Skip to main content

Power Allocation for Sum Rate Maximization of Uplink Massive MIMO System with Maximum Ratio Combining

  • Conference paper
  • First Online:
Book cover Machine Learning and Intelligent Communications (MLICOM 2021)

Abstract

This paper investigates the sum rate optimization of uplink massive multiple-input multiple-output (MIMO) system with imperfect channel state information (CSI) and maximum ratio combining (MRC) under the constraints of maximum power and minimum rate, and power allocation (PA) schemes are developed to improve the rate. With the help of concave-convex procedure (CCCP) method, a near-optimal PA scheme is proposed to transform the no-concave maximization problem into a concave one. Considering that both small-scale and large-scale fading information are required in near-optimal PA scheme, which will result in high complexity, a suboptimal PA scheme under the case of large number of receive antennas is presented, which only needs large-scale fading information without real-time estimation and frequent feedback. Moreover, it has the rate close to that of near-optimal scheme but with lower complexity. Simulation results show that the sum rate obtained by the near-optimal PA scheme can match that offered by the benchmark scheme well, and the suboptimal scheme can obtain the rate close to that of near-optimal scheme, especially for large number of receive antennas, which verifies the effectiveness of the proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anokye, P., Ahiadormey, R.K., Song, C., Lee, K.: Achievable sum-rate analysis of massive MIMO full-duplex wireless backhaul links in heterogeneous cellular networks. IEEE Access 6, 23456–23469 (2018)

    Article  Google Scholar 

  2. Björnson, E., Larsson, E.G., Marzetta, T.L.: Massive MIMO: ten myths and one critical question. IEEE Commun. Mag. 54(2), 114–123 (2016)

    Article  Google Scholar 

  3. Lu, L., Li, G.Y., Swindlehurst, A.L., Ashikhmin, A., Zhang, R.: An overview of massive MIMO: benefits and challenges. IEEE J. Sel. Top. Sig. Process. 8(5), 742–758 (2014)

    Article  Google Scholar 

  4. Marzetta, T.L.: Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 9(11), 3590–3600 (2010)

    Article  Google Scholar 

  5. Larsson, E.G., Edfors, O., Tufvesson, F., Marzetta, T.L.: Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 52(2), 186–195 (2014)

    Article  Google Scholar 

  6. Ngo, H.Q., Larsson, E.G., Marzetta, T.L.: Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans. Commun. 61(4), 1436–1449 (2013)

    Article  Google Scholar 

  7. Cheng, H.V., Björnson, E., Larsson, E.G.: Uplink pilot and data power control for single cell massive MIMO systems with MRC. In: IEEE International Symposium on Wireless Communication Systems (ISWCS), pp. 396–400 (2015)

    Google Scholar 

  8. Li, M., Wang, T., Wang, S.: Online power allocation for sum rate maximization in TDD massive MIMO systems. In: IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2019)

    Google Scholar 

  9. Sadeghi, M., Yuen, C., Chew, Y.H.: Sum rate maximization for uplink distributed massive MIMO systems with limited backhaul capacity. In: IEEE Globecom Workshops (GC Wkshps), pp. 308–313 (2014)

    Google Scholar 

  10. Tseng, P., Yun, S.: Block-coordinate gradient descent method for linearly constrained nonsmooth separable optimization. J. Optim. Theory Appl. 140, 513–535 (2009). https://doi.org/10.1007/s10957-008-9458-3

    Article  MathSciNet  MATH  Google Scholar 

  11. Bai, X., Zhou, L., Zhou, M., Qiao, X., Zhang, Y., Yang, L.: Sum-rate maximization in cell-free massive MIMO with low-resolution ADCs and ZF receiver. In: IEEE International Conference on Communication Technology (ICCT), pp. 259–263 (2020)

    Google Scholar 

  12. Grant, M., Boyd, S.: CVX: MATLAB software for disciplined convex programming, version 2.2, January 2020. http://cvxr.com/cvx

Download references

Acknowledgments

This work was supported by Natural Science Foundation of Jiangsu Province in China (BK20181289), Open Research Fund of Nanjing University of Aeronautics and Astronautics (kfjj20200414), Open Research Fund Key Laboratory of Wireless Sensor Network and Communication of Chinese Academy of Sciences (2017006), and Open Research Fund of State Key Laboratory of Millimeter Waves of Southeast University (K202215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangbin Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, F., Yu, X., Wang, H., Li, M., Bai, J. (2022). Power Allocation for Sum Rate Maximization of Uplink Massive MIMO System with Maximum Ratio Combining. In: Jiang, X. (eds) Machine Learning and Intelligent Communications. MLICOM 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 438. Springer, Cham. https://doi.org/10.1007/978-3-031-04409-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04409-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04408-3

  • Online ISBN: 978-3-031-04409-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics