Skip to main content

Modeling the Costas Array Problem in QUBO for Quantum Annealing

  • Conference paper
  • First Online:
Book cover Evolutionary Computation in Combinatorial Optimization (EvoCOP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13222))

Abstract

We present experiments in solving constrained combinatorial optimization problems by means of Quantum Annealing. We describe how to model a hard combinatorial problem, the Costas Array Problem, in terms of QUBO (Quadratic Unconstrained Binary Optimization). QUBO is the input language of quantum computers based on quantum annealing such as the D-Wave systems and of the “quantum-inspired” special-purpose hardware such as Fujitsu’s Digital Annealing Unit or Hitachi’s CMOS Annealing Machine. We implemented the QUBO model for the Costas Array Problem on several hardware solvers based on quantum annealing (D-Wave Advantage, Fujitsu DA3 and Fixstars AE) and present some performance result for these implementations, along those of state-of-the-art metaheuristics solvers on classical hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Let us note that recently [3] proposed some “quantum-accelerated filtering algorithms” to encode the all-different constraint in the gate model of quantum computing, which is very different from what we consider here (QUBO and QA).

  2. 2.

    We used two versions derived from Barry O’Sullivan’s model by Hakan Kjellerstrand, available at http://www.hakank.org/minizinc: one written in MiniZinc with Gecode as back-end solver and one written in Python for the Google OR-Tools solver.

  3. 3.

    More precisely, the Chimera architecture of the D-Wave 2000X computer has only a 6-way qubit connectivity (meaning that each qubit is physically connected to at most 6 other qubits) and the Pegasus architecture of the D-Wave Advantage has a 15-way qubit connectivity.

  4. 4.

    There is a limit of 60 s per job when using Fixstars Amplify AE with developer accounts, we therefore took the same time limit for Fujitsu’s DAU.

References

  1. Anthony, M., Boros, E., Crama, Y., Gruber, A.: Quadratic reformulations of nonlinear binary optimization problems. Math. Program. 162(1–2), 115–144 (2017)

    Google Scholar 

  2. Aramon, M., Rosenberg, G., Valiante, E., Miyazawa, T., Tamura, H., Katzgraber, H.G.: Physics-inspired optimization for quadratic unconstrained problems using a digital annealer. Front. Phys. 7, 48 (2019)

    Article  Google Scholar 

  3. Booth, K.E.C., O’Gorman, B., Marshall, J., Hadfield, S., Rieffel, E.: Quantum-accelerated global constraint filtering. In: Simonis, H. (ed.) CP 2020. LNCS, vol. 12333, pp. 72–89. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58475-7_5

    Chapter  Google Scholar 

  4. Boros, E., Crama, Y., Rodríguez-Heck, E.: Compact quadratizations for pseudo-boolean functions. J. Comb. Optim. 39(3), 687–707 (2020)

    Article  MathSciNet  Google Scholar 

  5. Bunyk, P.I., et al.: Architectural considerations in the design of a superconducting quantum annealing processor. IEEE Trans. Appl. Supercond. 24(4), 1–10 (2014)

    Article  Google Scholar 

  6. Caniou, Y., Codognet, P., Richoux, F., Diaz, D., Abreu, S.: Large-scale parallelism for constraint-based local search: the costas array case study. Constraints 20(1), 30–56 (2014). https://doi.org/10.1007/s10601-014-9168-4

    Article  MATH  Google Scholar 

  7. Choi, V.: Minor-embedding in adiabatic quantum computation: I. the parameter setting problem. Quantum Inf. Process. 7(5), 193–209 (2008)

    Google Scholar 

  8. Choi, V.: Minor-embedding in adiabatic quantum computation: II. minor-universal graph design. Quantum Inf. Process. 10(3), 343–353 (2011)

    Google Scholar 

  9. Codognet, P., Diaz, D.: Yet another local search method for constraint solving. In: Steinhöfel, K. (ed.) SAGA 2001. LNCS, vol. 2264, pp. 73–90. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45322-9_5

    Chapter  Google Scholar 

  10. Correll, B.: The density of costas arrays and three-free permutations. In: 2012 IEEE Statistical Signal Processing Workshop (SSP), pp. 492–495 (2012)

    Google Scholar 

  11. Correll, B., Beard, J.K., Swanson, C.N.: Costas array waveforms for closely spaced target detection. IEEE Trans. Aerosp. Electron. Syst. 56(2), 1045–1076 (2020)

    Article  Google Scholar 

  12. Costas, J.: A study of detection waveforms having nearly ideal range-doppler ambiguity properties. Proc. IEEE 72(8), 996–1009 (1984)

    Article  Google Scholar 

  13. Dattani, N.: Quadratization in discrete optimization and quantum mechanics (2019)

    Google Scholar 

  14. Diaz, D., Richoux, F., Codognet, P., Caniou, Y., Abreu, S.: Constraint-based local search for the costas array problem. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 378–383. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34413-8_31

    Chapter  Google Scholar 

  15. Dote, S.: NEC’s initiative in quantum computing. Presented at D-Wave Qubits Conference 2021, October 2021 (2021)

    Google Scholar 

  16. Drakakis, K.: A review of costas arrays. J. Appl. Math. 2006, 1–32 (2006)

    Article  MathSciNet  Google Scholar 

  17. Drakakis, K., Gow, R., Rickard, S.: Distance vectors in costas arrays. In: Proceedings of CISS 2008, 42nd Annual Conference on Information Sciences and Systems, pp. 1234–1239. IEEE Press (2008)

    Google Scholar 

  18. Drakakis, K., Iorio, F., Rickard, S., Walsh, J.: Results of the enumeration of costas arrays of order 29. Adv. Math. Commun. 5(3), 547–553 (2011)

    Article  MathSciNet  Google Scholar 

  19. Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A quantum adiabatic evolution algorithm applied to random instances of an np-complete problem. Science 292(5516), 472–475 (2001)

    Article  MathSciNet  Google Scholar 

  20. Galinier, P., Hao, J.: A general approach for constraint solving by local search. J. Math. Model. Algorithms 3(1), 73–88 (2004)

    Article  MathSciNet  Google Scholar 

  21. Gent, I.P., Miguel, I., Nightingale, P.: Generalised arc consistency for the alldifferent constraint: an empirical survey. Artif. Intell. 172(18), 1973–2000 (2008)

    Article  MathSciNet  Google Scholar 

  22. Glover, F.W., Kochenberger, G.A., Du, Y.: Quantum bridge analytics I: a tutorial on formulating and using QUBO models. 4OR 17(4), 335–371 (2019)

    Google Scholar 

  23. Goto, H., Tatsumura, K., Dixon, A.R.: Combinatorial optimization by simulating adiabatic bifurcations in nonlinear hamiltonian systems. Sci. Adv. 5(4), eaav2372 (2019)

    Google Scholar 

  24. Hauke, P., Katzgraber, H.G., Lechner, W., Nishimori, H., Oliver, W.D.: Perspectives of quantum annealing: methods and implementations. Rep. Prog. Phys. 83(5), 054401 (2020)

    Google Scholar 

  25. Hentenryck, P.V., Michel, L.: Constraint-Based Local Search. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  26. Inagaki, T., et al.: A coherent ising machine for 2000-node optimization problems. Science 354(6312), 603–606 (2016)

    Article  Google Scholar 

  27. Ishikawa, H.: Transformation of general binary MRF minimization to the first-order case. IEEE Trans. Pattern Anal. Mach. Intell. 33(6), 1234–1249 (2011)

    Article  Google Scholar 

  28. Johnson, M., et al.: Quantum annealing with manufactured spins. Nature 473, 194–198 (2011)

    Article  Google Scholar 

  29. Kadioglu, S., Sellmann, M.: Dialectic search. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 486–500. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7_39

    Chapter  Google Scholar 

  30. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse ising model. Phys. Rev. E 58, 5355–5363 (1998)

    Article  Google Scholar 

  31. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  32. Kochenberger, G., et al.: The unconstrained binary quadratic programming problem: a survey. J. Comb. Optim. 28(1), 58–81 (2014). https://doi.org/10.1007/s10878-014-9734-0

    Article  MathSciNet  MATH  Google Scholar 

  33. Lucas, A.: Ising formulations of many np problems. Front. Phys. 2, 5 (2014)

    Google Scholar 

  34. Matsubara, S., et al.: Digital annealer for high-speed solving of combinatorial optimization problems and its applications. In: 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 667–672 (2020)

    Google Scholar 

  35. Matsuda, Y.: Research and development of common software platform for ising machines. In: 2020 IEICE General Conference (2020). https://amplify.fixstars.com/docs/_static/paper.pdf

  36. McGeoch, C., Farré, P.: The advantage system: performance update, Technical report, D-Wave, 01 October 2021

    Google Scholar 

  37. McGeoch, C.C.: Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice. Morgan & Claypool, San Rafael (2014)

    Google Scholar 

  38. Munera, D.: Solving hard combinatorial optimization problems using cooperative parallel metaheuristics. Ph.D. thesis, University of Paris-1, France (2016)

    Google Scholar 

  39. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7_38

    Chapter  Google Scholar 

  40. Okada, S., Ohzeki, M., Taguchi, S.: Efficient partition of integer optimization problems with one-hot encoding, September 2019

    Google Scholar 

  41. Oshiyama, H., Ohzeki, M.: Benchmark of quantum-inspired heuristic solvers for quadratic unconstrained binary optimization (2021)

    Google Scholar 

  42. Rodríguez-Heck, E.: Linear and quadratic reformulations of nonlinear optimization problems in binary variables. Ph.D. thesis, University of Liège, Belgium (2018)

    Google Scholar 

  43. Rosenberg, I.: Reduction of bivalent maximization to the quadratic case. Cahiers du Centre d’Etudes de Recherche Operationnelle 17(71) (1975)

    Google Scholar 

  44. Russo, J., Erickson, K., Beard, J.: Costas array search technique that maximizes backtrack and symmetry exploitation. In: CISS, pp. 1–8 (2010)

    Google Scholar 

  45. Simonis, H.: Limits of propagation (costas array). ECLiPSe ELEarning slides. https://eclipseclp.org/ELearning/costas/handout.pdf

  46. Stollenwerk, T., Lobe, E., Jung, M.: Flight gate assignment with a quantum annealer. In: Feld, S., Linnhoff-Popien, C. (eds.) QTOP 2019. LNCS, vol. 11413, pp. 99–110. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14082-3_9

    Chapter  Google Scholar 

  47. Takemoto, T., et al.: A 144kb annealing system composed of 9\(\times \)16kb annealing processor chips with scalable chip-to-chip connections for large-scale combinatorial optimization problems. In: 2021 IEEE International Solid-State Circuits Conference (ISSCC), pp. 64–66 (2021)

    Google Scholar 

  48. Tanaka, S., Tamura, R., Chakrabarti, B.K.: Quantum Spin Glasses, Annealing and Computation, 1st edn. Cambridge University Press, Cambridge (2017)

    MATH  Google Scholar 

  49. Tatsumura, K.: Large-scale combinatorial optimization in real-time systems by FPGA-based accelerators for simulated bifurcation. In: HEART21 - International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies. ACM (2021)

    Google Scholar 

  50. Vellino, A.: Costas arrays. Technical report, Bell-Northern Research, Ottawa, Canada (1990)

    Google Scholar 

  51. Vulakh, D., Finkel, R.: Parallel m-dimensional relative ant colony optimization (mdraco) for the costas-array problem (2021). https://doi.org/10.21203/rs.3.rs-975983/v1, preprint

  52. Wagner, Z.A., Garren, D.A., Pace, P.E.: SAR imagery via frequency shift keying costas coding. In: 2017 IEEE Radar Conference (RadarConf), pp. 1789–1792 (2017)

    Google Scholar 

  53. Yamaoka, M., Okuyama, T., Hayashi, M., Yoshimura, C., Takemoto, T.: CMOS annealing machine: an in-memory computing accelerator to process combinatorial optimization problems. In: IEEE Custom Integrated Circuits Conference, CICC 2019, Austin, TX, USA, 14–17 April 2019, pp. 1–8. IEEE (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Codognet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Codognet, P. (2022). Modeling the Costas Array Problem in QUBO for Quantum Annealing. In: Pérez Cáceres, L., Verel, S. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2022. Lecture Notes in Computer Science, vol 13222. Springer, Cham. https://doi.org/10.1007/978-3-031-04148-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04148-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04147-1

  • Online ISBN: 978-3-031-04148-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics