benchmark challenging data sets, in terms of robustness and
accuracy.

Keywords: Point set registration · L1 optimization · GMM · LMM.

1 Introduction

Point set registration is a fundamental problem that has wide applications in
computer vision [26], robotics [25], computer graphics [12], medical image anal-
ysis [19] and so on. With the advent of sensors such as LiDAR (Light Detection
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and Ranging) and depth cameras, it becomes relatively easy to capture real-
world 3D scene data. However, one usually attains partial point clouds at once
due to the 3D nature of the objects. To accurately reconstruct the 3D model,
it is necessary to align multiple point clouds acquired from multi views of the
object into a unified coordinate system.

Point set registration has been extensively studied in literature, and many
efforts are devoted to the pair-wise (two sets) registration problem. Among
these methods, the most classical one is the Iterative Closest Point (ICP) al-
gorithm [18], in which the registration is decomposed as the alternative imple-
mentation of point correspondence and transformation estimation. Given a set of
data points, the rigid transformation of ICP is solved by minimizing the summa-
tion of the squared distance of the closest point pairs. However, ICP tends to get
trapped in a local optimum because of the hard assignment scheme, improper
initialization, occlusions, and the interference of noise and outliers.

In contrast to the hard assignment scheme of ICP, previous works also ex-
plore the use of statistical models for registration, such as GMM [13], which
replaces the previous binary assignment with probability. These methods formu-
late point set registration as a probability density estimation, where the mean of
each component is initialized as the point location. In principle, probability reg-
istration can provide better estimation for convergence and geometric matching,
thereby they are further extended for multi-view registration [8]. Most existing
probability methods rely on GMM for registration, nevertheless, Gaussian dis-
tribution minimizes the quadratic distance between the data points and their
means, which makes GMM susceptible to noise with heavy tail and sensitive to
outliers [10].

In this paper, to address the aforementioned problems, we propose a novel
and robust multi-view registration method based on the LMM composed by the
Laplacian distribution. Due to the heavy-tail property and the sparsity-induced
L1 norm, LMM is more robust against outliers. We formulate point set registra-
tion as a likelihood estimation problem, which can be solved by EM framework.
To handle the L1 optimization, we customize the rotation estimation to a linear
programming problem by exponential mapping and name it as linear program-
ming approximation (LPA). Moreover, inspired by [4], we also use ADMM to
solve L1 optimization, which has higher efficiency without significant accuracy
decreasing. We test and compare the proposed methods (including LPA and
ADMM) with representative state-of-the-art approaches in terms of accuracy
and robustness, and the results indicate that our methods outperform previous
ones with higher accuracy and are more robust against noise and outliers.

In a nutshell, the main contributions of this paper are twofold as follows:

– We propose a novel multi-view registration method for point clouds based
on the sparsity-induced Laplacian mixture model. Due to the L1 norm of
Laplacian distribution, the proposed method is more robust against noise
and outliers;

– To handle L1 optimization, we customize it as a linear programming problem
via exponential mapping, which can be effectively solved by the interior point
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method. For efficiency, we further deduce it into the ADMM framework,
thereby it can also be solved by the ADMM algorithm.

2 Related Work

We briefly review the related work of point set registration from the perspective
of pair-wise registration and multi-view registration.

2.1 Pair-wise Registration

The objective of pair-wise registration is to align two point sets by solving a
transformation matrix. The most popular algorithm of pair-wise registration is
ICP [18], which composes two iterative steps: 1) correspondence step in which
the point correspondence between two point sets is established, and 2) trans-
formation step in which the transformation matrix based on the current cor-
respondence is updated. ICP takes the least-squares estimator as the objective
function, thereby the closed-form solution in each step can be attained through
singular value decomposition (SVD). However, as the Gauss-Markov theorem [21]
pointed, the least-squares estimator is sensitive to outliers. Moreover, ICP re-
quires good initialization and fails to handle non-overlapping point sets. To im-
prove performance, many variants of ICP have been proposed. Fitzgibbon [9]
adopts M-estimator for registration error minimization and solves the problem
by non-linear Levenberg-Marquardt optimization, thereby proper initialization
is required. Chetverikov et al. [6] propose a trim scheme named TrICP to au-
tomatically remove non-overlapping regions for accurate registration. For effi-
ciency, Rusu et al. [22] introduce Fast Point Feature Histograms (FPFH) to
describe the local geometry around a point to reduce the computational com-
plexity. Lei et al. [15] compute eigenvalues and normals from multiple scales and
take them as local descriptors to speed up matching. However, descriptor-based
methods [15,11] are susceptible to point sets with noise and low overlapping.
Recently, deep learning-based methods such as [1] are also proposed to estimate
the transformation matrix. Nevertheless, the lack of comprehensive registration
datasets results in a hard time for the learning methods to grasp all shape vari-
ations.

Alternatively, probability registration methods adopt GMM to represent data
points, such as Robust Point Matching [7], Coherent Point Drift [17], and GMM-
Reg [13]. These methods either simultaneously model the source and the target
point sets by GMM, and the transformation matrix is solved by minimizing
the discrepancy between the two GMMs, or singly model the source point set as
GMM, and then evoke maximum likelihood estimation to fit the target point set.
However, GMM fails to attain accurate registration results under the contami-
nation of noise with a heavy tail. Moreover, since GMM minimizes the quadratic
distance between the points and its means, it suffers from severe outliers. In con-
trast, we introduce Laplacian mixture models to model data distribution, which
adopt the L1 norm for error evaluation, thereby it is more robust against outliers
for registration.
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2.2 Multi-view registration

Multi-view registration aims to simultaneously register multiple point sets from
different views, which is often solved through sequential pair-wise registration.
Transformation parameters are sequentially updated by ICP or probability meth-
ods if a new point set is added. Except for the drawbacks from pair-wise reg-
istration, these methods also suffer from error accumulation and propagation.
Bergevin et al. [3] propose a star-network and sequentially put one point set
in the center of it, then pair-wise registration by ICP is implemented to align
the central point set with the other ones. In contrast, Williams et al. [24] si-
multaneously compute the correspondence between all point sets, which is time-
consuming. Mateo et al. [16] introduce the Bayesian perspective to assign differ-
ent weights for different correspondences, with the detection of false correspon-
dences. Although the registration accuracy is improved, it needs to compute
many variables.

Additionally, information theoretic measures are also customized for multi-
view registration task. Wang et al. [23] first represent point sets by cumulative
distribution function (CDF), and then minimize the Jensen-Shannon divergence
between CDFs for multi-view registration. Later, Chen et al. [5] use the Havrda-
Charvat divergence to evaluate the differences between CDFs, compared with
previous Jensen-Shannon divergence, this method is more efficient. Nevertheless,
information theory based approaches are still with low efficiency.

Recently, GMM is generalized for multi-view registration by [8] named JRMPC,
which assumes data points are generated by a central GMM, and then casts the
registration task as a clustering process. By this, global information of point sets
is combined to avoid the error accumulation. Zhu et al. [27] propose a method
named EMPMR, which assumes that each data point is generated from a GMM
whose Gaussian centroids are composed of corresponding points from other point
sets. Nevertheless, GMM suffers from heavy-tail noise, and is sensitive to severe
outliers due to the L2 norm. Based on JMRPC, TMM [20] achieves better ro-
bustness by replacing the Gaussian distribution with a t-distribution, however,
its time consumption is relatively considerable. To address these drawbacks, we
propose a novel and robust multi-view registration method based on the sparsity-
induced L1 norm, which is effectively solved by LPA or ADMM.

3 Methodology

3.1 Multivariate Laplacian Distribution

Suppose x ∈ Rd is a random variable following the multivariate Laplacian dis-
tribution, with the probability density function as

L (x;µ, b) =
1

(2b)
d

exp

(
−
‖x− µ‖1

b

)
, (1)

where µ and b represent the mean and the scale parameter of the d-dimensional
Laplacian distribution, respectively, and ‖·‖1 denotes the sparsity-induced L1
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norm, summarizing the absolute values of all elements of a vector. Previous work
has shown that the Gaussian distribution is sensitive to heavy outliers because
of its short tails [10,2], while the Laplacian distribution has heavier tails.

3.2 Laplacian Mixture Model

Let X = {Xi}Mi=1 be the union of M point sets, and Xi = [xi1,xi2, . . . ,xiNi
] ∈

R3×Ni be the i-th point set, where xil is the l-th point of Xi and Ni is the
cardinality of Xi. The task of multi-view registration is to align the multiple
point sets in X to the same center frame. To this end, we solve the rotation matrix
Ri and the translation vector ti for each Xi, and represent the transformed
coordinates as x̂il = Rixil + ti. Due to the influence of noise, it is hard to
hope that corresponding points in different frames will have the same coordinate
after alignment. In contrast, we assume the multi-view point sets will constitute
multiple clusters.

Suppose each data point x̂il is generated from a unique LMM, where the
Laplacian centers are composed of the corresponding points in other frames after
alignment. However, it is difficult to directly get the accurate correspondence
relationship between different point sets. Here we adopt the nearest neighbor
search based on the kd-tree to approximate the corresponding points. In specific,
for point x̂ of the center frame, we denote cj(x̂) as the nearest neighbor of x̂
from the j-th point set, which can be defined as:

cj (x̂) = arg min
{x̂jh}

Nj
h=1

‖x̂− x̂jh‖1 . (2)

For simplicity, we use isotropic covariance b and equal membership probability
for all LMM components. Thereby, the LMM of x ∈Xi is defined as

P (x) =

M∑
j 6=i

1

M − 1
L (Rix+ ti; cj(x̂), b) . (3)

Note that different from previous GMM based methods, in which a uniform
distribution has to be added to account for noise and outliers, there is no need
for our LMM based method, since Laplacian distribution has a heavy tail and
is sparse enough to accommodate outliers.

We adopt the maximum likelihood estimation (MLE) to solve unknown pa-
rameters. The log-likelihood function of observed data points is

L(Θ;X ) = logP (X | Θ) =

M∑
i=1

Ni∑
l=1

log

 M∑
j 6=i

1

M − 1
L (x̂il; cj(x̂il), b)

 , (4)

whereΘ =
{
{Ri, ti}Mi=1 , b

}
represents all parameters. It is intractable to directly

solve the maximum likelihood solution for such a complex model. Instead, we
adopt the effective EM framework by introducing latent variables for solving, as
presented in the following.
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4 Registration by EM Algorithm

To estimate the parameters by EM algorithm, we first define a set of latent
variables Z = {Zil | 1 ≤ i ≤M, 1 ≤ l ≤ Ni}, where Zil = j means that x̂il is
generated from the j-th component of the LMM. Given all observed data X ,
model parameters can be estimated by maximizing the expectation of the log-
likelihood function:

E (Θ;X ,Z) = EZ [logP (X ,Z;Θ)] =
∑
Z

P (Z | X ;Θ) logP (X , Z;Θ)

=
∑
Z

P (Z | X ;Θ) (logP (X | Z;Θ) + logP (Z;Θ)) .
(5)

Since we regard each Laplacian component equal, the prior probability P (Z;Θ)
is a constant term. In addition, P (X | Z;Θ) can be derived from Eq. (3), namely,
P (xil | Zil = j;Θ) = L (x̂il; cj (x̂il) , b) .

After ignoring constant terms, the objective function of Eq. (5) is reformu-
lated as

f (Θ) =

M∑
i=1

Ni∑
l=1

M∑
j 6=i

αilj logL (x̂il; cj(x̂il), b)

= −
∑
i,l,j

αilj

(
1

b
‖x̂il − cj(x̂il)‖1 + d log 2b

)
,

(6)

where αilj = P (Zil = j | xil;Θ) denotes the posterior and d denotes the data
dimension (d = 3 in our case). Therefore, the multi-view registration problem is
cast into a constrained optimization problem as follows:

Θ̂ = arg max
Θ

f(Θ), s.t. Ri ∈ SO(3), ∀i ∈ [1, ...,M ] . (7)

In order to maximize f(Θ) by EM algorithm, we alternatively perform E-step
and M-step as follows, after which, the transformation parameters of multi-view
registration are attained.

4.1 E-Step

Given data point set X and currently estimated parameters Θ(k), E-step cal-
culates the distribution of latent variable Z, which can be divided into two
steps. The first step is to establish point correspondence. For point xil in i-th
point set, it is initially transformed into the center frame with new coordinate

x̂
(k)
il = R

(k)
i xil + t

(k)
i . Then the corresponding point in j-th frame can be ap-

proximated by the nearest neighbour of x̂
(k)
il :

cj

(
x̂
(k)
il

)
= arg min
{x̂jh}

Nj
h=1

∥∥∥x̂(k)
il − x̂

(k)
jh

∥∥∥
1
. (8)
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The second step updates α
(k+1)
ilj = P (Zil = j | xil;Θ(k)), which represents

the posterior probability of point xil generated from j-th component of LMM.
According to Bayesian formula, we have

α
(k+1)
ilj =

L
(
x̂
(k)
il ; cj(x̂

(k)
il ), b(k)

)
∑M
j 6=i L

(
x̂
(k)
il ; cj(x̂

(k)
il ), b(k)

) =
β
(k+1)
ilj∑M

j 6=i β
(k+1)
ilj

, (9)

where βilj denotes the probability density of Laplacian distribution:

β
(k+1)
ilj =

1(
2b(k)

)d exp

−
∥∥∥x̂(k)

il − cj(x̂
(k)
il )
∥∥∥
1

b(k)

 . (10)

4.2 M-Step

M-step estimates the parameters Θ(k+1) by maximizing the expectation f(Θ)

with current values α
(k+1)
ilj and cj(x̂

(k)
il ). Since it is difficult to directly estimate

all parameters in Θ = {{Ri, ti}Mi=1, b}, we first solve transformation parameters
{Ri, ti} and then solve the variance scale b. Transformation parameters are
estimated by 

arg min
Ri,ti

Ni∑
l=1

M∑
j 6=i

α
(k+1)
ilj

∥∥∥Rixil + ti − cj(x̂(k)
il )
∥∥∥
1

s.t. RT
i Ri = I and |Ri| = 1.

(11)

The above equation is a weighted least absolute value (WLAV) problem with
SO(3) constraint. Although there is lack of a closed-form solution, we propose
two methods to iteratively solve it in Section 4.3. After updating transformation
parameters, we take the partial derivative of f(Θ) with respect to b and equate
it to zero, then the update of b(k+1) is

b(k+1) =

∑
i,j,l α

(k+1)
ilj

∥∥∥x̂(k+1)
il − cj(x̂(k+1)

il )
∥∥∥
1

d
∑
iNi

, (12)

where Ni denotes the cardinality of the i-th point set. As can be seen, b presents
the weighted average of the deviations.

4.3 WLAV subproblem

Previous GMM based approaches usually need to solve a weighted least square
problem, and the closed-form solution can be attained through SVD. However,
due to the L1 norm optimization, WLSV problem requires iterative solving. In
this work, we propose two methods to solve this kind of problem, namely, LPA
based and ADMM based methods, as presented in the following.
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LPA Method We first transform the sub-problem (11) into a canonical form:

min
R,t

n∑
i=1

wi ‖Rpi + t− qi‖1 s.t. R ∈ SO(3), (13)

where P = [p1, . . . ,pn] ∈ R3×n and Q = [q1, . . . , qn] ∈ R3×n represent the
source point set and the target point set respectively, while wi represents the
weight. By exponential mapping, the rotation matrix R can be written as:

R = exp
(
[r]×

)
= I + [r]× +

1

2!
[r]

2
× +

1

3!
[r]

3
× + · · · , (14)

where [r]× represents the skew-symmetric matrix of r ∈ R3, expressed as

[r]× =

 0 −r3 r2
r3 0 −r1
−r2 r1 0

 . (15)

To eliminate the SO(3) constraint, we linearly approximate the rotation ma-
trix R by neglecting the higher-order terms of (14). Then the deviation can be
approximated as

Rp− q + t ≈
[
− [p]× I3×3

] [r
t

]
+ p− q, (16)

since [r]× p = − [p]× r.
Then the objective function can be reformulated as:

N∑
i=1

wi ‖Rpi − qi + t‖1 ≈

∥∥∥∥∥∥∥
 −w1 [p1]× I3

...
...

−wN [pN ]× I3

[r
t

]
−

 −w1 (p− q)
...

−wN (p− q)


∥∥∥∥∥∥∥
1

= ‖Ax− b‖1 ,

(17)

where x denotes [r, t]
T

. Let u = |Ax− b|, the original WLAS problem is trans-
formed into a linear programming problem:

min
u,x

N∑
i=1

ui, s.t. − u+Ax− b ≤ 0 and − u−Ax+ b ≤ 0, (18)

which can be efficiently solved by interior point methods [14]. Moreover, we
deduce another method to solve L1 optimization based on the ADMM in the
following. We name the two optimizations as Ours-LPA and Ours-ADMM, re-
spectively, and compare them with previous approaches in Section 5.

ADMM Method Considering the constraint zi = wi (Rpi + t− qi), Eq. (13)
can be reformulated as:

min
R,t

n∑
i=1

‖zi‖1

s.t. R ∈ SO(3),

zi = wi (Rpi + t− qi) , i = 1, ..., n.

(19)
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Then the augmented Lagrangian function of ADMM is

Lρ (R, t, z, λ) =

n∑
i=1

(
‖zi‖1 +

ρ

2

∥∥∥∥zi − si +
1

ρ
λi

∥∥∥∥2
2

− 1

2ρ
‖λi‖22

)
, (20)

where we replace wi (Rpi + t− qi) by si to simplify the formula. Due to the
space limit, we directly present the iterative steps as

z(k+1) := arg min
z
Lρ

(
R(k), t(k), z,λ(k)

)
, (21)

R(k+1), t(k+1) := arg min
R,t

Lρ

(
R, t, z(k+1),λ(k)

)
, (22)

λ
(k+1)
i := λ

(k)
i + ρ

(
z
(k)
i − s

(k)
i

)
, i = 1, . . . , n, (23)

where sub-problem (21) can be solved efficiently by the following shrinkage op-
erator:

z
(k+1)
i = S1/ρ

(
s
(k)
i −

1

ρ
λ(k)

)
, Sλ (x) =


x− λ if x > λ ;

x+ λ if x < λ ;

0 otherwise .

, (24)

while sub-problem (22) can be solved by SVD.

5 Experiments

In this section, we compare the performance of the proposed method with three
representative state-of-the-art approaches for multi-view registration, namely,
JRMPC [8], TMM [20], and EMPMR [27]. The implementation of all compared
methods is publicly available. All experiments in the following are performed on
a laptop with a 6-core 2.2GHz Intel CPU and 16GB RAM.

5.1 Data Sets and Evaluation Measure

We use six 3D data sets from the Stanford 3D Scanning Repository5 (Bunny,
Buddha, Dragon, and Armadillo) and the AIM@SHAPE Repository6 (Bimba
and Olivier hand) for test. To quantitatively evaluate the registration perfor-
mance of different methods, we compute the error by

eR =
1

M

M∑
i=1

arc cos

 tr
(
Ri

(
RG
i

)T)− 1

2

, et =
1

M

M∑
i=1

∥∥ti − tGi ∥∥2, (25)

where
{
RG
i , t

G
i

}M
i=1

and {Ri, ti}Mi=1 denote the ground truth and the estimated
rigid transformation, respectively.

5 http://graphics.stanford.edu/data/3Dscanrep
6 http://visionair.ge.imati.cnr.it/ontologies/shapes
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Table 1. Statistics of registration errors of all compared methods, where the red and
blue fonts indicate the best and the second-best performance for each metric. The
proposed method Ours-LPA attains the overall best performance.

Methods Armadillo Bimba Buddha Bunny Dragon Hand

Initial
eR 0.037378 0.04016 0.034194 0.036776 0.033269 0.038187
et 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

TMM [20]
eR 0.165546 0.182914 0.150696 0.204346 0.152766 0.085944
et 0.001657 0.003268 0.009475 0.008532 0.011171 0.002163

JRMPC [8]
eR 0.004748 0.067163 0.024169 0.007340 0.002504 0.312689
et 0.000087 0.001867 0.000615 0.000246 0.000259 0.001234

EMPMR [27]
eR 0.042555 0.008452 0.021825 0.029602 0.032349 0.010282
et 0.000008 0.000005 0.000019 0.000021 0.000028 0.000003

Ours-ADMM
eR 0.008538 0.001002 0.004597 0.008356 0.004588 0.002335
et 0.000120 0.000075 0.000301 0.000713 0.000326 0.000080

Ours-LPA
eR 0.002954 0.000353 0.001519 0.001953 0.001181 0.000896
et 0.000051 0.000019 0.000114 0.000159 0.000101 0.000023

5.2 Comparison Results

We first downsample each data set to 4,000 points, and crop them along the xy-
plane to generate the missing overlapping, then we rotate them around the x,
y and z-axes with the rotation angle uniformly distributed between [−20◦, 20◦].
Moreover, we add Gaussian noise to each data point with the signal-to-noise
ratio (SNR) equal to 70dB and 30% outliers following the uniform distribution.

The comparison results are reported in Table 1. We color the best in red and
the second-best in blue for each metric. As observed, compared with initial errors,
TMM has larger rotation deviations for all data sets, JRMPC and EMPMR
also suffer from rotation estimation, such as the Bunny and the Armadillo data
sets. In contrast, our proposed methods including Ours-ADMM and Ours-LPA
achieve fewer rotation errors than initial cases for all data sets. Moreover, the
proposed Ours-LPA attains the highest accuracy for rotation estimation than all
competitors. EMPMR has the overall lowest translation error, but its rotation
errors are relatively large. Our proposed method Ours-LPA attains the second
highest accuracy for translation estimation, and the deviations are small enough.
Thereby, the proposed method Ours-LPA achieves the overall best performance.
We present several test examples in Fig. 1.

We further report the time consumption of different methods in Table 2. As
observed, due to the closed-form solution of EMPMR based on the L2 norm, it
consumes relatively less time. Our proposed method Ours-ADMM has the second
fastest speed, and its time consumption is quite close to EMPMR. Moreover,
from Table 1, we find that Ours-ADMM has fewer rotation errors than EMPMR,
meanwhile with acceptable translation deviations. Ours-LPA consumes relatively
more time than Ours-ADMM, however, it is still faster than TMM and JRMPC.
Therefore, to register point sets with high efficiency and comparable accuracy,
we suggest Ours-ADMM for use.



Robust Multi-view Registration of Point Sets with Laplacian Mixture Model 11

(a) (b) (c) (d) (e) (f) (g)

Figure 2: Sample registration results presented in the form of cross section.
(a) 3D models. (b) Initial poses. (c) TMM. (d) JRMPC. (e) EMRPC . (f)
Ours-ADMM. (g) Ours-LPP.

4

Fig. 1. Sample registration results presented in the form of cross section. (a) 3D models.
(b) Initial poses. (c) TMM. (d) JRMPC. (e) EMRPC . (f) Ours-ADMM. (g) Ours-LPA.

Table 2. Time consumption of all compared methods.

Methods Armadillo Bimba Buddha Bunny Dragon Hand

TMM [20] 416.048315 306.375451 428.698706 215.150639 456.21449 328.926923
JRMPC [8] 260.635473 234.189799 315.937198 69.655174 73.304373 163.161366

EMPMR [27] 14.298502 7.159238 10.059491 5.108593 6.233101 4.700202
Ours-ADMM 21.439405 8.915458 51.801415 8.883673 26.442176 8.690539

Ours-LPA 108.499447 36.490062 161.175015 20.262704 96.782577 36.421847

5.3 Robustness against Outliers

Subsequently, we evaluate the robustness of the proposed method against out-
liers. We adopt the bunny data set for this purpose. We add 1%− 80% outliers
to the point cloud. Besides, we contaminate the point cloud with 70dB Gaussian
noise. Several examples are illustrated in Fig. 2. The test results are reported in
Table 3. As can be seen, with outlier increasing, the proposed method Ours-LPA
exhibits higher robustness than compared ones. EMPMR has fewer deviations at
low outlier contamination, but it suffers from severe outliers (more than 30%).
JRMPC also shows certain robustness against outliers, whereas its performance
is unstable. In contrast, Ours-ADMM attains the quite stable performance for
all outlier tests, and it has the a very similar registration accuracy to the first
two winners. TMM has the largest deviations than the others, indicating its
weakness in handling outliers.
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(a) Bunny model (b) SNR=50dB (c) 30% outliers

Fig. 2. Examples of the Bunny model contaminated by noise and outliers.

Table 3. Statistics of registration errors under the contamination of different outliers
(%). The proposed method Ours-LPA has the overall best performance.

1% 10% 20% 30% 50% 80%

Initial 0.032794 0.034169 0.035956 0.036776 0.028585 0.027937
TMM [20] 0.010005 0.157573 0.162055 0.204346 0.269017 0.293706
JRMPC [8] 0.004102 0.299748 0.009423 0.007340 0.005685 0.077505

EMPMR [27] 0.000342 0.000378 0.000500 0.029602 0.052858 0.094169
Ours-ADMM 0.000439 0.000572 0.008176 0.008356 0.007888 0.034256

Ours-LPA 0.000505 0.000369 0.000676 0.001953 0.002762 0.021861

5.4 Robustness against Noise

We also test the performance of the proposed methods in term of noise. To this
end, we first contaminate the point cloud with 30% outliers, and then increase
the noise intensity by decreasing the signal-to-noise ratio. The test results are
reported in Table 4. As observed, the proposed method Ours-LPA achieves the
overall best performance, and its registration errors are even 1,000 times fewer
than TMM. JRMPC and Ours-ADMM attain similar results, thereby they have
the second-best performance. EMPMR shows shortcomings for noise, especially
for low SNR noise.

Table 4. Statistics of registration errors of different methods under the contamination
of different noise (dB).

90 80 70 60 50

Initial 0.035592 0.028818 0.036776 0.029031 0.035445
TMM [20] 0.159936 0.163456 0.204346 0.179884 0.162614
JRMPC [8] 0.093772 0.000439 0.007340 0.065524 0.020319

EMPMR [27] 0.039599 0.056480 0.029602 0.033342 0.056580
Ours-ADMM 0.008533 0.008808 0.008356 0.009525 0.019820

Ours-LPA 0.000245 0.001216 0.001953 0.007375 0.032890
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6 Conclusion

We have presented a novel and robust multi-view registration method for point
clouds based on the Laplacian mixture models (LMM). We adopt Laplacian
distribution to represent each data point, and then cast the multi-view regis-
tration task as a density estimation problem, which can be efficiently solved
through the expectation-maximization framework. Due to the heavy tail and
the sparsity-induced L1 norm, LMM is more robust against GMM. To solve the
L1 problem, we deduce our objective function into two optimization paradigms,
namely, linear programming and ADMM. We test the proposed methods on
challenging data sets with contamination of noise and outliers, and compare it
with three representative state-of-the-art approaches, and results demonstrate
the salient advantages of the proposed method: more robust against noise and
outliers, as well as higher accuracy.
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