Skip to main content

Research on Blockchain Privacy Protection Mechanism in Financial Transaction Services Based on Zero-Knowledge Proof and Federal Learning

  • Conference paper

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 643))

Abstract

In the financial transaction system centering on blockchain technology, institutions at different levels have different powers and roles, so that they have dissimilar private contents to protect. Taking supply chain financing as an example, a multi-level blockchain system is proposed in this paper. The main steps of building the system are as follows: Firstly, commercial banks and regulatory authorities cooperatively establish a risk control model by Federal Learning. Secondly, the private transaction information will be preserved by zero-knowledge proofs for downstream suppliers. Finally, an architecture of multi-level blockchain is designed to supervise the financial trading for guaranteeing credibility. The experimental results show that the system is more beneficial to privacy protection. By incorporating Federal Learning, it can provide stronger security and more reliable risk control. Further, that can also improve the efficiency and performance of the financial transaction system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009)

    Google Scholar 

  2. Chao, L., He, D., Huang, X., et al.: BSeIn: a blockchain-based secure mutual authentication with fine-grained access control system for industry 4.0. J. Netw. Comput. Appl. 116, 42–52 (2018)

    Article  Google Scholar 

  3. Wang, H., Song, X., Junming, K.E., et al.: Blockchain and privacy preserving mechanisms in cryptocurrency. Netinfo Secur. 7, 32–39 (2017)

    Google Scholar 

  4. Zhang, Y., Lu, Y., Huang, X., et al.: Blockchain empowered asynchronous federated learning for secure data sharing in internet of vehicles. IEEE Trans. Veh. Technol. 69(4), 4298–4311 (2020)

    Article  Google Scholar 

  5. You, J.K., Hong, C.S.: Blockchain-based node-aware dynamic weighting methods for improving federated learning performance. In: 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS). IEEE (2019)

    Google Scholar 

  6. Sasson, E.B., Chiesa, A., Garman, C., et al.: Zerocash: decentralized anonymous payments from bitcoin. In: 2014 IEEE Symposium on Security and Privacy (SP). IEEE (2014)

    Google Scholar 

  7. Nicolas Saberhagen, N.: Cryptonote v2.0 [EB/OL] (2013). https://cryptonote.org/whitepaper.pdf

  8. Miers, I., Garman, C., Green, M., et al.: Zerocoin: anonymous distributed e-cash from bitcoin. In: 2013 IEEE Symposium on Security and Privacy (SP). IEEE (2013)

    Google Scholar 

  9. Duffield, E., Diaz, D.: Dash: a payments-focused cryptocurrency [EB/OL] (2016). https://github.com/dashpay/dash/wiki/Whitepaper

  10. Maxwell, G.: CoinJoin: bitcoin privacy for the real world [EB/OL] (2013). https://bitcointalk.org/index.php?Topic=279249.0

  11. BitInfoCharts: Cryptocurrency statistics [EB/OL]. https://bitinfocharts.com/

  12. Parno, B., et al.: Pinocchio: nearly practical verifiable computation. Commun. ACM 59(2), 103–112 (2016)

    Article  Google Scholar 

  13. Groth, J., Maller, M.: Snarky signatures: minimal signatures of knowledge from simulation-extractable SNARKs. In: International Cryptology Conference (2017)

    Google Scholar 

  14. Buterin, V.: Ethereum white paper: a next generation smart contract & decentralized application platform. First version (2014)

    Google Scholar 

  15. Fleder, M., Kester, M.S., Pillai, S.: Bitcoin transaction graph analysis. Comput. Sci. (2015)

    Google Scholar 

  16. Chiesa, A., Ojha, D., Spooner, N.: Fractal: post-quantum and transparent recursive proofs from holography. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 769–793. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_27

    Chapter  Google Scholar 

  17. Boew, S., Grigg, J., Hopwood, D.: Halo: recursive proof composition without a trusted setup. IACR Crptology ePrint Archieve (2019)

    Google Scholar 

  18. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers (2020)

    Google Scholar 

  19. Maller, M., Bowe, S., Kohlweiss, M., et al.: Sonic: zero-knowledge SNARKs from linear-size universal and updatable structured reference strings. In: The 2019 ACM SIGSAC Conference. ACM (2019)

    Google Scholar 

  20. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: preprocessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_26

    Chapter  Google Scholar 

  21. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over LAgrange-bases for Oecumenical Noninteractive arguments of Knowledge. IACR Crptology ePrint Archieve (2019)

    Google Scholar 

  22. Bunz, B., Bootle, J., Boneh, D., et al.: Bulletproofs: short proofs for confidential transactions and more, pp. 315–334 (2018)

    Google Scholar 

  23. Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: towards privacy in a smart contract world. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 423–443. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4_23

    Chapter  Google Scholar 

  24. Zhangshuang, G.: Research on privacy protection of account model blockchain system based on zero knowledge proof. Shandong University, ShanDong (2020)

    Google Scholar 

  25. Lu, Y., Huang, X., Dai, Y., et al.: Blockchain and federated learning for privacy-preserved data sharing in industrial IoT. IEEE Trans. Ind. Inform. 16(6), 4177–4186 (2019)

    Article  Google Scholar 

  26. Lu, Y., Huang, X., Dai, Y., et al.: Federated learning for data privacy preservation in vehicular cyber-physical systems. IEEE Netw. 34(3), 50–56 (2020)

    Article  Google Scholar 

  27. Webank-FISCO-BCOS: Cryptocur. An alliance blockchain underlying technology platform [EB/OL]. https://github.com/FISCO-BCOS/FISCO-BCOS

  28. Webank-fate: An open source federated learning platform [EB/OL]. https://github.com/FederatedAI/FATE

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianming Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Cite this paper

Wang, M., Wang, T., Ji, H. (2022). Research on Blockchain Privacy Protection Mechanism in Financial Transaction Services Based on Zero-Knowledge Proof and Federal Learning. In: Shi, Z., Zucker, JD., An, B. (eds) Intelligent Information Processing XI. IIP 2022. IFIP Advances in Information and Communication Technology, vol 643. Springer, Cham. https://doi.org/10.1007/978-3-031-03948-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-03948-5_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-03947-8

  • Online ISBN: 978-3-031-03948-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics