
Penalty Weights in QUBO formulations: Permutation
Problems∗

A Preprint

Mayowa Ayodele

Fujitsu Research of Europe Ltd.
The Urban Building, 3-9 Albert Street

Slough, United Kingdom, SL1 2BE
mayowa.ayodele@fujitsu.com

June 23, 2022

Abstract

Optimisation algorithms designed to work on quantum computers or other specialised hardware
have been of research interest in recent years. Commercial solvers that use quantum or quantum-
inspired methods, such as Fujitsu’s Digital Annealer (DA) and D-wave’s Quantum Annealer, can
solve optimisation problems faster than algorithms implemented on general purpose computers.
However, they can only optimise problems that are in binary and quadratic form. Quadratic
Unconstrained Binary Optimisation (QUBO) is therefore a common formulation used by these
solvers.
There are many combinatorial optimisation problems that are naturally represented as permutations
e.g. travelling salesman problem. Encoding permutation problems using binary variables however
presents some challenges. Many QUBO solvers are single �ip solvers, it is therefore possible to
generate solutions that cannot be decoded to a valid permutation. To create bias towards generating
feasible solutions, we use penalty weights. The process of setting static penalty weights for various
types of problems is not trivial. This is because values that are too small will lead to infeasible
solutions being returned by the solver while values that are too large may lead to slower convergence.
In this study, we explore some methods of setting penalty weights within the context of QUBO
formulations. We propose new static methods of calculating penalty weights which lead to more
promising results than existing methods.

Keywords Quantum-Inspired Optimisation · Digital Annealer · Permutation · Penalty Weights · Constraint
Handling · Quadratic Unconstrained Binary Optimisation · Ising Model · Binary Quadratic Problem

1 Background

Permutation problems are well studied combinatorial optimisation problems in nature inspired computing. They have
many real-world applications especially in planning and logistics. Some of the most frequently studied permutation
problems in literature are the well-known Travelling Salesman Problem (TSP) and Quadratic Assignment Problem
(QAP). Since these problems are NP-hard, heuristics and meta-heuristics have been proposed for solving them.

Several classes of algorithms have been applied to problems naturally represented as permutations e.g. Estimation
of Distribution Algorithm Arza et al. [2020], Iterated Local Search and Di�erential Evolution Algorithm Santucci
et al. [2015]. Quantum-inspired algorithms such as the Digital Annealer (DA) has also been shown to present more
promising performance on the QAP when compared to CPLEX and QBSolve Matsubara et al. [2020]. The DA was
particularly shown to be up to three or four orders of magnitude faster than CPLEX on QAP instances and maximum
cut instances.

∗Please cite: https://doi.org/10.1007/978-3-031-04148-8_11

ar
X

iv
:2

20
6.

11
04

0v
1 

 [
m

at
h.

O
C

] 
 2

0 
Ju

n 
20

22

https://orcid.org/0000-0003-0854-4777
https://doi.org/10.1007/978-3-031-04148-8_11


Penalty Weights in QUBO formulations: Permutation Problems A Preprint

Quantum and quantum-inspired methods have been of research interest in recent years. This is because they are able
to exploit the use of specialised hardware to solve optimisation problems much quicker than classical algorithms
implemented on general purpose machines Aramon et al. [2019]. It is common to formulate combinatorial optimisation
problems such as permutation problems in quadratic and binary form such that algorithms that use specialised
hardware including (but not limited to) quantum devices can be used to solve them. In recent years, Quadratic
Unconstrained Binary Optimisation (QUBO) has become a unifying model for representing many combinatorial
optimisation problems Verma and Lewis [2020]. QUBO (or the equivalent Ising) formulations of common combinatorial
optimisation problems are presented in Lucas [2014]. As the name depicts, QUBO problems are unconstrained,
quadratic and of binary form. Since the representation only supports binary information, the natural representation
of permutation problems can therefore not be used. While some classical optimisation algorithms such as genetic
algorithms use permutation representation Hussain et al. [2017] to solve QAP and/or TSP, other algorithms require
alternative representations e.g. random keys Ayodele et al. [2016], factoradics Regnier-Coudert and McCall [2014],
binary Baluja [1994], matrix representation Larranaga et al. [1999] or two-way one-hot Lucas [2014]. The two-way
one-hot representation Glover et al. [2018], Lucas [2014], Matsubara et al. [2020], also known as permutation matrix
Birdal et al. [2021], is often used in QUBO formulations of permutation problems and is used in this study. In this
representation, a substring of bits is used to represent each entity (e.g a location in TSP). In each substring, only one
bit can be turned on and in the entire solution, the bit turned on in each substring must be unique. This representation
ensures that the mutual exclusivity constraint of permutation problems is respected. QUBO solvers such as Path
Relinking method used in Verma and Lewis [2020] and the �rst generation DA in Aramon et al. [2019] are single �ip
solvers and are therefore not able to preserve two-way one-hot validity. To ensure that the problem to be solved is in
‘unconstrained’ form, penalty weights are applied to combine the cost function (unconstrained objective function)
with the constraint function. Solutions are penalised by the magnitude of violation of the constraint(s).

Setting penalty weights is not a trivial task. Values that are too large make the search too di�cult for the solver as
the penalty terms overwhelm the original objective function Verma and Lewis [2020]. Penalty weights that are too
small are highly undesirable as infeasible solutions will displace feasible solutions in the search, causing the solver to
return infeasible solution(s). Penalty weights are however not unique and there are often a range of values that work
well Glover et al. [2019]. The primary objective of setting the penalty weights is often to ensure that the optimal
solution of the QUBO is the optimal solution of the original constrained problem. However, it is also important that
these values are not too large.

In literature, there are many approaches of setting penalty weights for QUBOs. The value can be set by domain
experts Glover et al. [2019]. A common approach is to derive the penalty weights empirically using methods that
increase the weights until feasibility is achieved Rosenberg et al. [2016]. This approach is however computationally
intensive as a full run of the algorithm and analysis of results is required each time until the right value is reached.

Another common approach is to set the penalty weight to a value greater than the largest possible objective value.
Deriving the range (upper bound and lower bound) of the objective function is often problem speci�c. These values
can also be too large. Although there are some general methods of determining the bounds of a QUBO, it is however
often the case that methods with less computational complexity lead to values that are too large while methods that
can provide better bounds are often computationally expensive Boros et al. [2008]. Moreover, while better bounds can
lead to smaller but valid penalty weights (i.e guarantees feasibility of the optimal), the penalty values are still often
larger than desired. In Şeker et al. [2020], the performance of the DA was analysed using di�erent penalty weights
that are fractions of the range of the objective function. The range was derived using problem speci�c information,
the authors found much smaller values can lead to better performance of the DA.

Furthermore, the maximum coe�cient of the QUBO has been used as penalty weights when solving problems like
the TSP. The idea behind this is that, if a TSP solution is penalised by the maximum distance between any two cities,
feasibility of the optimal solution can always be achieved. In Takehara et al. [2019], the authors used a multi-trial
approach. The values used were within a range de�ned using the minimum and the maximum distance between any
two locations. Similarly, in Goh et al. [2020], fractions of the maximum distance were used to derive penalty weights
for the TSP. This is an example of a scenario where values much lower than the full range of the objective function
can be valid. This approach may however not generalise to other problems Verma and Lewis [2020].

In Verma and Lewis [2020], a pre-processing method that can be used to generate penalties for equality constraints
within the context of single �ip QUBO solvers was presented. The authors measure the maximum change in objective
function that can be obtained as a result of any single �ip in a solution. This method, which is referred to as VLM in
this study, is explained in more details in Section 3.

Examples of QUBO (or Ising) solvers that use specialised hardware are D-wave’s Quantum Annealer Johnson et al.
[2011] and Fujitsu’s DA Aramon et al. [2019]. The Quantum Annealer uses Quantum Processing Units (QPU) to
achieve its speed up while the DA uses application-speci�c CMOS hardware. In this study, we analyse the e�ect of

2



Penalty Weights in QUBO formulations: Permutation Problems A Preprint

di�erent methods of generating penalty weights for permutation problems (TSP and QAP). Initial experiments are
based on a CPU implementation of the DA Algorithm presented in Aramon et al. [2019]. Further analysis of the e�ect
of penalty weights are done using the third generation DA (DA3) as the QUBO solver Hiroshi et al. [2021].

The rest of this paper is structured as follows. Section 2 presents the permutation formulations and QUBO formulations
of the TSP and QAP used in this study. Section 3 presents the methods of generating penalty weights. Section 4
presents a description of the DA Algorithm. Experimental Settings are presented in Section 5. Analyses of results and
conclusion are presented in Sections 6 and 7 respectively.

2 Permutation Problems

A valid permutations is described as σ = {σ1, . . . , σn}, where σi 6= σj ∀ i 6= j. In general, QUBO problems can be
de�ned as follows:

E(x) = xTQx+ k , (1)

where Q and k are m ×m QUBO matrix and constant term, the solution x = (x1, . . . , xm) is an m-dimensional
vector, and E(x) is the energy (or �tness) of x. To formulate permutation problems as QUBO, it is important for the
problem to be formulated as zeros and ones as these are the only values supported by QUBO solvers. Some of the
well-known approaches of transforming integer values to zeros and ones are binary, gray code and one-hot. Within
the context of QUBOs, the two-way one-hot (permutation matrix) encoding is often used to represent permutations
and will be used in this study.

The energy (�tness function) of the problem is shown in Eq. (2) where c(x) and g(x) are respectively cost and
constraint functions while α is the penalty weight. The generic cost and constraint functions of permutation problems
are presented in Eqs. (3) and (4) Goh et al. [2020].

minimise E(x) = c (x) + α× g (x) (2)

c(x) =

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

xi,kQi,k,j,lxj,l (3)

g(x) =

n∑
i=1

(
1−

n∑
k=1

xi,k

)2

+

n∑
k=1

(
1−

n∑
i=1

xi,k

)2

. (4)

Note that the constraint function is designed to ensure that the solutions can be converted to valid permutations i.e.
penalise solutions that do not satisfy,

n∑
k=1

xi,k = 1 ∀ i ∈ {1, . . . , n} ,
n∑
i=1

xi,k = 1 ∀ k ∈ {1, . . . , n} . (5)

In Eqs. (3) - (5), binary variable xi,k indicates whether an object i is assigned to position k or not. We however note
that x is solved as a vector of size m = n2 rather than a n × n matrix. Also, while Qi,k,j,l in Eq. (3) is the QUBO
coe�cient that captures the relationship between an object i being in position k and an object j being in position
l. In the rest of this paper, QUBO matrices C and G representing the cost or constraint functions are presented as
m×m matrices.

2.1 Quadratic Assignment Problem

The QAP can be described as the problem of assigning a set of n facilities to a set of n locations. For each pair of
locations, a distance is speci�ed. For each pair of facilities, a �ow (or weight) is speci�ed. The aim is to assign each
facility to a unique location such that the sum of the products between �ows and distances is minimised.

Formally, the QAP consists of two n× n input matrices H = [hi,j ] and D = [dk,l], where hi,j is the �ow between
facilities i and j, and dk,l is the distance between locations k and l, the solution to the QAP is a permutation

3



Penalty Weights in QUBO formulations: Permutation Problems A Preprint

σ = (σ1, . . . , σn) where σi represents the location that facility i is assigned to. The objective function (total cost) is
formally de�ned as follows

minimise f(σ) =

n∑
i=1

n∑
j=1

hi,j × dσi,σj
. (6)

We aim to solve Eq. (2) where the cost function c(x) of the QUBO representing the QAP is presented in Eq. (7) and
the constraint function g(x) is the same as Eq. (4).

c (x) =

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

hi,jdk,lxi,kxj,l . (7)

Any solution x can be encoded with n2 variables, when x is presented in vector format.

2.2 Travelling Salesman Problem

The TSP consists of n locations and a matrix d representing distances between any two locations. The aim of the
TSP is to minimise the distance travelled while visiting each location exactly once and returning to the location of
origin. Given that σi is used to denote the ith city and dσi−1,σi is the distance between σi and σi−1. The solution to
the TSP is a permutation σ = {σ1, . . . , σn} where each σi (i = 1, . . . , n) represents the ith location to visit. The TSP
is formally de�ned as

minimise f (σ) =

n∑
i=2

dσi−1,σi + dσn,σ1 . (8)

We aim to solve Eq. (2) where the cost function, c(x) of the QUBO representing the TSP is presented in Eq. (9) and
the constraint function g(x) is the same as Eq. (4).

c (x) =
∑

(l,i)∈E

dl,i

n∑
k=1

xl,kxi,k+1 . (9)

The TSP instances used in this work are symmetric, we can therefore �x the �rst city, reducing the size of x to
(n− 1)2 Lucas [2014].

Note that QUBOs for these problems can be generated using packages such as PyQUBO Zaman et al. [2021]. QUBOs
are generated in this study using method in Moraglio and Georgescu [2020].

3 Penalty Weights

The aim of this study is to derive methods of setting α in Eq. (2) such that the optimal solution to the penalised
objective function is the optimal solution of the original constrained problem. We do this without problem speci�c
knowledge but use information captured in the QUBO matrices representing the cost and constraint functions. This
is shown in Eq. (10), c (y) is used to denote the cost function of the optimal solution y. S is the solution space of
infeasible solutions. Note that g(x) produces a non-negative value, g(x) = 0 if the solutions are feasible but g(x) > 0
for infeasible solutions. The value of g(x) increases according to the degree of constraint violation.

c (y) < c (x) + α× g (x) ∀ x ∈ S . (10)

Eq. (10) implies that a valid penalty weight α is one that satis�es Eq. (11)

α > max
x∈S

(
c (y)− c (x)

g (x)

)
. (11)

4



Penalty Weights in QUBO formulations: Permutation Problems A Preprint

In the rest of this study, C and G are used to denote the QUBO matrices representing c(x) and g(x) respectively.
Note that Q, which is the QUBO matrix optimised by the solver, can be derived by aggregating the matrices (i.e.
Q = C+α×G), where α ≥ 1. The methods of generating penalty weights used in this study are described as follow:

UB: A common method of setting penalty weights is based on the Upper Bound (UB) of the objective function. The
UB of C used in this study is presented in Eq. (12). This is a valid upper bound for problems with all positive QUBO
coe�cients. We note that a solution consisting of all 1s is an infeasible solution but it gives an estimate of how large
the objective function could be.

UB = zTCz, zi = 1 ∀ i ∈ [1, n] . (12)

MQC: The Maximum QUBO Coe�cient (MQC) which also corresponds to the maximum distance between any two
cities in the TSP has been used as penalty weights in previous study Lucas [2014]. MQC is de�ned in Eq. (13).

MQC =
n

max
i=1

n
max
j=1

Ci,j . (13)

VLM: This is the method proposed by Verma and Lewis Verma and Lewis [2020]. For a 1-�ip solver like the DA, any
variable xi can be �ipped from 0 to 1 and vice versa at each iteration of the algorithm. VLM focuses on deriving a
good estimate for the numerator of Eq. (11), i.e. (c(y) − c(x)). The method estimates the amount of gain/loss in
objective function that can be achieved by either turning a bit on or o�. They do not consider the denominator
(i.e g(x)) which the authors recognise will be hard to estimate without complete enumeration. Since g(x) > 0 in
infeasible solutions, VLM (Eq. (14)) will always be valid.

W c =

{
−Ci,i −

n∑
j=1
j 6=i

min{Ci,j , 0}, Ci,i +

n∑
j=1
j 6=i

max{Ci,j , 0} ∀ i ∈ [1, n]

}
(14)

α = VLM =
n

max
i=1

W c
i . (15)

MOMC: We propose an amendment to VLM Verma and Lewis [2020]. We refer to the proposed method as the
Maximum change in Objective function divided by Minimum Constraint function of infeasible solutions (MOMC). We
note that g(x) is not considered in Eq. (14). VLM can be reduced such that α is still valid, if we know the minimum
constraint function (g(x)) of any infeasible solution. This can be computed from G by estimating the minimum
change in constraint function that is greater than 0 as shown in Eq. (16).

W g =

{
−Gi,i −

n∑
j=1
j 6=i

min{Gi,j , 0}, Gi,i +

n∑
j=1
j 6=i

max{Gi,j , 0} ∀ i ∈ [1, n]

}
(16)

γ =
n

min
i=1
W g

i >0

W g
i . (17)

For permutation problems represented as two-way one-hot, g(x) of any solution that is a �ip away from a feasible
solution is 2 (i.e. γ = 2). Method of generation α using the proposed MOMC is presented in Eq. 18 where W c and γ
are derived as shown in Eqs. (14) and (17)

α = MOMC = max

(
1,

VLM
γ

)
= max

(
1,

maxni=1W
c
i

2

)
. (18)

MOC: We propose another amendment to the VLM method. The method presented here is derived by selecting
the Maximum value derived from dividing each change in Objective function with the corresponding change in
Constraint function (MOC). MOC captures possible equivalent increase in constraint function as a result of a change
in objective function which could be achieved by �ipping any bit from 0 to 1 or vice versa. Method of generation α
using the proposed MOC is presented in Eq. (19) where W c and W g are derived as shown in Eqs. (14) and (16)

5



Penalty Weights in QUBO formulations: Permutation Problems A Preprint

α = MOC = max

1,
n

max
i=1
W g

i >0

abs

(
W c
i

W g
i

) . (19)

4 Digital Annealer

The DA is a technology designed to solve large scale combinatorial optimisation problems in much shorter time than
most classical algorithms.

Algorithm 1 The DA (1st generation) Algorithm
1: initial_state← an arbitrary state
2: for each run do

3: initialise to initial_state
4: Eo�set ← 0
5: for each iteration do

6: update the temperature if due for temperature update
7: for each variable j, in parallel do

8: propose a �ip using ∆Ej − Eo�set
9: if acceptance criteria (Pj ) is satis�ed, record

10: end for

11: if at least one �ip is recorded as meeting the acceptance criteria then

12: chose one �ip at random from recorded �ips
13: update the state and e�ective �elds, in parallel
14: Eo�set ← 0
15: else

16: Eo�set = Eo�set+ o�set_increase_rate
17: end if

18: end for

19: end for

The �rst generation DA is a single �ip solver with similar properties as the Simulated Annealing (SA). It is however
designed to be more e�ective than the classical SA algorithm Aramon et al. [2019]. The standard algorithm of the
�rst generation DA is presented in Alg. 1. The DA algorithm exploits the use of specialised hardware such that all
neighbouring solutions are explored in parallel and in constant time regardless of the number of neighbours. This
approach signi�cantly improves acceptance probabilities of the regular SA algorithm. The DA does not completely
evaluate each solution but computes the energy di�erence resulting from �ipping any single bit of the parent
solution. Also, the DA uses an escape mechanism to avoid being trapped in local optimal. As shown in the algorithm,
Eo�set is used to relax acceptance criteria. The Eo�set is incremented by a parameter (o�set_increase_rate) each
time no neighbour which satis�es the acceptance criteria is found. The acceptance criteria used in this study is
Pj = exp(min(0,−(∆Ej−Eo�set)/δ)) where Pj is the probability of accepting the jth �ip. Note that ∆Ej represents
the di�erence in energy as a result of �ipping the jth bit and δ is the current temperature.

More extensive details of the algorithm can be seen in Aramon et al. [2019]. The �rst and second generation DAs
were released in May 2018 and December 2018. Both versions were designed to solve optimisation problems that
have been formulated as QUBOs. The most recent generation of the DA is the DA3 which is able to �nd optimal or
sub optimal solutions to Binary Quadratic Problems (BQP) of up to 100,000 bits Hiroshi et al. [2021]. BQPs include
QUBO but also other binary and quadratic formulations that may have constraints. Note that the algorithm that
supports DA3 has been updated to perform better than the current algorithm presented. For simplicity, we use the
CPU implementation of Algorithm 1 in this study to evaluate the quality of solution derived when using di�erent
penalty weights. We however also presented some results derived using DA3.

5 Experimental Setup

Problem sets, measure of performance and parameter settings used in this study are presented in this section.

6



Penalty Weights in QUBO formulations: Permutation Problems A Preprint

5.1 Datasets

In order to compare the behaviour of the DA with di�erent penalty weights, we used common TSP and QAP instances
from TSPLIB Reinelt [1991] and QAPLIB Burkard et al. [1997]. The instances used in this study and the corresponding
solution sizes m are presented in Table 1.

Table 1: QAP and TSP instances and their solution sizes
QAP Instances m

had12 144
had14 196
had16 256
had18 324
had20 400

QAP Instances m

rou12 144
rou15 225
rou20 400
tai40a 1600
tai40b 1600

TSP Instances m

bays29 784
bayg29 784
berlin52 2601
brazil58 3249

dantzig42 1681

TSP Instances m

fri26 625
gr17 256
gr21 400
gr24 529
st70 4761

QUBO matrices (in upper triangular format) representing the cost and constraint functions of these QAP and TSP
instances used are made available2

5.2 Performance Measure

We compare the performance of the DA using di�erent methods of generating penalty weights. The performance
measure used is the Average Relative Percentage Deviation (ARPD) de�ned in Eq. (20)

ARPD =
1

r

r∑
i=1

(
DA(α)i − Optimal

Optimal

)
× 100 . (20)

Note that DA(α)i is the best energy returned by the DA for the ith run using penalty weight set to α and r is the
number of runs. We set r = 20 and the optimal value are obtained from QAPLIB and TSPLIB.

5.3 Parameter Settings: DA Algorithm

The parameter settings used in the DA and DA3 are shown in Table 2. For the DA, the temperature is set
to decrease from ‘Initial Temperature’ to ‘Final Temperature’ by a fraction ‘Temperature Decay’. Note δi =
max (δf , δi−1 ∗ (1− ρ)) where δi denotes the temperature at iteration i. In the DA3, temperature and o�set increment
related parameters are automatically set. Therefore, no manual setting is required for the DA3, these parameters
are thus shown as ‘NA’ for DA3 in Table 2. The stopping criteria used in the DA (CPU implementation) is ‘number
of iterations’ but ‘time (in seconds)’ is used in DA3. This is because the two stopping criteria allowed in the DA3
are time and target energy (�tness). The DA is executed for m2 iterations while the time limit for DA3 is set to the
ceiling of 3% of m in seconds (m is presented in Table 1). Each experiment is executed independently 20 times. The
parameters are chosen based on preliminary experiments. Note that β = V LM (Eq. (14)).

Table 2: Parameter Settings

Parameter DA DA3

Initial Temperature δ0 0.1β, β, 10β NA
Final Temperature δf 1 NA

Stopping Criteria m2 d0.03me sec
o�set_increase_rate δ0 ÷m2 NA
Number of Runs r 20 20

Temperature Decay ρ 0.001 NA

2https://github.com/mayoayodelefujitsu/QUBOs

7

https://github.com/mayoayodelefujitsu/QUBOs


Penalty Weights in QUBO formulations: Permutation Problems A Preprint

6 Results

In this section, di�erent methods of generating penalty weights are compared using the parameter settings presented
in Section 5.3. Results using the CPU implementation of the �rst generation DA algorithm are presented. Further
results relating to the third generation DA are also presented.

6.1 Penalty Weights for TSP and QAP instances

Table 3 shows the penalty weights derived for di�erent TSP and QAP instances using the methods of generating
penalty weights de�ned in Section 3. The smallest and valid penalty weights are highlighted in bold. Validity of the
penalty weights are assessed in Section 6.2. It should be noted that the methods were applied to QUBO matrices in
upper triangular format.

Table 3: Penalty weights for QAP and TSP instances derived using di�erent methods
Problem
Category

Instance
Name

Penalty Weights
UB MQC VLM MOMC MOC

QAP had12 249,240 126 5,460 2,730 488

QAP had14 573,484 162 8,968 4,484 533

QAP had16 1,014,488 162 12,580 6,290 545

QAP had18 1,832,940 200 16,102 8,051 1,513

QAP had20 2,950,640 220 20,928 10,464 1,335

QAP rou12 40,734,756 19,602 874,944 437,472 34,531

QAP rou15 98,340,328 19,602 1,498,176 749,088 79,715

QAP rou20 346,044,384 19,602 2,569,174 1,284,587 123,342

QAP tai40a 5,904,547,332 19,602 10,418,804 5,209,402 176,904

QAP tai40b 1,767,388,016,312 32,656,592 4,524,144,275 2,262,072,138 56,133,309

TSP bayg29 3,381,534 386 6,279 3,140 2,404
TSP bays29 4,259,764 509 8,593 4,297 3,003
TSP berlin52 74,165,126 1,716 55,515 27,758 27,148
TSP brazil58 379,655,572 8,700 288,552 144,276 55,557
TSP dantzig42 4,814,472 192 5,029 2,515 1,915
TSP fri26 1,455,150 280 4,833 2,417 1,616
TSP gr17 1,005,188 745 7,981 3,991 3,074
TSP gr21 2,666,064 865 11,160 5,580 2,853
TSP gr24 1,609,942 389 5,185 2,593 1,888
TSP st70 16,647,424 129 5,055 2,528 2,079

6.2 CPU implementation of the DA Algorithm: comparing methods of generating penalty weights

In this section, results derived using CPU implementation of the �rst generation DA algorithm are presented. Table 4
shows the number of feasible solutions returned by the DA within the stopping criteria when di�erent methods of
generating penalty weights are used.

Tables 5, 6 and 7 respectively present the ARPD derived by the DA at initial temperature set to 0.1β, β and 10β using
di�erent methods of generating penalty weights. The ARPD for MQC is not presented for QAP instances in any of
the tables because no feasible solution was found.

UB, MQC and MOC present their best ARPD averaged across TSP instances when the temperature is set to 0.1β
while MOMC and VLM present their best ARPD on TSP instances when temperature is set to β. UB presents its best
performance on QAP instances when temperature is set to 0.1β, and MOC, MOMC and VLM present the best ARPD
averaged across all QAP instances when the temperature is set to 10β .

In Table 5, the DA presents the best average ARPD on QAP instances when the method of setting penalty weight is
set to MOC. The DA however presents the best average ARPD on TSP instances when MQC is used. These results
are expected since the MOC and MQC respective present the smallest yet valid penalty weights for QAP and TSP
instances. ARPD for QAP instance rou12, is shown in italics when the method of setting penalty weight is set to MOC
because the ARPD is only computed using the 13 feasible solutions found while others are generated using 20 feasible

8



Penalty Weights in QUBO formulations: Permutation Problems A Preprint

Table 4: Number of DA runs that returned feasible solutions out of 20 runs using di�erent methods of generating
weights for QAP instances (left) and TSP instances (right). The same number of feasible solutions was obtained for
QAP and TSP instances with di�erent values of initial temperature (δ0 = 0.1β/β/10β) apart from ‘rou12’ when
MOC is used, the respective values derived using each temperature is therefore presented.

Instance
Name

Number of feasible runs
UB MQC VLM MOMC MOC

had12 20 0 20 20 20
had14 20 0 20 20 20
had16 20 0 20 20 20
had18 20 0 20 20 20
had20 20 0 20 20 20
rou12 20 0 20 20 13/14/14
rou15 20 0 20 20 20
rou20 20 0 20 20 20
tai40a 20 0 20 20 20
tai40b 20 0 20 20 20

Instance
Name

Number of feasible runs
UB MQC VLM MOMC MOC

bayg29 20 20 20 20 20
bays29 20 20 20 20 20

berlin52 20 20 20 20 20
brazil58 20 20 20 20 20

dantzig42 20 20 20 20 20
fri26 20 20 20 20 20
gr17 20 20 20 20 20
gr21 20 20 20 20 20
gr24 20 20 20 20 20
st70 20 20 20 20 20

Table 5: ARPD from Optimal on QAP (left) and TSP (right) instances where initial temperature δ0 = 0.1× β
Instance

Name Optimal ARPD
UB VLM MOMC MOC

had12 1,652 14.15 12.98 11.98 6.40

had14 2,724 16.20 14.85 13.86 6.28

had16 3,720 12.23 13.63 10.76 5.50

had18 5,358 11.97 11.24 9.25 6.35

had20 6,922 12.46 12.15 8.99 6.25

rou12 235,528 29.12 29.15 27.98 10.37
rou15 354,210 30.75 33.34 28.21 16.28

rou20 725,522 24.04 25.96 20.42 14.35

tai40a 3,139,370 20.44 20.73 16.08 13.00

tai40b 637,250,948 77.76 76.51 52.92 11.73

Avg 24.91 25.05 20.05 9.65

Instance
Name Optimal ARPD

UB MQC VLM MOMC MOC
bayg29 1,610 189.59 52.94 180.69 125.19 114.98
bays29 2,020 190.45 55.52 188.23 130.47 116.61

berlin52 7,542 295.70 100.40 289.46 212.58 209.45
brazil58 25,395 389.04 138.94 390.04 276.79 260.21

dantzig42 699 340.26 95.05 335.62 225.04 224.17
fri26 937 177.06 57.32 177.34 120.84 107.51
gr17 2,085 112.06 29.67 107.56 84.75 66.97
gr21 2,707 170.91 44.82 166.01 123.01 93.32
gr24 1,272 166.45 52.37 160.64 114.54 102.29
st70 675 444.14 124.52 419.62 330.44 325.83

Avg 247.57 75.16 241.52 174.37 162.13

Table 6: ARPD from Optimal on QAP (left) and TSP (right) instances where initial temperature δ0 = β

Instance
Name Optimal ARPD

UB VLM MOMC MOC
had12 1,652 15.25 7.65 8.33 6.54

had14 2,724 15.26 9.37 9.76 6.43

had16 3,720 13.27 8.13 8.75 5.41

had18 5,358 11.40 7.08 7.04 6.55

had20 6,922 12.86 7.38 7.66 6.74

rou12 235,528 32.12 20.34 20.75 9.58
rou15 354,210 31.33 22.00 21.37 15.75

rou20 725,522 24.49 17.77 17.91 13.69

tai40a 3,139,370 20.43 16.10 16.13 12.89

tai40b 637,250,948 78.61 51.81 51.25 11.49

Avg 25.50 16.76 16.89 9.51

Instance
Name Optimal ARPD

UB MQC VLM MOMC MOC
bayg29 1,610 194.42 54.69 127.05 120.22 117.59
bays29 2,020 196.69 57.22 124.98 122.92 120.10

berlin52 7,542 298.15 102.47 217.57 214.73 214.16
brazil58 25,395 380.88 137.75 278.99 277.66 261.90

dantzig42 699 350.45 100.25 238.07 232.41 222.18
fri26 937 185.14 59.04 116.29 114.82 109.82
gr17 2,085 128.08 31.41 70.44 62.56 60.52
gr21 2,707 190.91 52.99 114.31 105.63 98.48
gr24 1,272 178.25 52.85 114.77 104.18 98.75
st70 675 435.61 129.66 335.66 331.78 329.34

Avg 253.86 77.83 173.81 168.69 163.28

solutions. The DA presents the worst average ARPD on QAP (or TSP) instances when the method of setting penalty
weights is set to VLM (or UB).

In Tables 6 and 7, similar to the results produced in Table 5, the DA presents the best average ARPD on QAP instances
when the methods of setting penalty weight is set to MOC and the best average ARPD on TSP instances when set to
MQC. ARPD for QAP instance rou12, is shown in italics when the method of setting penalty weight is set to MOC
because the ARPD is only computed using the 14 feasible solutions found while others are generated using 20 feasible

9



Penalty Weights in QUBO formulations: Permutation Problems A Preprint

Table 7: ARPD from Optimal on QAP (left) and TSP (right) instances where initial temperature δ0 = 10× β
Instance

Name Optimal ARPD
UB VLM MOMC MOC

had12 1,652 11.26 7.99 8.51 6.22

had14 2,724 15.56 9.13 9.48 6.11

had16 3,720 14.02 8.19 8.19 5.12

had18 5,358 11.80 7.07 7.31 6.03

had20 6,922 12.57 7.32 7.33 6.43

rou12 235,528 28.30 18.94 16.50 10.02
rou15 354,210 33.98 21.02 20.16 14.57

rou20 725,522 25.19 17.80 17.36 13.05

tai40a 3,139,370 20.96 16.00 15.97 12.54

tai40b 637,250,948 79.65 50.85 49.94 12.10

Avg 25.33 16.43 16.07 9.22

Instance
Name Optimal ARPD

UB MQC VLM MOMC MOC
bayg29 1,610 193.29 57.27 127.64 122.24 122.83
bays29 2,020 196.84 57.57 132.84 124.92 111.88

berlin52 7,542 300.65 103.48 218.34 215.59 214.92
brazil58 25,395 375.04 139.30 285.40 273.91 265.80

dantzig42 699 333.03 100.39 238.24 227.12 230.27
fri26 937 180.85 62.51 124.09 114.74 11.27
gr17 2,085 122.95 30.19 70.65 64.84 60.17
gr21 2,707 178.13 52.73 115.05 107.30 99.54
gr24 1,272 179.79 56.82 116.19 106.69 103.71
st70 675 452.83 126.34 337.61 334.76 325.69

Avg 251.34 78.66 176.61 169.21 164.56

solutions. The DA presents the worst average ARPD on QAP and TSP instances when the method of setting penalty
weights is set to UB.

In general, the results show that the methods which produced the smallest valid penalty weights (MQC for TSP and
MOC for QAP) consistently produced the best ARPD. Conversely, the results also show that the method that produced
the largest penalty weights on TSP and QAP instances (UB) often presents the worst ARPD. For permutation problems
represented as two-way one-hot, all neighbours of a feasible solution are infeasible solutions. It is therefore important
for penalty weights to be small enough to encourage the algorithm to explore infeasible solutions in order to �nd
better feasible solutions.

6.3 DA3: Comparing methods of generating penalty weights

In section 6.2, we show how di�erent methods of generating penalty weights can a�ect the performance of the
1st generation DA (CPU implementation). In this section, we present results using DA3 (i.e. version of the third
generation DA which bene�ts from hardware speed-up). It should be noted that the DA3 has more capabilities and
can be executed in many modes. A major improvement presented by the DA3 is the ability to handle linear inequality
and one-hot constraints.

Table 8: ARPD derived using DA3 with di�erent methods of generating penalty weights on QAP (left) and TSP (right)
instances

Instance
Name Optimal ARPD

UB VLM MOMC MOC
had12 1,652 0.00 0.00 0.00 0.00

had14 2,724 0.00 0.00 0.00 0.00

had16 3,720 0.00 0.00 0.00 0.00

had18 5,358 0.00 0.00 0.00 0.00

had20 6,922 0.00 0.00 0.00 0.00

rou12 235,528 0.00 0.00 0.00 0.00

rou15 354,210 0.00 0.00 0.00 0.00

rou20 725,522 0.00 0.00 0.00 0.00

tai40a 3,139,370 0.07 0.07 0.07 0.07

tai40b 637,250,948 0.00 0.00 0.00 0.00

Average 0.01 0.01 0.01 0.01

Instance
Name Optimal ARPD

UB MQC VLM MOMC MOC
bayg29 1,610 0.00 0.00 0.00 0.00 0.00

bays29 2,020 0.00 0.00 0.00 0.00 0.00

berlin52 7,542 1.86 2.96 4.16 6.05 2.20
brazil58 25,395 1.53 3.33 1.53 1.58 1.43

dantzig42 699 0.00 0.00 0.00 0.00 0.00

fri26 937 0.00 0.00 0.00 0.00 0.00

gr17 2,085 0.00 0.00 0.00 0.00 0.00

gr21 2,707 0.00 0.00 0.00 0.00 0.00

gr24 1,272 0.00 0.00 0.00 0.00 0.00

st70 675 2.67 1.48 2.41 2.37 2.39
Average 0.61 0.78 0.81 1.00 0.60

We present the ARPD achieved within 0.03m seconds (where m represents the size of the solution) of executing DA3
with di�erent methods of generating penalty weights in Table 8. DA3 achieves 100% feasibility on TSP instances with
any of the penalty methods, it also achieves 100% feasibility on QAP when UB, VLM, MOMC and MOC methods are
used. Furthermore, the standard deviation across 20 runs of the DA3 is often 0. For all QAP instances as well as 7 out
of 10 TSP instances, DA3 obtains the same ARPD regardless of the penalty weights. DA3 presents varying ARPD on
the largest TSP instances when di�erent methods of generating penalty weights are used. Best ARPD was obtained
for berlin52, brazil58 or st70 when UB, MOC or MQC is used respectively. There is therefore no clear evidence of one
method being the best. We can therefore not make the same conclusions as the previous section, where there was
clear evidence of smaller and valid penalty weights leading to better solution quality. Similarities in performance

10



Penalty Weights in QUBO formulations: Permutation Problems A Preprint

of DA3 regardless of penalty weights used may be because of the algorithmic changes made since 1st generation
DA. DA3 is designed to solve problems formulated as two-way one-hot more e�ciently Hiroshi et al. [2021]. It is
also able to automatically �nd the best parameter settings for any BQP. The algorithm that supports DA3 is however
not publicly available, it is therefore di�cult to be precise about the reason for the di�erence in performance when
compared to the �rst generation DA.

7 Conclusion and Further Work

Permutation problems like TSP and QAP can be formulated as QUBO such that algorithms that use specialised
hardware e.g. Quantum Annealer or DA can solve them. Transforming these problems into QUBO form requires the
setting of penalty weights. In this study, we examined di�erent methods of generating penalty weights within the
context of using the DA algorithm for solving permutation problems. The permutation problems used are TSP and
QAP. We present improvements to existing methods of generating penalty weights leading to better performance of
the DA. Although the DA algorithm, which shares similar properties with SA, was in�uenced by the magnitude of
penalty weights, we could not reach the same conclusions with DA3. It was impossible to do deeper analysis because
the DA3 algorithm is not publicly available. Further research into how various algorithms behave with di�erent
mechanisms of generating penalty weights is therefore necessary.

References

Etor Arza, Aritz Pérez, Ekhine Irurozki, and Josu Ceberio. Kernels of mallows models under the hamming distance
for solving the quadratic assignment problem. Swarm and Evolutionary Computation, 59:100740, 2020.

Valentino Santucci, Marco Baioletti, and Alfredo Milani. Algebraic di�erential evolution algorithm for the permutation
�owshop scheduling problem with total �owtime criterion. IEEE Transactions on Evolutionary Computation, 20(5):
682–694, 2015.

Satoshi Matsubara, Motomu Takatsu, Toshiyuki Miyazawa, Takayuki Shibasaki, Yasuhiro Watanabe, Kazuya Takemoto,
and Hirotaka Tamura. Digital annealer for high-speed solving of combinatorial optimization problems and its
applications. In 2020 25th Asia and South Paci�c Design Automation Conference (ASP-DAC), pages 667–672. IEEE,
2020.

Maliheh Aramon, Gili Rosenberg, Elisabetta Valiante, Toshiyuki Miyazawa, Hirotaka Tamura, and Helmut G Katz-
graber. Physics-inspired optimization for quadratic unconstrained problems using a digital annealer. Frontiers in
Physics, 7:48, 2019.

Amit Verma and Mark Lewis. Penalty and partitioning techniques to improve performance of qubo solvers. Discrete
Optimization, page 100594, 2020. ISSN 1572-5286. doi:https://doi.org/10.1016/j.disopt.2020.100594. URL https:
//www.sciencedirect.com/science/article/pii/S1572528620300281.

Andrew Lucas. Ising formulations of many np problems. Frontiers in physics, 2:5, 2014.
Abid Hussain, Yousaf Shad Muhammad, M Nauman Sajid, Ijaz Hussain, Alaa Mohamd Shoukry, and Showkat Gani.

Genetic algorithm for traveling salesman problem with modi�ed cycle crossover operator. Computational intelligence
and neuroscience, 2017, 2017.

Mayowa Ayodele, John McCall, and Olivier Regnier-Coudert. Rk-eda: A novel random key based estimation of
distribution algorithm. In International Conference on Parallel Problem Solving from Nature, pages 849–858. Springer,
2016.

Olivier Regnier-Coudert and John McCall. Factoradic representation for permutation optimisation. In International
Conference on Parallel Problem Solving from Nature, pages 332–341. Springer, 2014.

Shumeet Baluja. Population-based incremental learning. a method for integrating genetic search based function
optimization and competitive learning. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Dept Of Computer
Science, 1994.

Pedro Larranaga, Cindy M. H. Kuijpers, Roberto H. Murga, Inaki Inza, and Sejla Dizdarevic. Genetic algorithms for
the travelling salesman problem: A review of representations and operators. Arti�cial intelligence review, 13(2):
129–170, 1999.

Fred Glover, Gary Kochenberger, and Yu Du. A tutorial on formulating and using qubo models. arXiv preprint
arXiv:1811.11538, 2018.

Tolga Birdal, Vladislav Golyanik, Christian Theobalt, and Leonidas J. Guibas. Quantum permutation synchronization.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 13122–13133,
June 2021.

11

https://doi.org/https://doi.org/10.1016/j.disopt.2020.100594
https://www.sciencedirect.com/science/article/pii/S1572528620300281
https://www.sciencedirect.com/science/article/pii/S1572528620300281


Penalty Weights in QUBO formulations: Permutation Problems A Preprint

Fred Glover, Gary Kochenberger, and Yu Du. Quantum bridge analytics i: a tutorial on formulating and using qubo
models. 4OR, 17(4):335–371, 2019.

Gili Rosenberg, Poya Haghnegahdar, Phil Goddard, Peter Carr, Kesheng Wu, and Marcos López De Prado. Solving the
optimal trading trajectory problem using a quantum annealer. IEEE Journal of Selected Topics in Signal Processing,
10(6):1053–1060, 2016.

Endre Boros, Peter L Hammer, Richard Sun, and Gabriel Tavares. A max-�ow approach to improved lower bounds for
quadratic unconstrained binary optimization (qubo). Discrete Optimization, 5(2):501–529, 2008.

Oylum Şeker, Neda Tanoumand, and Merve Bodur. Digital annealer for quadratic unconstrained binary optimization:
a comparative performance analysis. arXiv preprint arXiv:2012.12264, 2020.

Kota Takehara, Daisuke Oku, Yoshiki Matsuda, Shu Tanaka, and Nozomu Togawa. A multiple coe�cients trial method
to solve combinatorial optimization problems for simulated-annealing-based ising machines. In 2019 IEEE 9th
International Conference on Consumer Electronics (ICCE-Berlin), pages 64–69. IEEE, 2019.

Siong Thye Goh, Sabrish Gopalakrishnan, Jianyuan Bo, and Hoong Chuin Lau. A hybrid framework using a qubo
solver for permutation-based combinatorial optimization. arXiv preprint arXiv:2009.12767, 2020.

Mark W Johnson, Mohammad HS Amin, Suzanne Gildert, Trevor Lanting, Firas Hamze, Neil Dickson, Richard Harris,
Andrew J Berkley, Jan Johansson, Paul Bunyk, et al. Quantum annealing with manufactured spins. Nature, 473
(7346):194–198, 2011.

Nakayama Hiroshi, Koyama Junpei, Yoneoka Noboru, and Miyazawa Toshiyuki. Third generation digital annealer
technology, 2021. URL https://www.fujitsu.com/global/documents/about/research/
techintro/3rd-g-da_en.pdf.

Mashiyat Zaman, Kotaro Tanahashi, and Shu Tanaka. Pyqubo: Python library for mapping combinatorial optimization
problems to qubo form. arXiv preprint arXiv:2103.01708, 2021.

Alberto Moraglio and Serban Georgescu. Ising machine data input apparatus and method of inputting data into
an ising machine, Dec 2020. URL https://worldwide.espacenet.com/patent/search?q=pn%
3DEP3754564A1. Patent No. EP3754564A1, Filed June 21st., 2019, Issued Aug. 9th., 2009.

Gerhard Reinelt. Tsplib—a traveling salesman problem library. ORSA journal on computing, 3(4):376–384, 1991.
Rainer E Burkard, Stefan E Karisch, and Franz Rendl. Qaplib–a quadratic assignment problem library. Journal of
Global optimization, 10(4):391–403, 1997.

12

https://www.fujitsu.com/global/documents/about/research/techintro/3rd-g-da_en.pdf
https://www.fujitsu.com/global/documents/about/research/techintro/3rd-g-da_en.pdf
https://worldwide.espacenet.com/patent/search?q=pn%3DEP3754564A1
https://worldwide.espacenet.com/patent/search?q=pn%3DEP3754564A1

	1 Background
	2 Permutation Problems
	2.1 Quadratic Assignment Problem
	2.2 Travelling Salesman Problem

	3 Penalty Weights
	4 Digital Annealer
	5 Experimental Setup
	5.1 Datasets
	5.2 Performance Measure
	5.3 Parameter Settings: DA Algorithm

	6 Results
	6.1 Penalty Weights for TSP and QAP instances
	6.2 CPU implementation of the DA Algorithm: comparing methods of generating penalty weights
	6.3 DA3: Comparing methods of generating penalty weights

	7 Conclusion and Further Work

