Skip to main content

Evolution of Acoustic Logic Gates in Granular Metamaterials

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13224))

Abstract

Granular metamaterials are a promising choice for the realization of mechanical computing devices. As preliminary evidence of this, we demonstrate here how to embed Boolean logic gates (AND and XOR) into a granular metamaterial by evolving where particular grains are placed in the material. Our results confirm the existence of gradients of increasing “AND-ness” and “XOR-ness” within the space of possible materials that can be followed by evolutionary search. We measure the computational functionality of a material by probing how it transforms bits encoded as vibrations with zero or non-zero amplitude. We compared the evolution of materials built from mass-contrasting particles and materials built from stiffness-contrasting particles, and found that the latter were more evolvable. We believe this work may pave the way toward evolutionary design of increasingly sophisticated, programmable, and computationally dense metamaterials with certain advantages over more traditional computational substrates.

This material is based upon work supported by the National Science Foundation under the DMREF program (award number: 2118810).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bilal, O.R., Foehr, A., Daraio, C.: Bistable metamaterial for switching and cascading elastic vibrations. Proc. Natl. Acad. Sci. 114(18), 4603–4606 (2017)

    Article  Google Scholar 

  2. Deymier, P.A.: Acoustic Metamaterials and Phononic Crystals, vol. 173. Springer Science & Business Media (2013)

    Google Scholar 

  3. Fornleitner, J., Kahl, G., Likos, C.N.: Tailoring the phonon band structure in binary colloidal mixtures. Phys. Rev. E 81(6), 060401 (2010)

    Article  Google Scholar 

  4. Freeth, T., et al.: Decoding the ancient greek astronomical calculator known as the antikythera mechanism. Nature 444(7119), 587–591 (2006)

    Article  Google Scholar 

  5. Hartree, D.R.: The bush differential analyser and its applications. Nature 146(3697), 319–323 (1940)

    Article  MathSciNet  Google Scholar 

  6. Ion, A., Wall, L., Kovacs, R., Baudisch, P.: Digital mechanical metamaterials. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 977–988 (2017)

    Google Scholar 

  7. Kadic, M., Milton, G.W., van Hecke, M., Wegener, M.: 3d metamaterials. Nature Rev. Phys. 1(3), 198–210 (2019)

    Article  Google Scholar 

  8. Li, F., Anzel, P., Yang, J., Kevrekidis, P.G., Daraio, C.: Granular acoustic switches and logic elements. Nat. Commun. 5(1), 1–6 (2014)

    Google Scholar 

  9. MacLennan, B.J.: A review of analog computing. Department of Electrical Engineering & Computer Science, University of Tennessee, Technical report UT-CS-07-601 (September) (2007)

    Google Scholar 

  10. Miskin, M.Z., Jaeger, H.M.: Adapting granular materials through artificial evolution. Nat. Mater. 12(4), 326–331 (2013)

    Article  Google Scholar 

  11. Nakajima, K.: Physical reservoir computing-an introductory perspective. Jpn. J. Appl. Phys. 59(6), 060501 (2020)

    Article  Google Scholar 

  12. O’Hern, C.S., Shattuck, M.D.: Highly evolved grains. Nat. Mater. 12(4), 287–288 (2013)

    Article  Google Scholar 

  13. Raney, J.R., Nadkarni, N., Daraio, C., Kochmann, D.M., Lewis, J.A., Bertoldi, K.: Stable propagation of mechanical signals in soft media using stored elastic energy. Proc. Natl. Acad. Sci. 113(35), 9722–9727 (2016)

    Article  Google Scholar 

  14. Schmidt, M., Lipson, H.: Age-fitness pareto optimization. In: Riolo, R., McConaghy, T., Vladislavleva, E. (eds.) Genetic Programming Theory and Practice VIII, pp. 129–146. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-7747-2_8

    Chapter  Google Scholar 

  15. Serra-Garcia, M.: Turing-complete mechanical processor via automated nonlinear system design. Phys. Rev. E 100(4), 042202 (2019)

    Article  Google Scholar 

  16. Thompson, A.: An evolved circuit, intrinsic in silicon, entwined with physics. In: Higuchi, T., Iwata, M., Liu, W. (eds.) ICES 1996. LNCS, vol. 1259, pp. 390–405. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63173-9_61

    Chapter  Google Scholar 

  17. Treml, B., Gillman, A., Buskohl, P., Vaia, R.: Origami mechanologic. Proc. Natl. Acad. Sci. 115(27), 6916–6921 (2018)

    Article  Google Scholar 

  18. Tympas, A.: The delights of the slide rule. In: Calculation and Computation in the Pre-electronic Era, pp. 7–38. Springer, London (2017)

    Google Scholar 

  19. Wu, Q., Cui, C., Bertrand, T., Shattuck, M.D., O’Hern, C.S.: Active acoustic switches using two-dimensional granular crystals. Phys. Rev. E 99(6), 062901 (2019)

    Article  Google Scholar 

  20. Yasuda, H., Buskohl, P.R., Gillman, A., Murphey, T.D., Stepney, S., Vaia, R.A., Raney, J.R.: Mechanical computing. Nature 598(7879), 39–48 (2021)

    Article  Google Scholar 

  21. Zangeneh-Nejad, F., Sounas, D.L., Alù, A., Fleury, R.: Analogue computing with metamaterials. Nat. Rev. Mater. 6(3), 207–225 (2021)

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Qikai Wu for providing the simulator for mass-contrasting assembly of circular particles. The computational resources provided by the Vermont Advanced Computing Core are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atoosa Parsa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Parsa, A., Wang, D., O’Hern, C.S., Shattuck, M.D., Kramer-Bottiglio, R., Bongard, J. (2022). Evolution of Acoustic Logic Gates in Granular Metamaterials. In: Jiménez Laredo, J.L., Hidalgo, J.I., Babaagba, K.O. (eds) Applications of Evolutionary Computation. EvoApplications 2022. Lecture Notes in Computer Science, vol 13224. Springer, Cham. https://doi.org/10.1007/978-3-031-02462-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02462-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02461-0

  • Online ISBN: 978-3-031-02462-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics