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Preface

Everybody engages in problem solving, and this book is about the science
of problem solving. It aims to teach its readers a new way of thinking about
designing solutions to problems that takes them beyond trial-and-error think-
ing. Trial and error is, indeed, a fundamental problem-solving technique but
must be tightly coupled with design to be effectively used. Trials or exper-
iments must be thought out and planned. What does this mean? It means
that problem solvers must engage in careful and thorough consideration of
the different options they have to solve a problem. Problem-solving tech-
niques must be used appropriately, and different solutions to a problem must
be evaluated to choose the best one. The evaluation of a solution is done
both mathematically and empirically. That is, theory and practice play a
pivotal role in problem solving. Rest assured that the problem-solving and
programming techniques you learn may be used to solve problems using any
programming language.

This textbook continues the journey started in Animated Problem Solv-
ing and completes a year-long (two semesters) curriculum for first-year stu-
dents. Readers of this book are likely to be familiar with writing expressions,
defining data, divide and conquer, iterative design, designing functions using
structural recursion, abstraction and abstract functions, and even distributed
programming. Indeed, you are likely to already be very powerful problem
solvers and programmers. Now it is time to become even more powerful pro-
grammers. How is this achieved? This book aids this quest by exploring with
you new types of recursion, by introducing you to the use of randomness,
by taking the first steps into experimental Computer Science and algorithm
analysis, by taking a peek into Artificial Intelligence, and by presenting a dis-
ciplined approach to the use of mutation—also known as assignment which
is routinely abused and misused every day giving rise to the majority of
programming bugs today.

At the heart of this exploration is the design recipe—the steps to go from a
problem statement to a working and tested solution. The new design recipes
studied in this textbook are less prescriptive than those used for solutions

vii



viii Preface

based on structural recursion. In this regard, they are akin to the design
recipe for distributed programming found in Animated Problem Solving. One
of the most attractive features of structural recursion is that it suggests how
to divide and conquer a problem. For example, structural recursion suggests
that solving a problem for a nonleaf binary tree is done by solving the same
problem for the left and/or right subtrees. In contrast, heap sorting, an ef-
ficient sorting algorithm studied in this textbook, creates a new binary tree
to solve the problem. In essence, there is no prescriptive design recipe for
divide and conquer when structural recursion is not used. In such cases, a
problem solver must rely on insights gained from problem analysis to per-
form divide and conquer. An interesting and powerful consequence is that
a solution to a problem using structural recursion may be refined /improved
based on insights gained to use other forms of recursion.

You may already have butterflies in your stomach anticipating a wealth
of knowledge from the pages of this book. If that is the case, then you are
on your way. Enthusiasm for knowledge and understanding is essential for a
problem solver. Problem solving, however, can and ought to also be fun. To
this end, this book promises to design and implement a video game using
modern Artificial Intelligence techniques with you. To achieve this, however,
there is a great deal about problem solving and programming you must learn.
The game is developed using iterative refinement. That is, as your problem
solving and programming knowledge grows, improved versions of the game
are developed. Buckle up for fascinating and fun journey to expand your
mind!

1 The Parts of the Book

The book is divided into four parts. Part I presents introductory material.
It starts by reviewing the basic steps of a design recipe. It does so using
a problem solved using structural recursion on a list. It then proceeds to
review code refactoring—the restructuring of a function without changing its
external behavior. Refactoring is a common technique used to refine programs
when a better or more elegant way is found to solve a problem. For example, a
problem involving a list may be solved using structural recursion and explicit
use of first and rest. The solution may be refactored to eliminate low-
level functions like first and rest by using a match expression. In turn,
this solution may be refactored to eliminate recursive calls by using abstract
functions like map and filter. Part I then moves to review abstract running
time. In addition, this part introduces the N-Puzzle problem—the video game
developed throughout the book—and introduces the use of randomness in
problem solving.

Part IT explores a new type of recursion called generative recursion. In-
stead of exploiting the structure of the data to make recursive calls, this
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type of recursion creates new instances of the data to make recursive calls.
The study of generative recursion navigates the reader through examples
involving fractal image generation, efficient sorting, and efficient searching
techniques such as binary, depth-first, and breadth-first search. This part
concludes presenting two refinements to the N-Puzzle game using generative
recursion and the problems that they have including the loss of knowledge.
Throughout, complexity analysis and empirical experimentation are used to
evaluate solutions.

Part I1T explores a new type of recursion called accumulative (or accumula-
tor) recursion. Accumulative recursion introduces one or more accumulators
to a function designed using structural or generative recursion. Accumulators
are used to solve the loss of knowledge problem or to make programs more ef-
ficient. Examples used include finding a path in a graph, improving insertion
sorting, and list-folding operations. The study of list-folding operations leads
to new abstract functions with an accumulator: foldl and foldr. The ex-
pertise developed using accumulative recursion is used to refine the N-Puzzle
game to perform a heuristic search using the A* algorithm—an algorithm
used in Artificial Intelligence. Part III ends with a chapter introducing an
important and powerful program transformation called continuation-passing
style. Continuation-passing style allows programmers and compilers to opti-
mize programs. Throughout, complexity analysis and empirical experimen-
tation are used to evaluate solutions.

Part IV explores mutation. Mutation (or changing the value of a state
variable) allows different parts of a program that do not call each other to
share values. Interestingly enough, most textbooks on programming that use
mutation fail to mention this. Abstracting over state variables leads to inter-
faces and object-oriented programming. The use of mutation, however, comes
at a heavy price: the loss of referential transparency. That is, (f x) is not
always equal to (£ x). This means programmers must be disciplined about
the order in which mutations are done because knowing that a program works
is suddenly much harder. To aid you in properly sequencing mutations, this
part of the book teaches you about Hoare Logic and program correctness.
In addition, it introduces vectors, vector processing, and in-place operations.
Part IV ends by presenting a solution to the chicken or egg paradox in pro-
gramming. Throughout, complexity analysis and empirical experimentation
are used to evaluate solutions.

2 Acknowledgments

This book is the product of over 10 years of work at Seton Hall University
building on the shoulders of giants in Computer Science and on the shoulders
of Seton Hall undergraduate CS1 and CS2 students. A heartfelt thank you is
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what works and does not work when teaching program design. Many of the
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