Texts in Computer Science

Series Editors
David Gries, Department of Computer Science, Cornell University, Ithaca, NY, USA

Orit Hazzan @), Faculty of Education in Technology and Science, Technion—Israel
Institute of Technology, Haifa, Israel

Titles in this series now included in the Thomson Reuters Book Citation Index!

‘Texts in Computer Science’ (TCS) delivers high-quality instructional content
for undergraduates and graduates in all areas of computing and information science,
with a strong emphasis on core foundational and theoretical material but inclusive
of some prominent applications-related content. TCS books should be reasonably
self-contained and aim to provide students with modern and clear accounts of top-
ics ranging across the computing curriculum. As a result, the books are ideal for
semester courses or for individual self-study in cases where people need to expand
their knowledge. All texts are authored by established experts in their fields, re-
viewed internally and by the series editors, and provide numerous examples, prob-
lems, and other pedagogical tools; many contain fully worked solutions.

The TCS series is comprised of high-quality, self-contained books that have
broad and comprehensive coverage and are generally in hardback format and some-
times contain color. For undergraduate textbooks that are likely to be more brief and
modular in their approach, require only black and white, and are under 275 pages,
Springer offers the flexibly designed Undergraduate Topics in Computer Science
series, to which we refer potential authors.

Marco T. Morazan

Animated
Program Design

Intermediate Program Design
Using Video Game Development

@ Springer

Marco T. Morazan

Department of Computer Science
Seton Hall University

South Orange, NJ, USA

ISSN 1868-0941 ISSN 1868-095X (electronic)
Texts in Computer Science
ISBN 978-3-031-04316-1 ISBN 978-3-031-04317-8 (eBook)

https://doi.org/10.1007/978-3-031-04317-8

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2022

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-04317-8

To my students for educating me on how
to teach problem solving and program
design.

Marco

Preface

Everybody engages in problem solving, and this book is about the science
of problem solving. It aims to teach its readers a new way of thinking about
designing solutions to problems that takes them beyond trial-and-error think-
ing. Trial and error is, indeed, a fundamental problem-solving technique but
must be tightly coupled with design to be effectively used. Trials or exper-
iments must be thought out and planned. What does this mean? It means
that problem solvers must engage in careful and thorough consideration of
the different options they have to solve a problem. Problem-solving tech-
niques must be used appropriately, and different solutions to a problem must
be evaluated to choose the best one. The evaluation of a solution is done
both mathematically and empirically. That is, theory and practice play a
pivotal role in problem solving. Rest assured that the problem-solving and
programming techniques you learn may be used to solve problems using any
programming language.

This textbook continues the journey started in Animated Problem Solv-
ing and completes a year-long (two semesters) curriculum for first-year stu-
dents. Readers of this book are likely to be familiar with writing expressions,
defining data, divide and conquer, iterative design, designing functions using
structural recursion, abstraction and abstract functions, and even distributed
programming. Indeed, you are likely to already be very powerful problem
solvers and programmers. Now it is time to become even more powerful pro-
grammers. How is this achieved? This book aids this quest by exploring with
you new types of recursion, by introducing you to the use of randomness,
by taking the first steps into experimental Computer Science and algorithm
analysis, by taking a peek into Artificial Intelligence, and by presenting a dis-
ciplined approach to the use of mutation—also known as assignment which
is routinely abused and misused every day giving rise to the majority of
programming bugs today.

At the heart of this exploration is the design recipe—the steps to go from a
problem statement to a working and tested solution. The new design recipes
studied in this textbook are less prescriptive than those used for solutions

vii

viii Preface

based on structural recursion. In this regard, they are akin to the design
recipe for distributed programming found in Animated Problem Solving. One
of the most attractive features of structural recursion is that it suggests how
to divide and conquer a problem. For example, structural recursion suggests
that solving a problem for a nonleaf binary tree is done by solving the same
problem for the left and/or right subtrees. In contrast, heap sorting, an ef-
ficient sorting algorithm studied in this textbook, creates a new binary tree
to solve the problem. In essence, there is no prescriptive design recipe for
divide and conquer when structural recursion is not used. In such cases, a
problem solver must rely on insights gained from problem analysis to per-
form divide and conquer. An interesting and powerful consequence is that
a solution to a problem using structural recursion may be refined /improved
based on insights gained to use other forms of recursion.

You may already have butterflies in your stomach anticipating a wealth
of knowledge from the pages of this book. If that is the case, then you are
on your way. Enthusiasm for knowledge and understanding is essential for a
problem solver. Problem solving, however, can and ought to also be fun. To
this end, this book promises to design and implement a video game using
modern Artificial Intelligence techniques with you. To achieve this, however,
there is a great deal about problem solving and programming you must learn.
The game is developed using iterative refinement. That is, as your problem
solving and programming knowledge grows, improved versions of the game
are developed. Buckle up for fascinating and fun journey to expand your
mind!

1 The Parts of the Book

The book is divided into four parts. Part I presents introductory material.
It starts by reviewing the basic steps of a design recipe. It does so using
a problem solved using structural recursion on a list. It then proceeds to
review code refactoring—the restructuring of a function without changing its
external behavior. Refactoring is a common technique used to refine programs
when a better or more elegant way is found to solve a problem. For example, a
problem involving a list may be solved using structural recursion and explicit
use of first and rest. The solution may be refactored to eliminate low-
level functions like first and rest by using a match expression. In turn,
this solution may be refactored to eliminate recursive calls by using abstract
functions like map and filter. Part I then moves to review abstract running
time. In addition, this part introduces the N-Puzzle problem—the video game
developed throughout the book—and introduces the use of randomness in
problem solving.

Part IT explores a new type of recursion called generative recursion. In-
stead of exploiting the structure of the data to make recursive calls, this

Preface ix

type of recursion creates new instances of the data to make recursive calls.
The study of generative recursion navigates the reader through examples
involving fractal image generation, efficient sorting, and efficient searching
techniques such as binary, depth-first, and breadth-first search. This part
concludes presenting two refinements to the N-Puzzle game using generative
recursion and the problems that they have including the loss of knowledge.
Throughout, complexity analysis and empirical experimentation are used to
evaluate solutions.

Part I1T explores a new type of recursion called accumulative (or accumula-
tor) recursion. Accumulative recursion introduces one or more accumulators
to a function designed using structural or generative recursion. Accumulators
are used to solve the loss of knowledge problem or to make programs more ef-
ficient. Examples used include finding a path in a graph, improving insertion
sorting, and list-folding operations. The study of list-folding operations leads
to new abstract functions with an accumulator: foldl and foldr. The ex-
pertise developed using accumulative recursion is used to refine the N-Puzzle
game to perform a heuristic search using the A* algorithm—an algorithm
used in Artificial Intelligence. Part III ends with a chapter introducing an
important and powerful program transformation called continuation-passing
style. Continuation-passing style allows programmers and compilers to opti-
mize programs. Throughout, complexity analysis and empirical experimen-
tation are used to evaluate solutions.

Part IV explores mutation. Mutation (or changing the value of a state
variable) allows different parts of a program that do not call each other to
share values. Interestingly enough, most textbooks on programming that use
mutation fail to mention this. Abstracting over state variables leads to inter-
faces and object-oriented programming. The use of mutation, however, comes
at a heavy price: the loss of referential transparency. That is, (f x) is not
always equal to (£ x). This means programmers must be disciplined about
the order in which mutations are done because knowing that a program works
is suddenly much harder. To aid you in properly sequencing mutations, this
part of the book teaches you about Hoare Logic and program correctness.
In addition, it introduces vectors, vector processing, and in-place operations.
Part IV ends by presenting a solution to the chicken or egg paradox in pro-
gramming. Throughout, complexity analysis and empirical experimentation
are used to evaluate solutions.

2 Acknowledgments

This book is the product of over 10 years of work at Seton Hall University
building on the shoulders of giants in Computer Science and on the shoulders
of Seton Hall undergraduate CS1 and CS2 students. A heartfelt thank you is
offered to all the students that throughout the years helped me understand

X Preface

what works and does not work when teaching program design. Many of the
giants in Computer Science that have informed my teaching efforts are mem-
bers of the PLT research group, especially those responsible for developing the
student programming languages used in this textbook and for penning How to
Design Programs—an inspiration for Animated Problem Solving and for An-
imated Programming. It is impossible not to explicitly express my heart-felt
appreciation for Matthias Felleisen from Northeastern University and Shri-
ram Krishnamurthi from Brown University for having my back, for debating
with me, and for encouraging the work done at Seton Hall University—all of
which led to this textbook.

There are many other professional colleagues that deserve credit for inspir-
ing the lessons found in this textbook. Chief among them is Doug Troeger,
my Ph.D. advisor, from City College of New York (CCNY). Together, we
taught CCNY undergraduates about program correctness. Some of the ma-
terial in Part IV of this textbook is inspired by those efforts. A great deal of
the material in this textbook is based on my Computer Science Education
peer-reviewed publications. I was mostly blessed with thoughtful and con-
scientious reviewers that offered honest feedback on the good and the bad,
but that always made an effort to provide thought-provoking comments and
suggestions for future work. Collectively, they have also influenced the lessons
in this book. I am deeply appreciative to the venues that have published my
articles such as the Trends in Functional Programming in Education Work-
shop, the Journal of Functional Programming , and the Trends in Functional
Programming Symposium.

Finally, there is a gifted group of individuals that have been or still are in-
valuable in making the courses taught using the material in this textbook suc-
cessful: my undergraduate research/teaching assistants. They have been re-
sponsible for making sure I explain the material clearly and for helping answer
student questions using their own perspective on the material. This group in-
cludes: Shamil Dzhatdoyev, Josie Des Rosiers, Nicholas Olson, Nicholas Nel-
son, Lindsey Reams, Craig Pelling, Barbara Mucha, Joshua Schappel, Sachin
Mahashabde, Rositsa Abrasheva, Isabella Felix, Sena Karsavran, and Julia
"Ohio" Wilkins. Their feedback and the feedback they collected from enrolled
students have influenced every topic presented. In closing, my appreciation
goes out to Seton Hall University and its Department of Computer Science
for supporting the development of the work presented in this textbook.

South Orange, NJ, USA Marco T. Morazan

Contents

Preface

1 The Parts of the Book
2 Acknowledgments

Part I Basic Problem Solving and Program Design

1 The Science of Problem Solving
3 The Design Recipe i i i,

4 Computing the Area of a Triangle

4.1 Exercises

5) Doubling a List of Numbers

5.1 Step 1: Data Analysis and Design Idea...........

5.2 Step 2: Sample Expressions

5.3 Step 3: Differences Among Sample Expressions . ..

5.4 Steps 4-5: Signature, Purpose Statement, and
Function Header
5.5 Step 6: Tests
5.6 Step 7: Function Body
5.7 Step 8: Run Testso oot
5.8 Exercises
6 Code Refactoring.o i
6.1 Exercises
7 Abstract Running Time
7.1 Exercises
8 What Have We Learned in This Chapter?
2 The N-Puzzle Problem
9 The world and the run Function
10 Useful Constantsc. i ..
11 The draw-world Handler.........
12 The game-over? Handler..........

xi

xii Contents

13 The process-key Handler............ 36

13.1 The Design of vk? 39

13.2 The Design of process-vk..................... 39

14 What Have We Learned in This Chapter? 45

3 Randommessiiii 47

15 ISL+’s random Function 47

16 N-Puzzle Version 1 ... i 50

17 Generating Random Passwords 54

18 Distributed Fortune Teller Game 58

18.1 Design Recipe for Distributed Computing 58

18.2 The Componentscooiiuiinenon.. 59

18.3 Data Definitions 60

18.4 Communication Protocol....................... 64

18.5 Marshaling and Unmarshaling Functions 67

18.6 The Player Component 67

18.7 The Server Component 72

19 What Have We Learned in This Chapter? 76
Part IT Generative Recursion

4 Introduction to Generative Recursion 81

20 Generating a Nested Square Image 82

21 The Design Recipe for Generative Recursion 86

22 ANl Primes < m ..ot 91

23 What Have We Learned in This Chapter? 101

5 Sorting 103

24 Insertion Sorting i 104

25 Quick SOrtingt 106

25.1 Problem Analysis 107

25.2 Sample Expressions and Differences 107

25.3 Signature, Statements, and Function Header. 109

254 Tests ..o 109

25.5 Function Body L. 110

25.6 Termination Argument 111

25.7 Performance............. 111

25.8 Complexity Analysis 111

26 Merge Sortingo 114

26.1 Problem Analysis o 115

26.2 The merge-sorting Function 115

26.3 The merge-sort-helper Function 117

26.4 The merge-neighs Function 121

26.5 The merge Function........................... 124

Contents xiii

26.6 Performance........... 127
26.7 Complexity Analysis 128
27 What Have We Learned in This Chapter? 130
6 Searching.......... 131
28 Linear Searching 131
28.1 Problem Analysis 132
28.2 Sample Expressions and Differences 132
28.3 Signature, Purpose, and Function Header 134
28.4 Tests . oo 134
28.5 Function Body 135
28.6 Performance and Complexity 135
29 Binary Search 136
29.1 The binary-search Function 137
29.2 The bin-search Function...................... 140
29.3 Termination Argument 144
29.4 Performance and Complexity 144
30 TreeS et 146
31 Depth-First Search 151
31.1 Problem Analysis o 151
31.2 Sample Expressions and Differences 152
31.3 Signature, Purpose, and Function Header 152
314 Tests . oo 152
31.5 The Function Body 153
31.6 The node-dfs-contains? Function 153
31.7 Signature, Purpose, and Function Definition. 155
31.8 Performance and Complexity 156
32 Breadth-First Search 157
32.1 Problem Analysis for ton-bfs-contains?........ 157
32.2 Sample Expressions and Differences for
ton-bfs-contains?......... 160
32.3 Tests for ton-bfs-contains? 161
324 Function Definition for ton-bfs-contains?...... 161
32.5 Problem Analysis for bfs-helper............... 162
32.6 Sample Expressions and Differences
for bfs-helper ...t 162
32.7 Tests for bfs-helper........ 163
32.8 Signature, Statements, and Function Definition for
bfs-helper il 164
32.9 Performance and Complexity 165

33 What Have We Learned in This Chapter? 167

Xiv

Contents

N-Puzzle Version 2 i
34 Design and Implementation of make-move
34.1 Problem Analysis

34.2 Sample Expressions and Differences
34.3 Signature, Purpose, and Function Header
34.4 Tests . oo

34.5 Function Body L
35 Design and Implementation of find-solution...........
35.1 Problem Analysis
35.2 Sample Expressions and Differences

35.3 Signature, Statements, and Function Header.
35.4 Tests . oo
35.5 Function Body
35.6 Termination Argument

36 New Tests for process-key,
37 A Bug: Infinite Recursion,
38 What Have We Learned in This Chapter?

N-Puzzle Version 3
39 The Design of make-move,
39.1 Problem Analysis o

39.2 Sample Expressions and Differences
39.3 Signature, Purpose, and Function Header
394 Tests . oo

39.5 Function Body
40 The Design of find-solution-bfs.....................
40.1 Problem Analysis o

40.2 Sample Expressions and Differences
40.3 Signature, Statements, and Function Header.
40.4 TestS ot
40.5 Function Body L
40.6 Termination Argument
41 Performance

42 What Have We Learned in This Chapter?

Part IIT Accumulative Recursion

9

Accumulators.
43 Running Totals i
43.1 Problem Analysis for lon-running-totals
43.2 Sample Expressions and Differences for
lon-running-totals..........................
43.3 Signature, Function Definition, and Tests for
lon-running-totals..........................

Contents

10

44

45
46

47

48

43.4 Problem Analysis for lon-running-totals-
helper
43.5 Sample Expressions and Differences for
lon-running-totals-helper
43.6 Signature, Function Definition, and Tests for
lon-running-totals-helper
43.7 The lon-sum Function...................... ...
Running Totals Using an Accumulator
44.1 Problem Analysis

44.2 Sample Expressions and Differences for
lon-running-totals-v2
44.3 Function Definition for lon-running-totals-v2..

44.4 Tests for lon-running-totals-v2
44.5 Problem Analysis for
lon-running-totals-helper-v2
44.6 Sample Expressions and Differences for
lon-running-totals-helper-v2
44.7 Signature, Statements, and Function Header for
lon-running-totals-helper-v2
44.8 Tests for lon-running-totals-helper-v2.......
44.9 Function Body for lon-running-totals-
helper-v2
Performance and Complexity Analysis
Finding a Path in a Directed Graph
46.1 Data Analysis i
46.2 Design and Implementation of find-path........
46.3 Design and Implementation of find-path-acc....
46.4 Design and Implementation of
find-path-from-neighbors
46.5 Termination Argument
Revisiting Insertion Sorting............................
47.1 The Redesign of insert
47.2 The Redesign of insertion-sorting............
47.3 Performance and Complexity Analysis...........
What Have We Learned in This Chapter?

N-Puzzle Versions 4 and 5

49

50

N-Puzzle Version 4 i
49.1 The Design and Implementation

of find-solution,
49.2 The find-solution-from-any-succ Design and

Implementation.............
49.3 Termination Argument
N-Puzzle Version 5 i
50.1 Problem Analysis

XV

206

206

207
208
209
209

210
210
211

211

212

213
214

214
215
217
218
221
224

Xvi

11

12

13

Contents
50.2 Sample Expressions and Differences 261
50.3 Signature, Statements, and Function Header. 263
50.4 Tests . oo 264
50.5 Function Body L. 266
50.6 Termination Argument 266
51 Complexity and Performance 267
52 What Have We Learned in This Chapter? 270
Tteration. 271
53 List-Folding Operations from the Left................ ... 274
53.1 Summing a List of Numbers.................... 274
53.2 Reversing a Listo ... 279
54 List-Folding Operations from the Right 285
54.1 Computing String Lengths from a List of Strings.. 287
54.2 Summing a List of Numbers Revisited 292
55 Functional Abstraction............ 293
56 Abstraction over Left to Right Accumulating Folding
Functions i 294
56.1 The Abstraction, 294
56.2 Performance......... L. 297
57 Abstraction Over Right to Left Accumulating Folding
Functions ... i 298
58 What Have We Learned in This Chapter? 301
N-Puzzle Version 6 i, 303
59 The Manhattan Distance Heuristic 304
60 Problem Analysisiiiiiiiii 307
61 Sample Expressions and Differences
for find-solution—a*oiiiitirinnin. 309
62 Signature, Statements, and Function Header 314
63 Tests for find-solution-a*...............ccvvnen.... 315
64 Function Body for find-solution-a* 316
65 Termination Argument. i, 317
66 Performance 317
67 What Have We Learned in This Chapter? 320
Continuation-Passing Style 321
68 Accumulating Control 322
69 The CPS Design Recipe 326
70 Computing Fibonacci Numbers 327
70.1 Transforming to CPS............ ..., 328
70.2 Performance............. 330
70.3 Going Beyond the Design Recipe................ 331
71 Revisiting List Reversal 333
72 What Have We Learned in This Chapter? 338

Contents xvii

Part IV Mutation

14 Sharing Values....... i 341
73 set! and begin Expressions, 343
74 Design Recipe for Mutators............................ 348
75 A Bank Account 349

75.1 Problem and Data Analysis 350
75.2 State Variable Definitions 350
75.3 State Variable Initializers 350
75.4 The Mutator for Deposits 352
75.5 The Mutator for Withdrawals 353
75.6 The Observer for Getting the Balance 355
76 Abstraction Over State Variables.................... ... 357
76.1 Bank Account State Variables and Interface 359
76.2 Bank Account Class Template 359
76.3 Bank Account Message-Passing Function Design .. 359
76.4 Bank Account Auxiliary Function Design 361
76.5 Bank Account Wrapper Functions and Tests. 362
T A Design Recipe for Interfaces 366
78 Mutation and Structures, 369
79 The Concept of Equality 371
80 What Have We Learned in This Chapter? 374
15 Mutation Sequencing i 377
81 Hoare Logico 380
81.1 Using Hoare Triples 383
81.2 Imperative Code Debugging 388
82 New Syntax: while Loops ..., 392
82.1 Syntax and Semantics 392
82.2 Transformation from an Imperative Recursive
Function to a while Loop........... 393
83 A Design Recipe for while 100pSoovvneinnn... 397
84 Determining if an Interval Contains a Prime 400
84.1 Problem Analysis 401
84.2 Signature, Statements, and Function Header. 401
84.3 Tests . oo 401
84.4 Loop Invariant........ 402
84.5 Function Body L 403
84.6 The begin Expression 404
84.7 Post-Loop Code, 406
84.8 Auxiliary Functions 406
84.9 Termination Argument 407

84.10 Run Tests....... i 407

xviii

16

17

Contents
85 Finding the Maximum in a List of Numbers 407
85.1 Problem Analysis 407
85.2 Signature, Statements, and Function Header. 409
85.3 Tests . oo 409
85.4 Loop Invariant. 409
85.5 Function Body 411
85.6 The begin Expression 411
85.7 Post-Loop Code 414
85.8 Termination Argument 414
85.9 Run Tests...... ... 414
86 What Have We Learned in This Chapter? 416
Vectors 419
87 Vector Basics 420
88 Vector Processing Using Structural Recursion 422
88.1 The Dot Product of Two Vectors of Numbers 423
88.2 Merging Two Sorted Vectors.................... 427
89 Vector Processing Using Generative Recursion: Revisiting
the Sieve of Eratosthenes........... 442
89.1 Problem Analysis o 443
89.2 Signature, Statements, and Function Header. 443
89.3 Tests . oo 444
89.4 Loop Invariant........ 444
89.5 Function’s Local Definitions 446
89.6 The local-expression’s Body 448
89.7 Post-Loop Code i 449
89.8 Auxiliary Functions 450
89.9 Termination Argument and Running Tests 452
89.10 Complexity and Performance 452
90 What Have We Learned in This Chapter? 453
In-Place Operations 455
91 Reversing a Vector i 455
91.1 Problem Analysis oL 456
91.2 The reverse-vector-in-place! Mutator 457
91.3 Signature and Statements 457
914 The rev-vector! Mutator 458
91.5 Function Body L 460
91.6 The swap! Mutator and Running Tests 460
91.7 Performance......... 461
92 In-Place Quick Sorting L. 462
92.1 The gs-in-place! Mutator 463
92.2 The gs-aux! Mutator 465
92.3 The partition! Mutator 467

92.4 The Design of first<=........................ 471

Contents Xix

92.5 The Design of first> 472

92.6 Completing the Design 473

93 In-Place Heap Sortingcouiiiinnan.... 473
93.1 Heaps .. oo 474

93.2 SOTEING .ottt 474

93.3 Mapping a Heap to a Vector 477

93.4 The heap-sort-in-place! Mutator 478

93.5 The sorter! Mutator 481

93.6 The trickle-down! Mutator 483

93.7 The heapify! Mutator 485

94 Empirical Project i 491
94.1 Radix Sorting i i 493

94.2 The Project 495

95 What Have We Learned in This Chapter? 496
18 The Chicken and the Egg Paradox 499
96 The Paradox in Programming.......................... 500
97 Solving the Paradox, 501
97.1 Problem Analysis 501

97.2 Sample Expressions and Differences 502

97.3 Signature, Statements, and Function Header. 502

97.4 Tests . oo 503

97.5 Function Body L 504

98 Adding Clients toa Bank 504
98.1 Problem and Data Analysis 504

98.2 State Variable Definition 505

98.3 Bank Initializer 505

98.4 The add-account! Mutator 505

99 What Have We Learned in This Chapter? 509

Part V Epilogue

19 Where to Go from Here 513

	Preface
	1 The Parts of the Book
	2 Acknowledgments

	Contents

