
Safety and Completeness in Flow Decompositions for RNA
Assembly ?

Shahbaz Khan1[0000−0001−9352−0088], Milla Kortelainen2[0000−0003−1590−0987], Manuel
Cáceres2[0000−0003−0235−6951], Lucia Williams3[0000−0003−3785−0247], and Alexandru I.

Tomescu2[0000−0002−5747−8350]

1 Department of Computer Science and Engineering, Indian Institute of Technology Roorkee, India
shahbaz.khan@cs.iitr.ac.in? ? ?

2 Department of Computer Science, University of Helsinki, Finland
{shahbaz.khan,milla.kortelainen,manuel.caceresreyes,alexandru.tomescu}@helsinki.fi

3 School of Computing, Montana State University, USA
luciawilliams@montana.edu

Abstract. Decomposing a network flow into weighted paths is a problem with numerous applications,
ranging from networking, transportation planning to bioinformatics. In some applications we look
for any decomposition that is optimal with respect to some property, such as number of paths used,
robustness to edge deletion, or length of the longest path. However, in many bioinformatic applications,
we seek a specific decomposition where the paths correspond to some underlying data that generated
the flow. For realistic inputs, no optimization criteria can be guaranteed to uniquely identify the correct
decomposition. Therefore, we propose to instead report the safe paths, which are subpaths of at least
one path in every flow decomposition.

Recently, Ma, Zheng, and Kingsford [WABI 2020] addressed the existence of multiple optimal
solutions in a probabilistic framework, which is referred to as non-identifiability. In a follow-up work
[RECOMB 2021], they gave a quadratic-time algorithm based on a global criterion for solving a problem
called AND-Quant, which generalizes the problem of reporting whether a given path is safe.

In this work, we give the first local characterization of safe paths for flow decompositions in directed
acyclic graphs (DAGs), leading to a practical algorithm for finding the complete set of safe paths. We
additionally evaluated our algorithms against the trivial safe algorithms (unitigs, extended unitigs) and
the popularly used heuristic (greedy-width) for flow decomposition on RNA transcripts datasets. We
find that despite maintaining perfect precision the safe and complete algorithm reports significantly
higher coverage (≈50% more) as compared to trivial safe algorithms. The greedy-width algorithm
though reporting a better coverage, reports significantly lower precision on complex graphs (for genes
expressing a large number of transcripts). Overall, our safe and complete algorithm outperforms (by
≈20%) greedy-width on a unified metric (F-Score) considering both coverage and precision when the
evaluated dataset has significant number of complex graphs. Moreover, it also has superior time (3−5×)
and space efficiency (1.2−2.2×), resulting in a better and more practical approach for bioinformatics
applications of flow decomposition.

Keywords: safety · flow networks · flow decomposition · directed acyclic graphs · RNA assembly

? ? ? A major part of the work was done while affiliated with the Department of computer Science, University of Helsinki.
? We thank Romeo Rizzi and Edin Husić for helpful discussions. This work was partially funded by the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No. 851093, SAFEBIO) and partially by the Academy of Finland (grants No. 322595, 328877).

ar
X

iv
:2

20
1.

10
37

2v
1

 [
cs

.D
S]

 2
5

Ja
n

20
22

1 Introduction

Network flows are a central topic in computer science, enabling us to define problems with countless practical
applications. Assuming that the flow network has a unique source s and a unique sink t, every flow can be
decomposed into a collection of weighted s-t paths and cycles [17]; for directed acyclic graphs (DAGs), such
a decomposition contains only paths. One application of such a path (and cycle) view of a flow is to indicate
how to optimally route information or goods from s to t. For example, flow decomposition is a key step in
network routing problems [22,15,21,36] and transportation problems [38,39]. Finding the decomposition with
the minimum number of paths and possibly cycles (or minimum flow decomposition) is NP-hard, even if the
flow network is a DAG [53]. On the theoretical side, this hardness result led to research on approximation
algorithms [21,48,43,36,6,7], and FPT algorithms [26]. On the practical side, many approaches usually employ
a standard greedy-width heuristic [53], of repeatedly removing an s-t path carrying the most amount of
flow. Another pseudo-polynomial-time heuristic called Catfish was recently proposed by [45], which tries to
iteratively simplify the graph so that smaller decompositions can be found.

On the other hand, we may observe a flow network built by superimposing a set of weighted paths, and
seek the decomposition corresponding to that underlying set of paths and weights. This is the decompo-
sition sought by the more recent and prominent application of reconstructing biological sequences (RNA
transcripts [41,50,18,8,49,56] or viral quasi-species genomes [5,4]). Each flow path represents a reconstructed
sequence, and so a different set of flow paths encodes a different set biological sequences, which may differ
from the real ones. If there are multiple optimal flow decomposition solutions, then the reconstructed se-
quences may not match the original ones, and thus be incorrect. While many popular multiassembly tools
look for minimum flow decompositions, Williams et al. [57] analyzed an error-free transcript dataset to find
that 20% of human genes admit multiple minimum flow decomposition solutions.

1.1 Safety Framework for Addressing Multiple Solutions

Motivated by such an RNA assembly application, Ma et al. [31] were the first to address the issue of multiple
solutions to the flow decomposition problem under a probabilistic framework. Later, they [32] solve a problem
(AND-Quant), which, in particular, leads to a quadratic-time algorithm for the following problem: given a
flow in a DAG, and edges e1, e2, . . . , ek, decide if in every flow decomposition there is always a decomposed
flow path passing through all of e1, e2, . . . , ek. Thus, by taking the edges e1, e2, . . . , ek to be the edges of a
path P , the AND-Quant problem can decide if a path P (i.e., a given biological sequence) appears in all flow
decompositions. This indicates that P is likely part of some original RNA transcript.

We build upon the AND-Quant problem, by addressing the flow decomposition problem under the safety
framework [51], first introduced for genome assembly. For a problem admitting multiple solutions, a partial
solution is said to be safe if it appears in all solutions to the problem. For example, a path P is safe for the
flow decomposition problem, if for every flow decomposition into paths P, it holds that P is a subpath of some
path in P. Further, a path P is called w-safe if in every flow decomposition, P is a subpath of some weighted
path(s) in P whose total weight is at least w. In bioinformatics applications, it is common [50,41,45,26]
to look for a minimum cardinality path decomposition (or path cover, as in the case of [52,30]). In this
paper, we will consider any flow decomposition as a valid solution, not only the ones of minimum cardinality.
Dropping the minimality criterion is motivated by both theory and practice. On the one hand, since finding
one minimum-cardinality flow decomposition is NP-hard [53], we believe that finding all safe paths for them
is also intractable. On the other hand, given the various issues with sequencing data, practical methods
usually incorporate different variations of the minimum-cardinality criterion [8,5,4]. Thus, safe paths for all
flow decompositions are likely correct for many practical variations of the flow decomposition problem.

Safety has precursors in combinatorial optimization, under the name of persistency. For example, persis-
tent edges present in all maximum bipartite matchings were studied by Costa [16]. Incidentally, persistency
has also been studied for the maximum flow problem, by finding persistent edges always having a non-zero
flow value in any maximum flow solution ([14] acknowledges [27] for first addressing the problem), which is
easily verified if the maximum flow decreases after removing the corresponding edge.

2

In bioinformatics, safety has been previously studied for the genome assembly problem which at its core
solves the problem of computing arc-covering walks on the assembly graph. Again since the problem admits
multiple solutions where only one is correct, practical genome assemblers output only those solutions likely to
be correct. The prominent approach dating back to 1995 [24] is to compute trivially correct unitigs (having
internal nodes with unit indegree and unit outdegree), which can be computed in linear time. Unitigs were
generalised first in [42], and later [34,23,25] to be extended by adding their unique incoming and outgoing
paths. These extended unitigs, though safe, are not guaranteed to report everything that can be correctly
assembled, presenting an important open question [20,9,37,46,28,10] about the assembly limit (if any). This
was finally resolved by Tomescu and Medvedev [51] for a specific genome assembly formulation (single circular
walk) by introducing safe and complete algorithms, which report everything that is theoretically reported as
safe. Its running time was later optimized in [12] and [13]. Safe and complete algorithms were also studied by
Acosta et al. [1] under a different genome assembly formulation of multiple circular walks. Recently, Cáceres
et al. [11] studied safe and complete algorithms for path covers in an application on RNA Assembly.

1.2 Safety in Flow Decomposition for RNA Assembly

The prominent application of flow decomposition in bioinformatics is RNA transcript assembly, which is
described as follows. In complex organisms, a gene may produce multiple RNA molecules (RNA transcripts,
i.e., strings over an alphabet of four characters), each having a different abundance. Currently, given a sample,
one can partially read the RNA transcripts and find their abundances using high-throughput sequencing [54].
This technology produces short overlapping substrings of the RNA transcripts. The main approach for
recovering the RNA transcripts from such data is to build an edge-weighted DAG from these fragments,
then to transform the weights into flow values by various optimization criteria, and finally to decompose
the resulting flow into an “optimal” set of weighted paths (i.e., the RNA transcripts and their abundances
in the sample) [33]. A common strategy for choosing the optimal set of weighted paths is to look for the
parsimonious solution, i.e., the solution with the fewest paths. Since this problem is NP-hard, in practice
many tools use the popular greedy-width heuristic [50,41]. Greedy-width is also used in the assemblers for
the related problem of viral quasispecies assembly [4]. Further, some tools attempt to incorporate additional
information into the flow decomposition process, such as by using longer reads or super reads [41,44,57,18].
Despite the large number of tools and methods that have been developed for RNA transcript assembly,
there is no method that consistently reports the correct set of transcripts [41,58]. This suggests that the
addressing the problem under the safety framework may be a promising approach. However, while a safe and
complete solution clearly gives the maximally reportable correct solution, it is significant to evaluate whether
such a solution covers a large part of the true transcript, to be useful in practice. A possible application
of such partial and reliable solution is to consider them as constrains (see e.g. [57]) of real RNA transcript
assemblers, to guide the assembly process of such heuristics. Another possible application could be to evaluate
the accuracy of assemblers: does the output of the assembler include the safe and complete solution?.

1.3 Our Results

Our contributions can be succinctly described as follows.

1. A simple local characterization resulting in an optimal verification algorithm: We give a
characterization for a safe path P using its local property called excess flow.

Theorem 1. For w > 0, a path P is w-safe iff its excess flow fP ≥ w.

The previous work [32] on AND-Quant describes a global characterization using the maximum flow of
the entire graph transformed according to P , requiring O(mn) time. Instead, the excess flow is a local
property of P which is thus computable in time linear in the length of P . This also directly gives a simple
verification algorithm which is optimal.

3

Theorem 2. Given a flow graph (DAG) having n vertices and m edges, it can be preprocessed in O(m)
time to verify the safety of any path P in O(|P |) = O(n) time.

2. Simple enumeration algorithm: The above characterization also results in a simple algorithm for
reporting all maximal safe paths by using an arbitrary flow decomposition of the graph.

Theorem 3. Given a flow graph (DAG) having n vertices and m edges, all its maximal safe paths can
be reported in O(|Pf |) = O(mn) time, where Pf is some flow decomposition.

This approach starts with a candidate solution and uses the characterization on its subpaths in an ef-
ficient manner (a similar approach was previously used by [16,1,11]). The solution of the algorithm is
reported using a compact representation (referred as Pc), whose size can be Ω(mn) is the worst case but
merely O(m+ n) in the best case.

3. Empirically improved approach for RNA assembly: Using simulated RNA splice graphs, we found
that safe and complete paths for flow decomposition provide precise RNA assemblies while covering most
of RNA transcripts. Safe and complete paths are ≈ 50% better in coverage over previous notions of safe
paths, while maintaining the perfect precision ensured by safety. Further, for the combined metric for
coverage and precision (F-Score), the safe and complete paths outperform the popularly used greedy-
width heuristic significantly (≈ 20%) and previous safety algorithms appreciably (≈ 13%). Finally,
though our approach takes 1.2 − 2.5× time than the previous safety algorithms requiring equivalent
memory, the greedy-width approach requires roughly 3 − 5× time and 1.2 − 2.2× memory than our
approach. Hence, the significance of our approach in quality parameters increases with the increase in
complex graph instances in the dataset, while the performance parameters are significantly better than
greedy-width, without losing a lot over the previous safe algorithms.

2 Preliminaries and Notations

We consider a DAG G = (V,E) with n vertices and m edges, where each edge e has a positive flow f(e)
passing through it (also called its weight). Without loss of generality, we assume the graph is connected, and
hence m ≥ n. For each vertex u, fin(u) and fout(u) denote the total flow on its incoming edges and outgoing
edges, respectively. A vertex v in the graph is called a source if fin(v) = 0 and a sink if fout(v) = 0. Every
other vertex v satisfies the conservation of flow fin(v) = fout(v), making the graph a flow graph. For a path
P in the graph, |P | denotes the number of its edges. For a set of paths P = {P1, · · · , Pk} we denote its total
size (number of edges) by |P| = |P1|+ · · ·+ |Pk|.

For any flow graph (DAG), its flow decomposition is a set of weighted paths Pf such that the flow on each
edge of the flow graph equals the sum of the weights of the paths containing the edge. A flow decomposition
of a graph can be computed in O(|Pf |) = O(mn) time using the simple path decomposition algorithm [3].
A path P is called w-safe if, in every possible flow decomposition, P is a subpath of some paths in Pf

whose total weight is at least w. If P is w-safe with w > 0, we call P a safe flow path, or simply safe path.
Intuitively, for any edge e with non-zero flow, we consider where did the flow on e come from? We would
like to report all the maximal paths ending with e along which some w > 0 weight always “flows” to e (see
Figure 1). A safe path is left maximal (or right maximal) if extending it to the left (or right) with any edge
makes it unsafe (i.e. not safe). A safe path is maximal if it is both left and right maximal. A set of safe paths
is called complete if it consists of all the maximal safe paths.

Some previous notions used to describe safety for other problems also naturally extend to the flow
decomposition problem as follows. The paths having internal nodes with unit indegree and unit outdegree
are called unitigs [24], which are trivially safe because every source-to-sink path which passes through an
edge of unitig, also passes through the entire unitig contiguously. Further, a unitig can naturally be extended
to include its unique incoming path (having nodes with unit indegree), and its unique outgoing path (having
nodes with unit outdegree). This maximal extension of a unitig is called the extended unitig [42,34,23,25],
which is also safe using the same argument.

4

Fig. 1: The prefix of the path (blue) up to e contributes at least 2 units of flow to e, as the rest may enter
the path by the edges (red) with flow 4 and 2. Similarly, the suffix of the path (blue) from e maintains at
least 1 unit of flow from e, as the rest may exit the path from the edges (red) with flow 5 and 2. Both these
safe paths are maximal as they cannot be extended left or right.

For some graphs the above notions already define the safety of flow decomposition completely. Recently,
Millani et al. [35] defined a class of DAGs called funnels, where every source-to-sink path is uniquely identi-
fiable by at least one edge, which is not used by any other source-to-sink path. Hence, considering such an
edge as a trivial unitig (having a single edge), its extended unitig is exactly the corresponding source-to-sink
path, making it safe. Thus, in a funnel all the source-to-sink paths are naturally safe and hence trivially
complete. Moreover, it implies that a funnel has a unique flow decomposition, making the problem trivial
for funnel instances.

However, for non-funnel graphs unitigs and extended unitigs are safe but potentially not complete. Note
that both unitigs and extended unitigs are also safe for other problems dealing with unweighted graphs, such
as path cover. Hence, they do not make use of the flows on the edges of the graph, potentially missing some
paths that are safe for flow decomposition but not for unweighted problems like path cover.

3 Characterization and Properties of Safe and Complete Paths

The safety of a path can be characterized by its excess flow (see Figure 2), defined as follows.

Definition 1 (Excess flow). The excess flow fP of a path P = {u1, u2, ..., uk} is

fP = f(u1, u2)−
∑

ui∈{u2,...,uk−1}
v 6=ui+1

f(ui, v) = f(uk−1, uk)−
∑

ui∈{u2,...,uk−1}
v 6=ui−1

f(v, ui)

where the former and later equations are called diverging and converging formulations, respectively.

Remark 1. Alternatively, the converging and diverging formulations can be described as

fP =

k−1∑
i=1

f(ui, ui+1)−
k−1∑
i=2

fout(ui) =

k−1∑
i=1

f(ui, ui+1)−
k−1∑
i=2

fin(ui).

The converging and diverging formulations are equivalent by the conservation of flow on internal vertices.
The idea behind the notion of an excess flow fP is that even in the worst case, the maximum leakage (see
Figure 2), i.e., the flow leaving (or entering) P at the internal nodes, is the sum of the flow on the outgoing
(or incoming) edges of the internal nodes of P , that are not in P . However, if the value of incoming flow (or
outgoing flow) is higher than this maximum leakage, then this excess value fP necessarily passes through
the entire P . The following results give the simple characterization and an additional property of safe paths.

Theorem 1. For w > 0, a path P is w-safe iff its excess flow fP ≥ w.

Proof. The excess flow fP of a path P trivially makes it w ≤ fP -safe by definition. If fP < w, we can prove
that P is not w-safe by modifying any flow decomposition having w flow on P to leave only fP flow (or 0, if
fP < 0) on P as follows. In Figure 2 (diverging), consider a flow path P ′ entering P through edge e1 (except

5

Fig. 2: The excess flow of a path (left) is the incoming flow (blue) that necessarily passes through the whole
path despite the flow (red) leaving the path at its internal vertices. It can be analogously described (right)
as the incoming flow (blue) that necessarily passes through the whole path despite the flow (red) entering
the path at its internal vertices.

first edge (blue)) and leaving P at an edge e2 (red) except last edge of P . Since fP < w, it is not possible
that every path leaving P using a red edge starts at the first blue edge (by definition of fP), hence P ′ always
exists. We modify P ′ by using flow on P to form two paths, which enter from e1 and leave at the last edge,
and which enter from the first edge and leave at e2. We can repeat such modifications until flow on P is fP
(or 0, if fP < 0) due to conservation of flow. Additionally, for a path to be safe, it must hold that w > 0.

Lemma 1. For any path in a flow graph (DAG), adding an edge (u, v) to its start or its end, reduces its
excess flow by fin(v)− f(u, v), or fout(u)− f(u, v), respectively.

Proof. Using the converging formulation in Remark 1 adding an edge at the start of a path modifies its
excess flow by f(u, v)− fin(v). Similarly, using the diverging formulation in Remark 1 adding an edge at the
end of a path modifies its excess flow by f(u, v)− fout(u).

4 Simple Verification and Enumeration Algorithms

The characterization of a safe path in a flow graph can be directly adapted to simple algorithms for verification
and enumeration of safe paths.

4.1 Verification Algorithm

The characterization (Theorem 1) can be directly adapted to verify the safety of a path optimally. We
preprocess the graph to compute the incoming flow fin(u) and outgoing flow fout(u) for each vertex u in
total O(m) time. Using Remark 1 the time taken to verify the safety of any path P is O(|P |) = O(n),
resulting in following theorem.

Theorem 2. Given a flow graph (DAG) having n vertices and m edges, it can be preprocessed in O(m) time
to verify the safety of any path P in O(|P |) = O(n) time.

4.2 Enumeration of All Maximal Safe Paths

The maximal safe paths can be reported in O(mn) time by computing a candidate decomposition of the flow
into paths, and verifying the safety of its subpaths using the characterization and a scan with the commonly
used two-pointer approach.

The candidate flow decomposition can be computed in O(mn) time using the classical flow decomposition
algorithm [17] resulting in O(m) paths Pf each of O(n) length. Now, we compute the maximal safe paths
along each path P ∈ Pf by a two-pointer scan as follows. We start with the subpath containing the first
two edges of the path P . We compute its excess flow f , and if f > 0 we append the next edge to the path
on the right and incrementally compute its excess flow by Lemma 1. Otherwise, if f ≤ 0 we remove the first
edge of the path from the left and incrementally compute the excess flow similarly by Lemma 1 (removing
an edge (u, v) would conversely modify the flow by fin(v)− f(u, v)). We stop when the end of P is reached
with a positive excess flow.

6

The excess flow can be updated in O(1) time when adding an edge to the subpath on the right or removing
an edge from the left. If the excess flow of a subpath P ′ is positive and on appending it with the next edge it
ceases to be positive, we report P ′ as a maximal safe path by reporting only its two indices on the path P .
Thus, given a path of length O(n), all its maximal safe paths can be reported in O(n) time, and hence require
total O(mn) time for the O(m) paths in the flow decomposition Pf , resulting in the following theorem.

Theorem 3. Given a flow graph (DAG) having n vertices and m edges, all its maximal safe paths can be
reported in O(|Pf |) = O(mn) time, where Pf is some flow decomposition.

Concise representation The solution can be reported using a concise representation (referred as Pc) having
a set of paths as follows. We add to Pc every subpath of each path P ∈ Pf that contains maximal safe
paths, along with the indices of the solution on the path. Thus, for one or more overlapping maximal safe
subpaths from P we add a single path in Pc which is the union of all such maximal safe paths, making the
paths added to Pc of minimal length. Finally, we also remove the duplicates and prefixes/suffixes among the
maximal safe subpaths reported from different paths in Pf using an Aho Corasick Trie [2], making the set
of paths in Pc minimal. Thus, we define Pc as follows.

Definition 2 (Concise representation Pc). A minimal set of paths having a minimal length such that
every safe path of the flow network is a subpath of some path in the set.

Remark 2. In the worst case, the algorithm is optimal for DAGs having |Pc| = |Pf | = Ω(mn), but in general
|Pc| can be as small as O(m+ n) (see examples in Appendix A). Thus, improving this bound requires us to
not use a flow decomposition (and hence a candidate solution).

5 Experimental Evaluation

We now evaluate the performance of our safe and complete algorithm by comparing it with the most promising
algorithms for flow decomposition. Since the performance of various algorithms closely depend on the input
graphs, we consider some practically relevant datasets to evaluate their true impact. As the most significant
application of flow decomposition derives from RNA assembly, we consider the flow networks extracted as
splice graphs of simulated RNA-Seq experiments. That is, starting from a set of RNA transcripts, we simulate
their expression levels and superimpose the transcripts to create a flow graph. Evaluating our approach in
such perfect scenario allows us to remove the biases introduced by real RNA-Seq experiments [47] and focus
the features offered by the each technique instead. Further, the performance of algorithms also closely depend
on the complexity k of a graph, that we measure as the number of paths in the ground truth decomposition
of the graph. Thus, we present our results with regards to the complexity k of the input graph instances.

We first investigate the practical significance of safety by comparing our safe solution to a popularly used
flow decomposition heuristic that is also scalable. The greedy-width [53] heuristic decomposes the flow by
sequentially selecting the heaviest possible path, resulting in a simple algorithm that is both scalable and
performs well in practice. However, any flow decomposition algorithm may not always report the ground
truth paths that originally built the instance of the flow graph. Thus, it is important to measure the reported
solution using a precision metric which evaluates the correctness of the solution. We thus investigate how
the precision of greedy-width varies particularly as the value of k increases.

We then investigate the practical significance of completeness as reported by our solution, over the
previously known safe solutions as reported by unitigs and extended unitigs (recall Section 2). Note that
every safe solution would always score perfectly in a precision metric by definition. Hence, all safe solutions
would always outperform greedy-width (or any flow decomposition algorithm) in precision metrics. However,
this perfect precision comes at the cost of the amount of the solution that is reported. Intuitively, this
can be measured using some coverage metrics which describe how much of the ground truth sequence is
included in the reported paths. Note that any flow decomposition algorithm will perform better than any safe
algorithm by definition, as the safe paths are always subpaths of the paths reported by any flow decomposition
algorithm. Further, the extended unitigs would clearly outperform unitigs, and our safe paths would clearly

7

0 10 20 30 40

1

100

10k

1M
Trivial
Complete

k

N
um

be
r o

f g
ra

ph
s

(a) Catfish dataset

0 50 100 150 200 250

1

10

100

1000

10k
Tivial
Complete

k

N
um

be
r o

f g
ra

ph
s

(b) Reference-Sim dataset

Fig. 3: Distribution of graphs in the datasets by its complexity k with respect to the trivial instances (funnels).

outperform both unitigs and extended unitigs. We thus investigate how the coverage of various algorithms
varies with respect to the greedy-width particularly as the value of k increases.

Finally, to understand the overall impact of different algorithms, where safe algorithms as compared to
greedy-width clearly outperform in precision metrics and underperform in coverage metrics, we address both
coverage and precision measures using a single metric, i.e., F-score. We thus investigate the variation in
F-score over different values of k. In addition, to understand the practical utility of the algorithms we also
investigate their performance measures in terms of running time and space requirements.

5.1 Datasets

We consider two RNA transcripts datasets, generated based on approach of Shao et al. [45]. They created
“perfect" flow graphs where the true set of transcripts and abundances is always a flow decomposition of the
graph (which also means that the graphs will satisfy conservation of flow). They start with a ground truth
set of transcripts and abundances and create the input instances by superimposing them into a single graph,
adding a single source s (and sink t) with an edge to the beginning (and end) of each transcript.

Funnel instances: As described in Section 2, in funnels [35] all paths are safe. This means that for any flow
decomposition algorithm (including greedy-width) and most safe algorithms (including extended unitigs and
our safe and complete algorithm), the resulting paths always achieve the perfect value of coverage, precision,
and F-score on funnel instances. As a result, they dilute the relative measures of the different algorithms.
Previously, Kloster et al. [26, Lemma 8] described a contraction of graphs that transforms funnels to
trivial instances (k = 1), however they excluded only single path instances from their evaluation. We found
(see Figure 3) that many complex instances (with larger k) are also funnels making them trivial. Hence,
we removed such instances from our evaluation for a more accurate presentation of our results. Since the
previous studies [45,26,57] have considered the complete datasets including the trivial instances, we also
include the evaluation on the complete datasets in Appendix D for the sake of completeness.

Catfish dataset: We consider the dataset first used by Shao and Kingsford [45], which includes 100 sim-
ulated human transcriptomes for human, mouse, and zebrafish using Flux-Simulator [19]. Additionally, it
includes 1,000 experiments from the Sequence Read Archive, with simulated abundances for transcripts using
Salmon [40]. In both cases, the weighted transcripts are superimposed to build splice graphs as described
above. This dataset has also been used in other flow decomposition benchmarking studies [26,57]. There are
17,335,407 graphs in total in this dataset, of which 8,301,682 are non-trivial (47.89%). The logscale distri-
bution of the complete dataset (and its funnels) by k is shown in Figure 3a. However, in this dataset the
details about the number of bases on each node (exons or pseudo-exons) are omitted, which results in an
incomplete measure of coverage and precision. Moreover, this dataset has negligible complex graph instances

8

(having large k). Hence, we do not include its evaluation in the main paper, rather defer it to Appendix B
for the sake of completeness.

Reference-Sim dataset: We consider a dataset [55] containing a single simulated transcriptome as follows.
For each transcript on the positive strand in the GRCh.104 homo sapiens reference genome, it samples a
value from the lognormal distribution with mean and variance both equal to −4, as done in the default
settings of RNASeqReadSimulator [29]. It then multiplies the resulting values by 1000 and round to the
nearest integer. Then it excludes any transcript that is rounded to 0. There are 17,941 total graphs in this
dataset, of which 10,323 are non-trivial (57.54%). The logscale distribution of the complete dataset (and its
funnels) by k is shown in Figure 3b. In this dataset, we also have access to the genomic coordinates (and
hence number of bases) represented by nodes, allowing us to compute more practically relevant coverage and
precision metrics.

5.2 Evaluation Metrics

All metrics are computed in terms of bases for the Reference-Sim dataset. However, since the Catfish dataset
omits the base information its metrics are computed in terms of exons or pseudo-exons (vertices in the flow
graph). For every algorithm, R denotes a reported path (for Catfish) or a reported safe subpath (for unitigs,
extended unitigs, and safe complete) of the solution. In addition, T denotes a path in the set of ground truth
transcripts provided in the dataset. For each graph, we compute the following metrics which were also used
earlier by [11] for safety in constrained path covers:

Weighted precision: We classify a reported path R as correct if R is a subpath of some ground truth
transcript T of the flow graph. Weighted precision is the total length of correctly reported paths divided
by the total length of reported paths. The commonly used precision metric [41,44] for measuring the
accuracy of RNA assembly methods considers only those paths as correct which are (almost) exactly
contained in the ground truth decomposition. Further, the precision is computed as the number of
correctly reported paths divided by the total reported paths. However, since all the safe algorithms reports
(possibly) partial transcripts, we use subpaths instead of (almost) exactly same paths. To highlight how
much is reported correctly instead of how many, we use weighted precision to give a better score for
longer correctly reported paths.

Maximum relative coverage: Given a ground truth transcript T and a reported path R, we define a segment
of R inside T as a maximal subpath of R that is also subpath of T . We define the maximum relative
coverage of a ground truth transcript as the length of the longest segment of a reported path inside T ,
divided by the length of T . The corresponding value for the entire graph is the average of the values
over all T . While it is common in the literature [41,44] to report sensitivity (the proportion of ground
truth transcripts that are correctly predicted), we measure correctness based on coverage since all the
safe algorithms report paths that (possibly) do not cover an entire transcript.

F-score: The standard measure to combine precision and sensitivity is using an F-score, which is the har-
monic mean of the two. In our evaluation we correspondingly use the weighted precision and the maximum
relative coverage for computing the F-score.

5.3 Implementation and Environment Details

We evaluate the following algorithms in our experiments.

Unitigs: It computes the unitigs, by considering each unvisited edge in the topological order and extending
it towards the right as long as the internal nodes have unit indegree and unit outdegree. The result
ignores single edges.

ExtUnitigs: It computes the extended unitigs, by considering each unitig including single edges, and ex-
tending it towards the left as long as the internal nodes have unit indegree, and towards the right as
long as internal nodes have unit outdegree.

9

(a) Weighted Precision (b) Maximum Relative Coverage (c) F-Score

Fig. 4: Evaluation metrics on graphs distributed by k for the Reference-Sim dataset.

Safe&Comp: It computes the safe and complete paths for flow decomposition using our enumeration algo-
rithm described in Section 4. However, since the metrics evaluation scripts uses each safe path individually
(as reported by other algorithms), we output all safe paths separately instead of using Pc. This increases
the size of output and hence time complexity to O(mn2) from O(mn) as stated in Theorem 1.

Greedy: It computes the greedy-width heuristic using Catfish [45] with the -a greedy parameter.

All algorithms are implemented in C++, whereas the scripts for evaluating metrics are implemented
in Python. The Unitigs, ExtUnitigs, and Safe&Comp implementations use optimization level 3 of GNU
C++ (compiled with −O3 flag), whereas the Greedy uses the optimizations of the Catfish pipeline. The
Unitigs, ExtUnitigs, and Safe&Comp additionally require a post processing step using Aho Corasick Trie [2]
for removing duplicates, and prefix/suffixes to make the set of safe paths minimal. However, the time and
memory requirements are evaluated considering only the algorithm, and not post processing and metric
evaluations which are not optimized. All performances were evaluated on a laptop using a single core (i5-
8265U CPU 1.60GHZ) having 15.3GB memory. The source code of our project is available on Github 4

under GNU Genral Public License v3 license.

5.4 Results

We first evaluate the significance of safety among the reported solution. Figure 4a compares the weighted
precision of all the algorithms on the Reference-Sim dataset distributed over k. All the safe algorithms
clearly report perfect precision as expected. However, the precision of the Greedy algorithm sharply declines
with the increase in k, almost linearly to 30% for k = 35. This may be explained by the sharp increase in
the number of possible paths in graphs with increase in k, which can be used by any flow decomposition
algorithm. Hence, the significance of safety becomes very prominent as k increases .

We then evaluate the significance of completeness of the safe algorithms. Figure 4b compares the maximum
relative coverage of all the algorithms on the Reference-Sim dataset distributed over k. As expected, Greedy
outperforms all the other, followed by Safe&Comp, ExtUnitigs and Unitigs. However, note that as k reaches
20 Safe&Comp, ExtUnitigs and Unitigs sharply fall to 75%, 60% and 40%, while Greedy maintains around
95% coverage. Overall, Safe&Comp is almost always ≈ 85− 90% of that of Greedy, whereas ExtUnitigs and
Unitigs falls to 60% and 40% respectively. Hence, the Safe&Comp manages to maintain perfect precision
without losing a lot on coverage, demonstrating the importance of completeness among the safe algorithms.

Figure 4c supports the above inference by evaluating the combined metric F-Score, where Safe&Comp
dominates Unitigs and ExtUnitigs by definition. Safe&Comp also dominates Greedy as k approaches 10. It
4 https://github.com/algbio/flow-decomposition-safety

10

Graphs Algorithm Max. Coverage Wt. Precision F-Score

k ≥ 2
(100%)

Unitigs 0.51 1.00 0.66
ExtUnitigs 0.69 1.00 0.81
Safe&Comp 0.82 1.00 0.90

Greedy 0.98 0.81 0.86

2 ≤ k ≤ 10
(68%)

Unitigs 0.55 1.00 0.70
ExtUnitigs 0.73 1.00 0.84
Safe&Comp 0.84 1.00 0.91

Greedy 0.99 0.91 0.94

k > 10
(32%)

Unitigs 0.41 1.00 0.58
ExtUnitigs 0.61 1.00 0.75
Safe&Comp 0.76 1.00 0.86

Greedy 0.95 0.60 0.69
Table 1: Summary of evaluation metrics for the Reference-Sim dataset.

Algorithm

Reference-Sim Catfish
Human Zebrafish Mouse Human Human (salmon)
25.6MB 122MB 137MB 157MB 2.5GB

Time Mem Time Mem Time Mem Time Mem Time Mem
Unitigs 0.68s 3.58MB 13.82s 3.51MB 15.62s 3.53MB 18.22s 3.54MB 303.72s 3.66MB

ExtUnitigs 0.99s 3.63MB 18.31s 3.52MB 20.87s 3.57MB 23.64s 3.56MB 404.50s 3.68MB
Safe&Comp 2.56s 4.47MB 20.17s 3.56MB 25.76s 3.66MB 28.59s 3.54MB 667.27s 3.84MB

Greedy 7.71s 4.88MB 108.30s 6.00MB 127.38s 6.29MB 148.46s 6.34MB 2684.30s 8.47MB
Table 2: Time and Memory requirements of the different algorithms for the evaluated datasets.

is also important to note that both ExtUnitigs and Unitigs eventually dominate Greedy for a slightly larger
value of k > 20 and k > 30, respectively. This shows the significance of considering Safe algorithms for
complex graphs. However, the significance of the Safe&Comp is apparent from the Figure 3b as the number
of graphs with such higher complexities also reduces sharply.

Hence, we evaluate a summary of the above results averaged over all graphs irrespective of k. Table 1
summarizes the evaluation metrics for all the algorithms for simple graphs (k < 10) and complex graphs
(k > 10), and both. While on the simpler graphs Greedy dominates Safe&Comp mildly (≈ 3%), for complex
graphs it is dominated significantly (≈ 20%) by Safe&Comp and appreciably (≈ 8%) by ExtUnitigs. However,
despite the larger ratio of simpler graphs, the collective F-score over all graphs is still (≈ 4%) better for
Safe&Comp over Greedy which signifies the applicability of Safe&Comp over Greedy.

Finally, we evaluate the applicability of the above algorithms in practice, by comparing their running
time and peak memory requirements. Since all the algorithms are implemented in the same language (C++)
and evaluated on the same machine, it is reasonable to directly compare these measures. In Table 2, we see
that Unitigs clearly are the fastest, where ExtUnitigs takes roughly 1.3− 1.5× time. Safe&Comp takes upto
roughly 1.2− 2.5× time than ExtUnitigs, and Greedy requires roughly 3− 5× time than Safe&Comp. The
peak memory requirements of the safe algorithms are very close (within 5%-25%), whereas Greedy requires
roughly 1.1−2.2× more memory than Safe&Comp. Overall, for the performance measures Safe&Comp shows
a significant improvement over Greedy, without losing a lot over the trivial algorithms.

6 Conclusion

We study the flow decomposition problem in DAGs under the Safe and Complete paradigm, which has appli-
cations in various domains, including the more prominent multi-assembly of biological sequences. Previous
work characterized such paths (and their generalizations) using a global criterion. Instead, we present a sim-
pler characterization based on a more efficiently computable local criterion, which is directly adapted into an

11

optimal verification algorithm, and a simple enumeration algorithm. Intuitively, it is a weighted adaptation
of extended unitigs which is a prominent approach for computing safe paths.

Through our experiments, we show that the safe and complete paths found by our algorithm outper-
form the popularly used greedy-width heuristic for RNA assembly instances with relatively complex graph
instances, both on quality (F-score) and performance (running time and memory) parameters. On simple
graphs, Greedy outperforms Safe&Comp and Safe&Comp outperforms ExtUnitigs mildly (≈ 3− 5%). How-
ever, on complex graphs, Safe&Comp outperforms Greedy significantly (≈ 20%) and ExtUnitigs appreciably
(≈ 13%). While the Reference-Sim dataset shows the overall dominance of Safe&Comp since complex graphs
are appreciable (32%), Greedy dominates Safe&Comp in Catfish dataset since complex graphs are negligible
(≈ 2%). Another significant reason for the dominance of Greedy over Safe&Comp on Catfish datasets is the
absence of base information on nodes (see Appendix B). Hence, the importance of Safe&Comp algorithms
increases with the increase in complex graph instances in the dataset, and prominently when we consider
information about the genetic information represented by each node. In terms of performance, ExtUnitigs
are 1.3−1.5× slower than the fastest approach (Unitigs), while Safe&Comp further takes roughly 1.2−2.5×
time than ExtUnitigs, both requiring equivalent memory. However, Greedy requires roughly 3 − 5× time
and 1.1 − 2.2× memory than Safe&Comp. Overall, Safe&Comp performs significantly better than Greedy,
without losing a lot over the trivial algorithms.

Despite the optimality of our characterization of safe and complete paths, the enumeration algorithm
is not time optimal. Additionally, the concise representation of the safe paths Pc may not be optimal for
some graphs as described in Appendix A. Hence, for datasets with more complex graphs there is a scope
for improving the current enumeration algorithm and the concise representation in the future. Another
interesting direction for an extension of this problem having practical significance is finding safe paths for
those flow decompositions whose paths have a certain minimum weight threshold.

References

1. Acosta, N.O., Mäkinen, V., Tomescu, A.I.: A safe and complete algorithm for metagenomic assembly. Algorithms
for Molecular Biology 13(1), 3:1–3:12 (2018). https://doi.org/10.1186/s13015-018-0122-7

2. Aho, A.V., Corasick, M.J.: Efficient string matching: An aid to bibliographic search. Commun. ACM 18(6),
333–340 (1975). https://doi.org/10.1145/360825.360855

3. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows - theory, algorithms and applications. Prentice Hall
(1993)

4. Baaijens, J.A., der Roest, B.V., Köster, J., Stougie, L., Schönhuth, A.: Full-length de novo viral quasispecies
assembly through variation graph construction. Bioinform. 35(24), 5086–5094 (2019). https://doi.org/10.1093/
bioinformatics/btz443

5. Baaijens, J.A., Stougie, L., Schönhuth, A.: Strain-aware assembly of genomes from mixed samples using flow
variation graphs. In: Schwartz, R. (ed.) Research in Computational Molecular Biology - 24th Annual International
Conference, RECOMB 2020, Padua, Italy, May 10-13, 2020, Proceedings. Lecture Notes in Computer Science,
vol. 12074, pp. 221–222. Springer (2020). https://doi.org/10.1007/978-3-030-45257-5_14

6. Baier, G., Köhler, E., Skutella, M.: On the k-splittable flow problem. In: European Symposium on Algorithms.
pp. 101–113. Springer (2002)

7. Baier, G., Köhler, E., Skutella, M.: The k-splittable flow problem. Algorithmica 42(3-4), 231–248 (2005). https:
//doi.org/10.1007/3-540-45749-6_13

8. Bernard, E., Jacob, L., Mairal, J., Vert, J.P.: Flipflop: Fast lasso-based isoform prediction as a flow problem
(2013)

9. Boisvert, S., Laviolette, F., Corbeil, J.: Ray: simultaneous assembly of reads from a mix of high-throughput
sequencing technologies. Journal of computational biology 17(11), 1519–1533 (2010)

10. Bresler, G., Bresler, M., Tse, D.: Optimal Assembly for High Throughput Shotgun Sequencing. BMC Bioinfor-
matics 14(Suppl 5), S18 (2013)

11. Caceres, M., Mumey, B., Husic, E., Rizzi, R., Cairo, M., Sahlin, K., Tomescu, A.I.I.: Safety in multi-assembly
via paths appearing in all path covers of a DAG. IEEE/ACM Transactions on Computational Biology and
Bioinformatics (2021)

12

https://doi.org/10.1186/s13015-018-0122-7
https://doi.org/10.1186/s13015-018-0122-7
https://doi.org/10.1145/360825.360855
https://doi.org/10.1145/360825.360855
https://doi.org/10.1093/bioinformatics/btz443
https://doi.org/10.1093/bioinformatics/btz443
https://doi.org/10.1093/bioinformatics/btz443
https://doi.org/10.1093/bioinformatics/btz443
https://doi.org/10.1007/978-3-030-45257-5_14
https://doi.org/10.1007/978-3-030-45257-5_14
https://doi.org/10.1007/3-540-45749-6_13
https://doi.org/10.1007/3-540-45749-6_13
https://doi.org/10.1007/3-540-45749-6_13
https://doi.org/10.1007/3-540-45749-6_13

12. Cairo, M., Medvedev, P., Acosta, N.O., Rizzi, R., Tomescu, A.I.: An Optimal O(nm) Algorithm for Enumerating
All Walks Common to All Closed Edge-covering Walks of a Graph. ACM Trans. Algorithms 15(4), 48:1–48:17
(2019). https://doi.org/10.1145/3341731

13. Cairo, M., Rizzi, R., Tomescu, A.I., Zirondelli, E.C.: Genome assembly, from practice to theory: Safe, complete and
linear-time. In: Bansal, N., Merelli, E., Worrell, J. (eds.) 48th International Colloquium on Automata, Languages,
and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference). LIPIcs, vol. 198, pp.
43:1–43:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

14. Cechlárová, K., Lacko, V.: Persistency in combinatorial optimization problems on matroids. Discret. Appl. Math.
110(2-3), 121–132 (2001). https://doi.org/10.1016/S0166-218X(00)00279-1

15. Cohen, R., Lewin-Eytan, L., Naor, J.S., Raz, D.: On the effect of forwarding table size on sdn network utilization.
In: IEEE INFOCOM 2014-IEEE conference on computer communications. pp. 1734–1742. IEEE (2014)

16. Costa, M.C.: Persistency in maximum cardinality bipartite matchings. Operations Research Letters 15(3), 143 –
149 (1994). https://doi.org/10.1016/0167-6377(94)90049-3

17. Ford, D.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, USA (2010)
18. Gatter, T., Stadler, P.F.: Ryūtō: network-flow based transcriptome reconstruction. BMC bioinformatics 20(1),

190 (2019)
19. Griebel, T., Zacher, B., Ribeca, P., Raineri, E., Lacroix, V., Guigó, R., Sammeth, M.: Modelling and simulating

generic rna-seq experiments with the flux simulator. Nucleic acids research 40(20), 10073–10083 (2012)
20. Guénoche, A.: Can we recover a sequence, just knowing all its subsequences of given length? Computer Applica-

tions in the Biosciences 8(6), 569–574 (1992)
21. Hartman, T., Hassidim, A., Kaplan, H., Raz, D., Segalov, M.: How to split a flow? In: 2012 Proceedings IEEE

INFOCOM. pp. 828–836. IEEE (2012)
22. Hong, C.Y., Kandula, S., Mahajan, R., Zhang, M., Gill, V., Nanduri, M., Wattenhofer, R.: Achieving high

utilization with software-driven wan. In: Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM.
pp. 15–26 (2013)

23. Jackson, B.G.: Parallel methods for short read assembly. Ph.D. thesis, Iowa State University (2009)
24. Kececioglu, J.D., Myers, E.W.: Combinatorial algorithms for DNA sequence assembly. Algorithmica 13(1/2),

7–51 (1995)
25. Kingsford, C., Schatz, M.C., Pop, M.: Assembly complexity of prokaryotic genomes using short reads. BMC

Bioinformatics 11(1), 21 (2010)
26. Kloster, K., Kuinke, P., O’Brien, M.P., Reidl, F., Villaamil, F.S., Sullivan, B.D., van der Poel, A.: A practical

fpt algorithm for flow decomposition and transcript assembly. In: 2018 Proceedings of the Twentieth Workshop
on Algorithm Engineering and Experiments (ALENEX). pp. 75–86. SIAM (2018)

27. Lacko, V.: Persistency in optimization problems on graphs and matroids. Master’s thesis, UPJŠ Košice (1998)
28. Lam, K., Khalak, A., Tse, D.: Near-optimal assembly for shotgun sequencing with noisy reads. BMC Bioinform.

15(S-9), S4 (2014). https://doi.org/10.1186/1471-2105-15-S9-S4
29. Li, W.: RNASeqReadSimulator: a simple RNA-seq read simulator (2014)
30. Liu, R., Dickerson, J.: Strawberry: Fast and accurate genome-guided transcript reconstruction and quantification

from rna-seq. PLoS computational biology 13(11), e1005851 (2017)
31. Ma, C., Zheng, H., Kingsford, C.: Exact transcript quantification over splice graphs. In: Kingsford, C., Pisanti,

N. (eds.) 20th International Workshop on Algorithms in Bioinformatics, WABI 2020, September 7-9, 2020, Pisa,
Italy (Virtual Conference). LIPIcs, vol. 172, pp. 12:1–12:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2020). https://doi.org/10.4230/LIPIcs.WABI.2020.12

32. Ma, C., Zheng, H., Kingsford, C.: Finding ranges of optimal transcript expression quantification in cases of
non-identifiability. bioRxiv (2020). https://doi.org/10.1101/2019.12.13.875625, to appear at RECOMB 2021

33. Mäkinen, V., Belazzougui, D., Cunial, F., Tomescu, A.I.: Genome-Scale Algorithm Design: Biological Sequence
Analysis in the Era of High-Throughput Sequencing. Cambridge University Press (2015). https://doi.org/10.
1017/CBO9781139940023

34. Medvedev, P., Georgiou, K., Myers, G., Brudno, M.: Computability of models for sequence assembly. In: WABI.
pp. 289–301 (2007)

35. Millani, M.G., Molter, H., Niedermeier, R., Sorge, M.: Efficient algorithms for measuring the funnel-likeness of
dags. Journal of Combinatorial Optimization 39(1), 216–245 (2020)

36. Mumey, B., Shahmohammadi, S., McManus, K., Yaw, S.: Parity balancing path flow decomposition and routing.
In: 2015 IEEE Globecom Workshops (GC Wkshps). pp. 1–6. IEEE (2015)

37. Nagarajan, N., Pop, M.: Parametric complexity of sequence assembly: theory and applications to next generation
sequencing. Journal of computational biology 16(7), 897–908 (2009)

13

https://doi.org/10.1145/3341731
https://doi.org/10.1145/3341731
https://doi.org/10.1016/S0166-218X(00)00279-1
https://doi.org/10.1016/S0166-218X(00)00279-1
https://doi.org/10.1016/0167-6377(94)90049-3
https://doi.org/10.1016/0167-6377(94)90049-3
https://doi.org/10.1186/1471-2105-15-S9-S4
https://doi.org/10.1186/1471-2105-15-S9-S4
https://doi.org/10.4230/LIPIcs.WABI.2020.12
https://doi.org/10.4230/LIPIcs.WABI.2020.12
https://doi.org/10.1101/2019.12.13.875625
https://doi.org/10.1101/2019.12.13.875625
https://doi.org/10.1017/CBO9781139940023
https://doi.org/10.1017/CBO9781139940023
https://doi.org/10.1017/CBO9781139940023
https://doi.org/10.1017/CBO9781139940023

38. Ohst, J.P.: On the Construction of Optimal Paths from Flows and the Analysis of Evacuation Scenarios. Ph.D.
thesis, University of Koblenz and Landau, Germany (2015)

39. Olsen, N., Kliewer, N., Wolbeck, L.: A study on flow decomposition methods for scheduling of electric buses
in public transport based on aggregated time–space network models. Central European Journal of Operations
Research (2020). https://doi.org/10.1007/s10100-020-00705-6

40. Patro, R., Duggal, G., Kingsford, C.: Salmon: accurate, versatile and ultrafast quantification from rna-seq data
using lightweight-alignment. BioRxiv p. 021592 (2015)

41. Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.C., Mendell, J.T., Salzberg, S.L.: Stringtie enables improved
reconstruction of a transcriptome from rna-seq reads. Nature biotechnology 33(3), 290–295 (2015)

42. Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA fragment assembly. Proceedings
of the National Academy of Sciences 98(17), 9748–9753 (2001)

43. Pieńkosz, K., Kołtyś, K.: Integral flow decomposition with minimum longest path length. European Journal of
Operational Research 247(2), 414–420 (2015)

44. Shao, M., Kingsford, C.: Accurate assembly of transcripts through phase-preserving graph decomposition. Nature
biotechnology 35(12), 1167–1169 (2017)

45. Shao, M., Kingsford, C.: Theory and a heuristic for the minimum path flow decomposition problem. IEEE/ACM
Transactions on Computational Biology and Bioinformatics 16(2), 658–670 (2017)

46. Shomorony, I., Kim, S.H., Courtade, T.A., Tse, D.N.C.: Information-optimal genome assembly via sparse read-
overlap graphs. Bioinform. 32(17), 494–502 (2016). https://doi.org/10.1093/bioinformatics/btw450

47. Srivastava, A., Malik, L., Sarkar, H., Zakeri, M., Almodaresi, F., Soneson, C., Love, M.I., Kingsford, C., Patro, R.:
Alignment and mapping methodology influence transcript abundance estimation. Genome Biology 21(1), 1–29
(2020)

48. Suppakitpaisarn, V.: An approximation algorithm for multiroute flow decomposition. Electronic Notes in Discrete
Mathematics 52, 367 – 374 (2016). https://doi.org/https://doi.org/10.1016/j.endm.2016.03.048, iNOC 2015 – 7th
International Network Optimization Conference

49. Tomescu, A.I., Gagie, T., Popa, A., Rizzi, R., Kuosmanen, A., Mäkinen, V.: Explaining a weighted DAG with few
paths for solving genome-guided multi-assembly. IEEE ACM Trans. Comput. Biol. Bioinform. 12(6), 1345–1354
(2015). https://doi.org/10.1109/TCBB.2015.2418753

50. Tomescu, A.I., Kuosmanen, A., Rizzi, R., Mäkinen, V.: A novel min-cost flow method for estimating transcript
expression with rna-seq. BMC bioinformatics 14(S5), S15 (2013)

51. Tomescu, A.I., Medvedev, P.: Safe and complete contig assembly through omnitigs. Journal of Computational
Biology 24(6), 590–602 (2017), preliminary version appeared in RECOMB 2016.

52. Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., Van Baren, M.J., Salzberg, S.L., Wold,
B.J., Pachter, L.: Transcript assembly and quantification by rna-seq reveals unannotated transcripts and isoform
switching during cell differentiation. Nature biotechnology 28(5), 511–515 (2010)

53. Vatinlen, B., Chauvet, F., Chrétienne, P., Mahey, P.: Simple bounds and greedy algorithms for decomposing a
flow into a minimal set of paths. European Journal of Operational Research 185(3), 1390–1401 (2008)

54. Wang, Z., Gerstein, M., Snyder, M.: RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics
10(1), 57–63 (2009)

55. Williams, L.: Reference-sim (Nov 2021). https://doi.org/10.5281/zenodo.5646910
56. Williams, L., Reynolds, G., Mumey, B.: Rna transcript assembly using inexact flows. In: 2019 IEEE International

Conference on Bioinformatics and Biomedicine (BIBM). pp. 1907–1914. IEEE (2019)
57. Williams, L., Tomescu, A., Mumey, B.M., et al.: Flow decomposition with subpath constraints. In: 21st Interna-

tional Workshop on Algorithms in Bioinformatics (WABI 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik
(2021)

58. Yu, T., Mu, Z., Fang, Z., Liu, X., Gao, X., Liu, J.: Transborrow: genome-guided transcriptome assembly by
borrowing assemblies from different assemblers. Genome research 30(8), 1181–1190 (2020)

A Tightness and Worst Case for Simple Enumeration Algorithm

The example shown in Figure 5 demonstrates the worst case and the best case graphs where the simple
enumeration algorithm is optimal, and inefficient, respectively. We have two paths A = {a1, · · · , ak} and
B = {b1, · · · , bk}. The set C = {c1, · · · , ck} has edges from ak and the set D = {d1, · · · , dk} has edges to b1.
Choosing k = n/4 and any subset of connections between C×D we get a graph with any n and m. Let there
be flow k on the black edges and unit flow on the red edges. (a) In the worst case graph (left) the flow on

14

https://doi.org/10.1007/s10100-020-00705-6
https://doi.org/10.1007/s10100-020-00705-6
https://doi.org/10.1093/bioinformatics/btw450
https://doi.org/10.1093/bioinformatics/btw450
https://doi.org/https://doi.org/10.1016/j.endm.2016.03.048
https://doi.org/https://doi.org/10.1016/j.endm.2016.03.048
https://doi.org/10.1109/TCBB.2015.2418753
https://doi.org/10.1109/TCBB.2015.2418753
https://doi.org/10.5281/zenodo.5646910
https://doi.org/10.5281/zenodo.5646910

Fig. 5: The worst case (left) and best case (right) graphs for the simple enumeration algorithm.

remaining edges is according to flow conservation assuming a1 as the source and bk as the sink. Each edge
in C×D necessarily has a separate path in Pf from a1 to bk, with k maximal safe paths between {ai, bi} for
all 1 ≤ i ≤ k because every path between ai to b1 has excess flow i. This ensures that |Pc| = |Pf | = Ω(mn).
(b) In the best case graph (right) the two edges from ak−1 to ak and from b1 to b2 carry equal flow, and the
remaining edges have flow according to conservation of flow. Each edge in C × D has a safe path of O(1)
size from ak to b1. In addition there are two safe paths each of length O(n) from a1 to ak, and from b1 to
bk, corresponding to two parallel edges between (ak−1, ak), and between (b1, b2), respectively. However, we
have still have |Pf | = Ω(mn) but |Pc| = O(m+ n).

B Experimental Results on the Catfish Dataset

In this section we evaluate the corresponding metrics of different algorithms on the Catfish dataset. However,
since the Catfish dataset does not maintain the information on bases, the evaluation is based on nodes (exons
or pseudo-exons) instead of bases.

(a) Weighted Precision (b) Maximum Relative Coverage (c) F-Score

Fig. 6: Evaluation metrics on graphs distributed by k for the Catfish dataset.

Remark 3. The results on the Catfish dataset do not match the inferences from Section 5.4 exactly. The
primary differences and the expected reasons for the same are as follows:

1. Base vs. node computations for metrics: When considering the genomic content that is predicted (i.e.,
bases), Safe&Comp outperforms Greedy with respect to F-score over all graphs, as seen in Table 1.
However, the opposite is observed when we compute metrics based on nodes, as reported in Table 5.
Because the Catfish dataset has no base information, we can only report node information, but it is
possible that the same patterns we observe in Reference-Sim with bases would hold for Catfish in terms
of bases as well.

15

Graphs Algorithm Max. Coverage Wt. Precision F-Score

k ≥ 2
(100%)

Unitigs 0.42 1.00 0.58
ExtUnitigs 0.59 1.00 0.73
Safe&Comp 0.71 1.00 0.82

Greedy 0.89 0.92 0.89

2 ≤ k ≤ 10
(98%)

Unitigs 0.42 1.00 0.58
ExtUnitigs 0.59 1.00 0.74
Safe&Comp 0.71 1.00 0.83

Greedy 0.89 0.93 0.90

k > 10
(2%)

Unitigs 0.24 1.00 0.38
ExtUnitigs 0.42 1.00 0.59
Safe&Comp 0.58 1.00 0.74

Greedy 0.82 0.49 0.56
Table 3: Summary of evaluation metrics for the Catfish dataset, computed relative to nodes.

Species Algorithm Max. Coverage Wt. Precision F-Score

Human
(Salmon)

Unitigs 0.41 1.00 0.57
ExtUnitigs 0.58 1.00 0.73
Safe&Comp 0.70 1.00 0.82

Greedy 0.89 0.91 0.89

Human
Unitigs 0.44 1.00 0.60

ExtUnitigs 0.61 1.00 0.75
Safe&Comp 0.73 1.00 0.84

Greedy 0.90 0.97 0.93

Zebrafish
Unitigs 0.49 1.00 0.65

ExtUnitigs 0.67 1.00 0.80
Safe&Comp 0.78 1.00 0.87

Greedy 0.91 0.98 0.94

Mouse
Unitigs 0.46 1.00 0.61

ExtUnitigs 0.63 1.00 0.77
Safe&Comp 0.75 1.00 0.85

Greedy 0.90 0.97 0.93
Table 4: Summary of evaluation metrics for the Catfish dataset, computed relative to nodes, by species.

16

2. Ratio of simpler graphs: Catfish datasets are more skewed toward simpler graphs than the Reference-Sim
dataset. Table 1 shows that Reference-Sim has 32% of graphs with k > 10, while Table 3 shows that
Catfish dataset has only 2%. Since Greedy outperforms Safe&Comp on simpler graphs, it is better for
overall Catfish Datasets having more simpler graphs.

C Experimental Results on the Reference-Sim Dataset Considering Nodes

In this section we evaluate the corresponding metrics of different algorithms on the Reference-Sim dataset
based on nodes (exons or pseudo-exons) instead of bases.

(a) Weighted Precision (b) Maximum Relative Coverage (c) F-Score

Fig. 7: Evaluation metrics on graphs distributed by k for the Reference-Sim dataset considering nodes.

Graphs Algorithm Max. Coverage Wt. Precision F-Score

k ≥ 2
(100%)

Unitigs 0.33 1.00 0.49
ExtUnitigs 0.53 1.00 0.69
Safe&Comp 0.69 1.00 0.81

Greedy 0.96 0.81 0.86

2 ≤ k ≤ 10
(68%)

Unitigs 0.37 1.00 0.53
ExtUnitigs 0.56 1.00 0.71
Safe&Comp 0.72 1.00 0.83

Greedy 0.98 0.91 0.93

k > 10
(32%)

Unitigs 0.25 1.00 0.40
ExtUnitigs 0.47 1.00 0.64
Safe&Comp 0.64 1.00 0.78

Greedy 0.91 0.60 0.69
Table 5: Summary of evaluation metrics for the Reference-Sim dataset, computed relative to nodes.

D Experimental Results Including Funnel Instances

In this section we evaluate the corresponding metrics of different algorithms on the complete Reference-Sim
dataset and the complete Catfish dataset which include the funnels.

17

Remark 4. The results when considering the complete datasets (including funnels) are diluted when com-
pared to inferences from Section 5.4. In this case, we expect that the differences between the algorithms
become less sharp, because all algorithms solve trivial (funnel) instances perfectly, which artificially in-
creases the precision and coverage scores. This is confirmed by comparing Table 1 to Table 6. Without
funnel instances, we observe overall F-scores range between 0.66 and 0.9; whereas the range is from 0.82 to
0.95 when including them. A similar effect occurs for Catfish data in Table 3 and Table 7. This is also visible
from coverage and F-score metrics in Figure 8 and Figure 9 which start from 100% even for safe paths, which
is not the case in corresponding figures without funnels.

(a) Weighted Precision (b) Maximum Relative Coverage (c) F-Score

Fig. 8: Evaluation metrics on graphs distributed by k for the complete (including funnels) Reference-Sim
dataset.

Graphs Algorithm Max. Coverage Wt. Precision F-Score

k ≥ 1
(100%)

Unitigs 0.73 1.00 0.82
ExtUnitigs 0.84 1.00 0.90
Safe&Comp 0.91 1.00 0.95

Greedy 0.99 0.91 0.93

1 ≤ k ≤ 10
(85%)

Unitigs 0.79 1.00 0.86
ExtUnitigs 0.88 1.00 0.93
Safe&Comp 0.93 1.00 0.96

Greedy 1.00 0.96 0.97

k > 10
(15%)

Unitigs 0.41 1.00 0.58
ExtUnitigs 0.61 1.00 0.75
Safe&Comp 0.76 1.00 0.86

Greedy 0.95 0.61 0.70
Table 6: Summary of evaluation metrics for the complete (including funnels) Reference-Sim dataset.

18

(a) Weighted Precision (b) Maximum Relative Coverage (c) F-Score

Fig. 9: Evaluation metrics on graphs distributed by k for the complete (including funnels) Catfish dataset.

Graphs Algorithm Max. Coverage Wt. Precision F-Score

k ≥ 1
(100%)

Unitigs 0.64 1.00 0.75
ExtUnitigs 0.73 1.00 0.83
Safe&Comp 0.78 1.00 0.87

Greedy 0.87 0.96 0.91

1 ≤ k ≤ 10
(99%)

Unitigs 0.65 1.00 0.76
ExtUnitigs 0.73 1.00 0.83
Safe&Comp 0.79 1.00 0.88

Greedy 0.87 0.97 0.91

k > 10
(1%)

Unitigs 0.24 1.00 0.38
ExtUnitigs 0.42 1.00 0.59
Safe&Comp 0.58 1.00 0.74

Greedy 0.82 0.48 0.56
Table 7: Summary of evaluation metrics for the complete (including funnels) Catfish dataset, computed
relative to nodes.

19

	Safety and Completeness in Flow Decompositions for RNA Assembly

