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Abstract
Motivation: Co-linear chaining has proven to be a powerful technique for finding approximately optimal
alignments and approximating edit distance. It is used as an intermediate step in numerous mapping tools
that follow seed-and-extend strategy. Despite this popularity, subquadratic time algorithms for the case
where chains support anchor overlaps and gap costs are not currently known. Moreover, a theoretical
connection between co-linear chaining cost and edit distance remains unknown.
Results: We present algorithms to solve the co-linear chaining problem with anchor overlaps and gap
costs in Õ(n) time, where n denotes the count of anchors. We establish the first theoretical connection
between co-linear chaining cost and edit distance. Specifically, we prove that for a fixed set of anchors
under a carefully designed chaining cost function, the optimal ‘anchored’ edit distance equals the optimal
co-linear chaining cost. Finally, we demonstrate experimentally that optimal co-linear chaining cost under
the proposed cost function can be computed significantly faster than edit distance, and achieves high
correlation with edit distance for closely as well as distantly related sequences.
Implementation: https://github.com/at-cg/ChainX
Contact: chirag@iisc.ac.in, daniel.j.gibney@gmail.com, sharma.thankachan@ucf.edu

1 Introduction
Computing an optimal alignment between two sequences is one of the
most fundamental problems in computational biology. Unfortunately,
conditional lower-bounds suggest that an algorithm for computing an
optimal alignment, or edit distance, in strongly subquadratic time is
unlikely (Backurs and Indyk (2015)). This lower-bound indicates a
challenge for scaling the computation of edit distance to applications like
high-throughput sequencing. Instead, heuristics are often used to obtain
an approximate solution in less time and space. One such popular heuristic
is chaining. This technique involves precomputing fragments between
the two sequences that closely agree (in this work, exact matches called
anchors), then determining which of these anchors should be kept within
the alignment (See Fig. 1). Techniques along these lines are used in many
tools, such as long-read mappers like Minimap2 (Li (2018)), Minigraph
(Li et al. (2020)), Winnowmap2 (Jain et al. (2020)), uLTRA RNA-seq
aligner (Sahlin and Makinen (2020)), IRA (Ren and Chaisson (2020)),
NGMLR (Sedlazeck et al. (2018)), BLASR (Chaisson and Tesler (2012))
and generic alignment tools like Nucmer (Kurtz et al. (2004), Marçais et al.
(2018)), CLASP (Otto et al. (2011)), and CoCoNUT (Abouelhoda et al.
(2008)). We will focus on the following problem (described formally in

Section 2): Given a set of n anchors, determine an optimal ordered subset
(or chain) of these anchors.

There are several previous works that develop algorithms for the co-
linear chaining problem (Abouelhoda and Ohlebusch (2005); Mäkinen
and Sahlin (2020); Uricaru et al. (2011); Shibuya and Kurochkin (2003))
and even more in the context of sparse dynamic programming (Wilbur
and Lipman (1983); Eppstein et al. (1992a,b); Myers and Miller (1995);
Morgenstern (2002)). Solutions with different time complexities exist for
different variations of this problem. These depend on the cost-function
assigned to a chain and the types of chains permitted. Solutions include
an algorithm running in time O(n logn log logn) for a variant of the
problem where anchors used in a solution must be non-overlapping
(Abouelhoda and Ohlebusch (2005)). More recently, an algorithm running
in O(n log2 n) time was given where overlaps are allowed, but gaps
between anchors are not considered in the cost-function (Mäkinen and
Sahlin (2020)). None of the solutions introduced thus far provide a
subquadratic time algorithm for variations that use both overlap and
gap costs. However, including overlaps and gaps into a cost-function is
arguably a more realistic model for anchor chaining. Depending on the type
of anchor, there may be no reason to assume that in an optimal alignment
the anchors would be non-overlapping. At the same time, not taking into
account large gaps between the anchors seems unlikely to produce optimal
alignments.
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2 Jain et al.

This work’s contribution is the following:

• We provide the first algorithm running in subquadratic, eO(n) time
for chaining with overlap and gap costs1. Refinements based on the
specific type of anchor and chain under consideration are also given.
These refinements include an O(n log2 n) time algorithm for the case
where all anchors are of the same length, as is the case with k-mers.

• When n is not too large (less than the sequence lengths), we present
an algorithm with O(n · OPT + n logn) average-case time. This
provides a simple algorithm that is efficient in practice.

• Using a carefully designed cost-function, we mathematically relate
the optimal chaining cost with a generalized version of edit distance,
which we call anchored edit distance. This is equivalent to the usual
edit distance with the modification that matches performed without the
support of an anchor have unit cost. A more formal definition appears
in Section 2. With our cost function, we prove that over a fixed set of
anchors the optimal chaining cost is equal to the anchored edit distance.

• We empirically demonstrate that computing the optimal chaining
cost can be orders of magnitude faster than computing edit distance,
especially in semi-global comparison mode. We also demonstrate a
strong correlation between optimal chaining cost and edit distance.
The observed correlation coefficients are favorable when compared
to chaining heuristics implemented within commonly used sequence
mappers such as Nucmer4 and Minimap2.
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Fig. 1. Anchors representing exact matches are shown as rectangles. The
co-linear chaining problem is to find an optimal ordered subset of anchors
subject to some cost function.

2 Concepts and definitions
Let S1 and S2 be two strings of lengths |S1| and |S2| respectively. An
anchor interval pair ([a..b], [c..d]) signifies a match between S1[a..b] and
S2[c..d]. For an anchor I , we denote these values as I.a, I.b, I.c, and
I.d. We assume that an anchor corresponds to an exact match, therefore
b�a equals d� c. Accordingly, S1[a+ j] = S2[c+ j] for any 0  j 
b� a = d� c. We say that the character match S1[a+ j] = S2[c+ j] is
supported by the anchor ([a..b], [c..d]). Maximal exact matches (MEMs),
maximal unique matches (MUMs), or k-mer matches are some of the
common ways to define anchors. Maximal unique matches (Delcher et al.
(1999)) are a subset of maximal exact matches, having the added constraint
that the pattern involved occurs only once in both strings. If all intervals
across all anchors have the same length (e.g., using k-mers), we say that
the fixed-length property holds.

Our algorithm will make use of range minimum queries (RmQs). For
a set of n d-dimensional points, each with an associated weight, a ‘query’
consists of an orthogonal d-dimensional range. The query response is the
point in that range with the smallest weight. Using standard techniques, a
data structure can be built in O(n logd�1

n) time, that can both answer
queries and modify a point’s weight in O(logd n) time (de Berg et al.
(2008)).

1 eO(·) hides poly-logarithmic factors.

2.1 Co-linear chaining problem with overlap and gap costs

Given a set ofn anchorsA for stringsS1 andS2, we assume thatA already
contains two end-point anchors Aleft = ([0, 0], [0, 0]) and Aright =

([|S1|+1, |S1|+1], [|S2|+1, |S2|+1]). We define the strict precedence
relationship� between two anchors I0 := A[j] and I := A[i] as I0 � I

if and only if I0.a  I.a, I0.b  I.b, I0.c  I.c, I0.d  I.d, and strict
inequality holds for at least one of the four inequalities. In other words,
the interval belonging to I

0 for S1 (resp. S2) should start before or at
the starting position of the interval belonging to I for S1 (resp. S2) and
should not extend past it. We also define the weak precedence relation�w

as I
0 �w I if and only if I0.a  I.a, I0.c  I.c and strict inequality

holds for at least one of the two inequalities, i.e., intervals belonging to I
0

should start before or at the starting position of intervals belonging to I , but
now intervals belonging to I

0 can be extended past the intervals belonging
to I . The aim of the problem is to find a totally ordered subset (a chain)
of A that achieves the minimum cost under the cost function presented
next. We will specify whether we mean a chain under strict precedence or
a chain under weak precedence where necessary.

Cost function. For I0 � I , the function connect(I0, I) is designed to
indicate the cost of connecting anchor I0 to anchor I in an alignment. The
chaining problem asks for a chain of m  n anchors, A0[1], A0[2], . . .,
A0[m], such that the following properties hold: (i) A0[1] = Aleft, (ii)
A0[m] = Aright, (iii) A0[1] � A0[2] � . . . � A0[m], and (iv) the costP

m�1
i=1 connect(A0[i],A0[i+ 1]) is minimized.
We next define the function connect. In Section 3.2, we will see that

this definition is well motivated by the relationship with anchored edit
distance. For a pair of anchors I0, I such that I0 � I:

• The gap in string S1 between anchors I0 and I is g1 = max(0, I.a�
I
0
.b � 1). Similarly, the gap between the anchors in string S2 is

g2 = max(0, I.c� I
0
.d� 1). We define the gap cost as g(I0, I) =

max(g1, g2).
• The overlap o1 is defined such that I

0
.b � o1 reflects the non-

overlapping prefix length of anchor I
0 in string S1. Specifically,

o1 = max(0, I0.b�I.a+1). Similarly, define o2 = max(0, I0.d�
I.c+ 1). We define the overlap cost as o(I0, I) = |o1 � o2|.

• Lastly, define connect(I0, I) = g(I0, I) + o(I0, I).

The same definitions are used for weak precedence, only using�w in the
place of �.

Regardless of the definition of connect, the above problem can be
trivially solved in O(n2) time and O(n) space. First sort the anchors
by the component A[·].a and let A0 be the sorted array. The chaining
problem then has a direct dynamic programming solution by filling an
n-sized array C from left-to-right, such that C[i] reflects the cost of an
optimal chain that ends at anchor A0[i]. The value C[i] is computed using
the recursion: C[i] = minA0[k]�A0[i]

�
C[k] + connect(A0[k],A0[i])

�

where the base case associated with anchor Aleft is C[1] = 0. Array
C is computed using two nested loops, resulting in a time complexity of
O(n2). The optimal chaining cost will be stored in C[n]. We will provide
an O(n log4 n) time algorithm for this problem for the case where the
connect function is the one stated above.

2.2 Anchored edit distance

The edit distance problem is to identify the minimum number of
operations (substitutions, insertions, or deletions) that must be applied
to string S2 to transform it to S1. Edit operations can be equivalently
represented as an alignment (a.k.a. edit transcript) that specifies the
associated matches, mismatches and gaps while placing one string on top
of another. The anchored edit distance problem is as follows: given strings
S1 and S2 and a set of n anchors A, compute the optimal edit distance

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2021. ; https://doi.org/10.1101/2021.02.03.429492doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.03.429492
http://creativecommons.org/licenses/by/4.0/


Co-linear chaining with overlaps and gap costs 3

subject to the condition that a match supported by an anchor has edit cost
0, and a match that is not supported by an anchor has an edit cost of 1.

The above problem is easily solvable in O(|S1||S2|) time and space.
First, observe that we only need to consider O(|S1||S2|) anchors in total
because only the longest anchor is useful for a fixed pair of indices i and
j. Next, the standard dynamic programming recursion for solving the edit
distance problem can be revised. Let D[i, j] denote anchored edit distance
between S1[1, i] and S2[1, j], then D[i, j] = min(D[i � 1, j � 1] +

x,D[i � 1, j] + 1, D[i, j � 1] + 1) where x = 0 if S1[i] = S2[j] and
the match is supported by some anchor, and x = 1 otherwise.

2.3 Graph representation

It is useful to consider the following representation of an alignment of two
strings S1 and S2. As illustrated in Figure 2, we have a set of |S1| top
vertices and |S2| bottom vertices. There are two types of edges between
the top and bottom vertices: (i) A solid edge from ith top vertex to the
jth bottom vertex. This represents an anchor supported match between the
ith symbol in S1 and the jth symbol in S2; (ii) A dashed edge from the
ith top vertex to the jth bottom vertex. This represents a character being
substituted to form a match between S1[i] and S2[j] or an exact match
not supported by an anchor. All unmatched vertices are labeled with an
‘x’ to indicate that the corresponding symbol is deleted. An important
observation is that no two edges cross in this graph representation.

In a solution to the anchored edit distance problem every solid edge
must be ‘supported’ by an anchor. By ‘supported’ here we mean that the
match between the corresponding symbols in S1 and S2 is supported by
an anchor. In Figure 2, these anchors are represented with rectangles above
and below the vertices. We use M to denote the set of vertices marked
with x and all edges. We also associate an edit cost with the alignment,
denoted as EDIT (M). This is defined as the number of vertices marked
with x in M plus the number of dashed edges in M.

S1

S2
x

xxx

xx

Fig. 2. Above is the graph representation of an alignment. Solid edges
represent matches, dashed edges substitutions and unsupported matches,
and ‘x’s deletions. We use the notation M to represent the set of vertices
marked with x and all edges. Here EDIT (M) = 7.

3 Main results
Theorem 3.1 states formally the algorithmic results for solving the co-
linear chaining problem with overlap and gap costs.

Theorem 3.1. The co-linear chaining problem with overlap and gap
costs can be solved in time eO(n). In particular, in time O(n log2 n)

for chains with fixed-length anchors; in time O(n log3 n) for chains
under weak precedence; and in time O(n log4 n) for chains under strict
precedence.

We give a brief outline of the algorithm before its formal description
in Section 3.1. The proposed algorithm still uses the recursive formula
given in Section 2.1. However, it uses range minimum query (RmQ) data
structures to avoid having to check every anchor A[k] where A[k].a <

A[i].a. We avoid this exhaustive check by considering six cases concerning
the optimal choice of the prior anchor. We use the best of the six distinct

possibilities to determine the optimal C[i] value. This C[i] value is then
used to update the RmQ data structures. For the strict precedence case,
some of the six cases require up to four dimensions for the range minimum
queries. When only weak precedence is required, we reduce this to at most
three dimensions. When the fixed-length property holds (e.g., k-mers), we
reduce this to two dimensions.

Next, Theorem 3.2 formalizes the connection that this work makes
between co-linear chaining and anchored edit distance.

Theorem 3.2. For a fixed set of anchors A, the following quantities are
equal: the optimal anchored edit distance, the optimal co-linear chaining
cost under strict precedence, and the optimal co-linear chaining cost under
weak precedence.

The proof of Theorem 3.2 (Section 3.2) first shows that for a fixed set of
anchors, the anchored edit distance of two sequences S1 and S2 is at most
the optimal co-linear chaining cost. We do this by starting with an optimal
chain of anchors under weak precedence and providing an alignment MG

where EDIT (MG) is at most the optimal co-linear chaining cost. The
alignment is obtained using a greedy algorithm that works from left-to-
right, always taking the closest exact match when possible, and when not
possible, a character substitution or unsupported exact match, or if none
of these are possible, a deletion. The proof of the inequality uses this
algorithm along with induction on the number of anchors processed.

To prove the other side of the inequality, we begin with an optimal
alignment M⇤. We then find a set of anchors that are totally ordered under
strict precedence and support an alignment M where EDIT (M) =

EDIT (M⇤). Following this, we show that on any set of anchors totally
ordered under strict precedence (i) the greedy algorithm outlined above
for obtaining an alignment MG is optimal, and (ii) EDIT (MG) is the
same value as the anchor chaining cost.

3.1 Algorithm for co-linear chaining with gap and overlap

3.1.1 Algorithm for chains under strict precedence

We first present the algorithm for chains under strict precedence and then
provide modifications for the other cases. The first step is to sort the set of
anchorsA using the keyA[·].a. LetA0 be the sorted array. We will next use
six RmQ data structures labeledT1a, T1b, T2a, T2b, T3a, T3b. These RmQ
data structures are initialized with the following points for every anchor:
For anchor I 2 A0: T1a is initialized with the point (I.b, I.d� I.b), T1b
with (I.d, I.d� I.b), T2a with (I.b, I.c, I.d), T2b with (I.b, I.d), T3a
with (I.b, I.c, I.d, I.d � I.b), and T3b with (I.b, I.d, I.d � I.b). All
weights are initially set to1.

We then process the anchors in sorted order and update the RmQ data
structures after each iteration. On the ith iteration, for j < i, we letC[j] be
the optimal co-linear chaining cost of any ordered subset of A0[1], A0[2],
..., A0[j] that ends with A0[j]. For i > 1, RmQ queries are used to find
the optimal j < i by considering six different cases. We let I = A0[i],
I
0 = A0[j], and C[I0] = C[j].

1. Case: I0 disjoint from I .

I
0
.a I

0
.b

I
0
.c I

0
.d

I.a I.b

I.c I.d

Fig. 3. Case 1.a. Colinear chaining cost is C[I0] + g2 = C[I0] + I.c � I
0
.d � 1
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4 Jain et al.

a. Case: The gap in S1 is less or equal to gap in S2 (Fig. 3). The RmQ
is of the form: (I0.b, I0.d�I

0
.b) 2 [0, I.a�1]⇥[�1, I.c�I.a].

The weight stored in T1a for I0 is minC[I0]� I
0
.d. We query the

range above and let C1a = minC[I0] + I.c� I
0
.d� 1.

b. Case: The gap in S2 is less than gap in S1 The RmQ is of the form:
(I0.d, I0.d�I

0
.b) 2 [0, I.c�1]⇥ [I.c�I.a+1,1]. The weight

stored in T1b for I0 is minC[I0]� I
0
.b. We query the range above

and let C1b = minC[I0] + I.a� I
0
.b� 1.

2. Case: I0 and I overlap in only one dimension.

I.a I.b

I.c I.d

I
0
.a I

0
.b

I
0
.c I

0
.d

Fig. 4. Case 2.a. Chaining cost is C[I0]+g1+o2 = C[I0]+I.a�I
0
.b+I

0
.d�I.c.

a. Case: I0 and I overlap only in S2 (Fig 4). The RmQ is of the form:
(I0.b, I0.c, I0.d) 2 [0, I.a� 1]⇥ [0, I.c]⇥ [I.c, I.d]. The weight
stored in T2a for I0 is minC[I0]� I

0
.b+ I

0
.d. We query the range

above and let C2a = C[I0] + I.a� I
0
.b+ I

0
.d� I.c.

b. Case: I0 and I overlap only in S1. Since the anchors are sorted on
A[·].a, this can be done with a two dimensional RmQ structure. The
RmQ is of the form: (I0.b, I0.d) 2 [I.a, I.b] ⇥ [0, I.c � 1]. The
weight stored in T2b for I0 is minC[I0] + I

0
.b � I

0
.d. We query

the range above and let C2b = C[I0] + I.c� I
0
.d+ I

0
.b� I.a.

3. Case: I0 and I overlap in both dimensions.

I
0
.a I

0
.b

I
0
.c I

0
.d

I.a I.b

I.c I.d

Fig. 5. Chaining cost is C[I0] + o2 � o1 = C[j] + I
0
.d � I.c � (I0.b � I.a).

a. Case: Greater overlap in S2 (Fig. 5). Here, |o1� o2| = o2� o1 =

I
0
.d� I.c� (I0.b� I.a). The RmQ is of the form:

(I0.b, I0c, I0.d, I0.d� I
0
.b) 2 [I.a, I.b]⇥ [0, I.c]

⇥[I.c, I.d]⇥ [I.c� I.a+ 1,1].

The weight stored inT3a for I0 isminC[I0]�I0.b+I
0
.d. We query

the range above and let C3a = C[I0] + I
0
.d� I.c� I

0
.b+ I.a.

b. Case: Greater or equal overlap in S1. Here, |o1�o2| = o1�o2 =

I
0
.b� I.a� (I0.d� I.c). If o1 � o2 > 0, I0.b 2 [I.a, I.b], and

I
0
.a 2 [0, I.a] then I

0
.c 2 [0, I.c]. Hence, we can make the RmQ

of the form:

(I0.b, I0.d, I0.d�I0.b) 2 [I.a, I.b]⇥[I.c, I.d]⇥[�1, I.c�I.a].

The weight stored inT2b for I0 isminC[I0]+I
0
.b�I0.d. We query

the range above and let C3b = C[I0] + I
0
.b� I.a+ I.c� I

0
.d.

Finally, set C[i] = min(C1a, C1b, C2a, C2b, C3a, C3b) and update
the RmQ structures as shown in the Pseudo-code in Figure 3.1.1. In the

pseudo-code, an RmQ structureT has the query methodT .RmQ()which
takes as arguments an interval for each dimension. It also has the method
T .update(), which takes a point and a weight and then updates the point
to have the new weight. The four-dimensional queries for Case 3.a require
O(log4 n) time per query, causing an O(n log4 n) time complexity.

Input: n anchors A[1, n] including Aleft = A[1] and Aright = A[n].
Output: Array C[1, n] s.t. C[i] is the optimal co-linear chaining cost for

any ordered subset of A[1, i] ending with A[i].
Let A0[1], ... A0[n] be the anchors A sorted on A[·].a;
Construct RmQ structures with weights set to1;
Initialize array C of size n to 0;
for i 1 to n do

I  A0[i];
if i � 2 then

C1a  T1a.RmQ([0, I.a� 1], [�1, I.c� I.a]) + I.c� 1;
C1b  T1b.RmQ([0, I.c� 1], [I.c� I.a+1,1])+ I.a� 1;
C2a  T2a.RmQ([0, I.a�1], [0, I.c], [I.c, I.d])+I.a�I.c;
C2b  T2b.RmQ([I.a, I.b], [0, I.c� 1])� I.a + I.c;
C3a  T3a.RmQ([I.a, I.b], [0, I.c], [I.c, I.d], [I.c� I.a +

1,1]) + I.a� I.c;
C3b  
T3b.RmQ([I.a, I.b], [I.c, I.d], [�1, I.c� I.a])� I.a+ I.c;
/* Take optimal choice */

C[i] min(C1a, C1b, C2a, C2b, C3a, C3b);
end

/* Update RmQ structures */

T1a.update((I.b, I.d� I.b), C[i]� I.d);
T1b.update((I.d, I.d� I.b), C[i]� I.b);
T2a.update((I.b, I.c, I.d), C[i]� I.b + I.d);
T2b.update((I.b, I.d), C[i] + I.b� I.d);
T3a.update((I.b, I.c, I.d, I.d� I.b), C[i]� I.b + I.d);
T3b.update((I.b, I.d, I.d� I.b), C[i] + I.b� I.d);

end

return C[1, n]
Algorithm 1: For co-linear chaining with overlaps and gap costs

3.1.2 Modifications for weak precedence and fixed-length anchors

We first consider the case of weak precedence. In Case 3.a the anchor
end I

0
.d can be positioned arbitrarily to the right of I.c. Moreover, since

by the first dimension of the RmQ there is positive overlap in S1 and
by the fourth dimension there is greater overlap in S2, we know that
I
0
.d � I.c. Hence, we can then remove the third dimension from the

RmQ. The query will then be of the form (I0.b, I0.c, I0.d � I
0
.b) 2

[I.a,1] ⇥ [0, I.c] ⇥ [I.c � I.a + 1,1]. In Case 3.b, where there is
greater or equal overlap in S1, we can similarly ignore I

0
.b, but in order

to match our definition of weak precedence we must also ensure I
0
.c 2

[0, I.c� 1] (this is unnecessary for I0.a in Case 3.a as the strictly greater
overlap in S2 ensures I0.a < I.a). We modify the query to be of the form
(I0.c, I0.d, I0.d � I

0
.b) 2 [0, I.c � 1] ⇥ [I.c,1] ⇥ [�1, I.c � I.a].

Since each RmQ has at most three dimensions the total time complexity
can be brought down to O(n log3 n).

In the case of fixed-length anchors, the RmQ for Case 2.a. can be made
(I0.b, I0.d) 2 [0, I.a � 1] ⇥ [I.c, I.d]. The modifications for Cases 3.a
and 3.b are more involved. When solving for C[I], the points associated
with I in T3a and T3b are updated as was done previously. We keep a
pointer pa to indicate the current a value of the interval, initially setting
pa = A[1].a. Conceptually, before processing anchor I we increment
pa from its previous position to I.a. If for some anchor I0 the end I

0
.b

is passed by pa, we update the points associated with I
0 in T3a and T3b

to have the the weight1. This eliminates the need to use a range query
to check I

0
.b 2 [I.a, I.b], since any points not within that range are

effectively removed from consideration. Hence, we can reduce the query
for Case 3.a. (overlap in S2 greater than overlap in S1) to (I0.c, I0.d �
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I
0
.b) 2 [0, I.c]⇥[I.c�I.a+1,1]. and the query for Case 3.b (overlap in

S1 greater or equal to overlap in S2) to (I0.d, I0.d� I
0
.b) 2 [I.c, I.d]⇥

[�1, I.c � I.a]. To avoid the |S1| time complexity, the anchors that
would be encountered while incrementing pa can be found by looking
at which anchors have b values between the previous pa value and I.a.
Because each update requires O(log2 n) time, these updates cost time
O(n log2 n) in total.

3.2 Equivalence of anchored edit distance and chaining

Lemma 3.3. Anchored edit distance optimal co-linear chaining cost
under weak precedence  optimal co-linear chaining cost under strict
precedence.

Proof. We start with an anchor chain under weak precedence, A[1],
A[2], . . ., with optimal co-linear chaining cost. We will provide an
alignment with an associate anchored edit distance that is at most the
chaining cost. Assume inductively that all symbols in S1[1,A[i].b] and
S2[1,A[i].d] have been processed, that is, either matched, substituted, or
deleted (represented by check-marks in Figures 6-10). The base case of
this induction holds trivially for Aleft. We consider the anchor A[i+ 1]

and the possible cases regarding its position relative to A[i]. Symmetric
cases that only swap the roles of S1 and S2 are ignored. To ease notation,
let I0 = A[i] and I = A[i+ 1].

1. Case I
0
.b � I.b and I

0
.d � I.c (Fig 6): To continue the alignment,

x
X X X X

X X X X X X

I
0
.a I

0
.b

I
0
.c I

0
.d

I.a I.b I.c I.d

Fig. 6. Case I
0
, b � I.b and I

0
.d � I.c, the Xsymbol is used to indicate symbols that

have been processed prior to considering I.

delete the substring S2[I0.d+ 1, I.d] from S2. This has an edit cost
of I.d � I

0
.d. We also have connect(I0, I) = o1 � o2 = I.c +

I
0
.b� I.a� I

0
.d � I.c+ I.b� I.a� I

0
.d = I.d� I

0
.d.

2. Case I
0
.b � I.b and I

0
.d < I.c (Fig 7): Delete the substring

xxx
X X X

X X X X

I
0
.a I

0
.b

I
0
.c I

0
.d

I.a I.b I.c I.d

Fig. 7. I0.b � I.b and I
0
.d < I.c.

S2[I0.d + 1, I.d] from S2, with edit cost I.d � I
0
.d. Also

connect(I0, I) = o1 + g2 = I.c + I
0
.b � I.a � I

0
.d �

I.c+ I.b� I.a� I
0
.d = I.d� I

0
.d.

3. Case I.b > I
0
.b, I.a  I

0
.b, I.c  I

0
.d (Fig. 8): Supposing wlog

that o1 > o2, delete the substring S2[I0.d+1, I0.d+ o1� o2], and
match the substringsS1[I0.b+1, I.b] andS2[I0.d+o1�o2+1, I.d].
This has edit cost o1 � o2. Also, connect(I0, I) = o1 � o2.

4. Case I.b > I
0
.b, I.a  I

0
.b, I.c > I

0
.d (Fig. 9): We delete the

substring S2[I0.d+ 1, I0.d+ o1 + g2] and match S1[I0.b+ 1, I.b]

X X X X

X X X X X x

I
0
.a I

0
.b

I
0
.c I

0
.d

I.a I.b

I.c I.d

Fig. 8. Case I.b > I
0
.b, I.a  I

0
.b, I.c  I

0
.d

X X X

X X X X x x

I
0
.a I

0
.b

I
0
.c I

0
.d

I.a I.b

I.c I.d

Fig. 9. Case I.b > I
0
.b, I.a  I

0
.b, I.c > I

0
.d

with S2[I0.d+ o1 + g2 + 1, I.d]. This has edit cost o1 + g2. Also,
connect(I0, I) = o1 + g2.

5. Case I.a > I
0
.b, I.c > I

0
.d (Fig. 10): Supposing wlog

x
X X

X X X

I
0
.a I

0
.b

I
0
.c I

0
.d

I.a I.b

I.c I.d

Fig. 10. Case I.a > I
0
.b, I.c > I

0
.d

g2 � g1, match with substitutions or unsupported exact matches
S1[I0.b + 1, I0.b + g1] and S2[I0.d + 1, I0.d + g1]. Delete the
substring S2[I0.d+g1+1, I.c�1]. Finally, match S1[I.a, I.b] and
S2[I.c, I.d]. The edits consist of g1 of substitutions or unsupported
exact matches and g2 � g1 deletions, which is g2 edits in total. Also,
connect(I0, I) = max{g1, g2} = g2.

Continuing this process until Aright, all symbols in S1 and S2 become
included in the alignment, proving the first inequality. The second
inequality follows from the observation that every set of anchors ordered
under strict precedence is also ordered under weak precedence.

To prove the other side of the inequality, we first present an algorithm
that can remove one anchor from a pair of incomparable anchors while
maintaining an alignment of equal or less cost. Note that this algorithm is
for the purposes of the proof and is not particularly efficient.

Algorithm (i). Algorithm for removing incomparable anchors.

Consider two incomparable anchors I and I
0 (Fig 11). We process the

edges supported by the two anchors from right-to-left. The anchor that has
the rightmost supported solid edge will be the anchor we keep. Suppose
wlog it is I . Working from right-to-left, for an edge e = (S1[h], S2[k])

(either solid or dashed) encountered that is not supported by I , we replace
that edge with an edge supported by I . In particular, if the closest edge to
the right of e supported by I is e0 = (S1[h0], S2[k0]) andh0�h  k

0�k,
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then we replace e with e
00 = (S1[h], S2[k00]) such that e00 is supported

by I . Note that at least one side of every edge supported by I
0 is within an

interval of I . Hence, all edges supported by I
0 are eventually replaced as

we continue this process. We then remove I
0. This algorithm is repeated

until a total ordering under weak precedence is possible.
Algorithm (ii). Algorithm for removing anchors with nested

intervals. Consider two anchors I and I
0 where I

0 has an interval nested
in one of the intervals belonging to I . If an edge is supported by I to the
right of any edges supported by I

0, we remove the edges supported by I
0

by again using a right-to-left sweep. We replace those edges as was done
in Algorithm (i). If there exists an edge supported by I to the left of any
edge supported by I

0, we remove the edges supported by I
0 by sweeping

left-to-right, replacing those edges with edges supported by I . This is done
by maintaining the vertex closest to the preceding I-supported edge to the
left. Once this procedure is complete, I0 no longer supports any edges and
can be removed. We repeat this until there are no two nested intervals.

xx

I.a

I.c

I
0
.a

I
0
.c

Replace

h

k k
00

h
0

k
0

Fig. 11. Anchors I and I
0 are incomparable. To remove I

0 we sweep from right-to-left
replacing edges not supported by I with edges supported by I. Here, (S1[h], S2[k]) is
not supported by I and will be replaced with (S1[h], S2[k

00]), which is supported by I.

Lemma 3.4. For a set of anchors supporting an alignment M, applying
Algorithm (i) followed by Algorithm (ii) produces an anchor chain under
strict precedence that supports an alignment M0 where EDIT (M0) 
EDIT (M).

Proof. Suppose we are replacing a solid edge e = (S1[h], S2[k])

supported by an anchor other than I , the anchor we wish to keep. Let
S1[h] be the vertex closest to the nearest edge to the right supported
by I , say e

0 = (S1[h0], S2[k0]) (Fig. 11). We replace e with the edge
e
00 = (S1[h], S2[k00]) supported by I

0. Because edges are not crossing
within the alignment, deleting vertexS2[k] and matchingS2[k00], does not
require modifying any additional edges, maintaining the edit cost. If e was
a dashed edge, replacing e with e

00 converts a substitution or unsupported
exact match at S1[k] to a deletion, and removes a deletion at S2[k00],
decreasing the edit cost by 1. Similar statements hold for Algorithm (ii)
when we process edges from either right-to-left or from left-to-right.

After applying Algorithms (i) and (ii) to an arbitrary supporting set of
anchors, we have a supporting anchor chain under strict precedence. The
next algorithm is the same as the one used in the proof of Lemma 3.3. Now,
not having nested intervals makes the inequality strict in Cases 1 and 2.

Algorithm. Greedy algorithm for obtaining optimal alignment.

Given a chain of anchors under strict precedence, we process the anchors
from left-to-right, always using the left-most solid edge possible within
the current anchor. In the case of a gap between anchors in S1 and S2,
we perform substitutions or unsupported exact matches to match the left-
most unprocessed characters in the gaps of both strings. The remaining
characters in the larger of the two gaps are then deleted. In the case of a
gap in only one string, the characters in the gap are deleted. See the proof
of Lemma 3.3 for more details.

Lemma 3.5. For a fixed anchor chain under strict precedence, the greedy
algorithm produces an optimal alignment.

Proof. This follows from an exchange argument. Suppose there exists
an optimal alignment M⇤ that is not the same as the alignment MG

produced by the greedy algorithm. As we process the edges from left-
to-right, consider when the first discrepancy in the edges is found, the
first edge e in M⇤ not equal to an edge eG in MG. We claim e can
be replaced with eG without increasing the edit cost. Let eprev be the
previous edge on which the M⇤ and MG agreed. First, we observe that e
and eG must share at least one vertex. Since the greedy algorithm always
matches when possible, them not sharing a vertex could only happen due
to deletions on both S1 and S2 in M⇤ between eprev and e. But in an
optimal solution, this would never occur because substitutions could be
used instead to reduce the edit cost. The edge eG being dashed and the
edge e being solid cannot happen because the greedy algorithm would
take a solid edge whenever possible. Because only deletions exist between
eprev and e in whichever string the discrepancy exists, for any remaining
combination of solid/dashed edge for eG and solid/dashed edge for e,
replacing e with eG will not increase the edit cost.

Lemma 3.6. For an anchor chain under strict precedence, the edit cost
of the alignment produced by the greedy algorithm is equal to the chaining
cost.

Proof. This follows from induction on the number of anchors processed,
using the same arguments used in the proof of Lemma 3.3. Only now we
can modify Cases 1 and 2 from the proof to only consider when I0.b = I.b.
This makes it so the edit cost of adding the vertices covered by I is equal
to connect(I0, I) in all cases.

Lemma 3.7. Optimal chaining cost under strict precedence anchored
edit distance, and optimal chaining cost under weak precedence 
anchored edit distance.

Proof. We start with an optimal alignment M⇤. Using Lemma 3.4, by
applying Algorithms (i) and (ii) to an arbitrary supporting set of anchors for
M⇤, we obtain a subset of anchors totally ordered under strict precedence
and supporting an alignment M where EDIT (M) = EDIT (M⇤).
By Lemma 3.5, the edit cost of M is greater or equal to the edit cost of the
alignment MG given by the greedy algorithm on this set of anchors. And
by Lemma 3.6, the co-linear chaining cost of this set of anchors is equal to
the edit cost of MG. Combining these, we have that the optimal anchored
edit distance = EDIT (M⇤) � EDIT (M) � EDIT (MG) = the
co-linear chaining cost of this set of anchors� optimal chaining cost under
strict precedence � optimal chaining cost under weak precedence.

Combining Lemmas 3.3 and 3.7 completes the proof of Theorem 3.2.

4 Implementation
Multi-dimensional RmQs can require significant space (exponential factor
w.r.t. dimension), making access-time poor due to cache-inefficiency.
We can take advantage of two observations to design a more practical
algorithm. First, if sequences are highly similar, their edit distance will be
relatively small. Hence the anchored edit distance, denoted in this section
as OPT , will be relatively small for MUM or MEM anchors. Second, if
the sequences are dissimilar, then the number of MUM or MEM anchors,
n, will likely be small. These observations allow us to design an alternative
algorithm that runs in O(n ·OPT + n logn) average-case time over all
possible inputs where n  max(|S1|, |S2|), i.e., the number of anchors
is less than the longer sequence length. This property always holds when
the anchors are MUMs and is typically true for MEMs as well. This makes
the algorithm presented here a practical alternative. As before, let A be
the initial (possibly unsorted) set of anchors, but with Aleft = A[1] and
Aright = A[n]. We assume wlog |S1| � |S2|.

The algorithm works by using a guess for the optimal solution, B. The
value B is used at every step to bound the range of anchor a values that
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Input: n anchors A and parameters B1 and B2.
Output: Array C[1, n] s.t. C[i] is the optimal co-linear chaining

cost for any ordered subset of A[1, i] ending with A[i].
Let A0[1], ... A0[n] be the set of anchors A sorted on A[·].a;
Initialize array C of size n to 0 and B  B1;
do

j  1;
for i 1 to n do

while A0[i].a�A0[j].a > B do

j  j + 1;
end

C[i] min{C[k] + connect(A0[k],A0[i]) | j  k <

i and A0[k] � A0[i]};
end

Blast  B ;
B  B2 ·B;

while C[n] > Blast ;
return C[1, n]

Algorithm 2: O(OPT · n + n logn) average-case algorithm for co-
linear anchor chaining.

need to be examined. This bounds the number of anchors that need to be
considered (on average). If the value found at C[n] after processing all n
anchors is greater than our current guess B, we update our guess to the
larger value B2 ·B.

Lemma 4.1. Algorithm 2 runs in O(n ·OPT +n logn) average-case
time over all inputs where n  max(|S1|, |S2|).

Proof. The n logn term is from the sorting the anchors. To analyze
the second portion of the algorithm, we first let Xh,j be 1 if A[h].a is
placed at index j in S1. Under the assumption of a random placement
of anchors, E[Xh,j ] = 1/|S1|. Let Xi be the number of anchors,
A[h], where A[h].a 2 [A[i].a � B,A[i].a � 1]. We have that Xi =P

n

h=1

PA[i].a�1
j=A[i].a�B

Xh,j . Letting X be the total number of anchors
processed, X =

P
n

i=1 Xi and

E[X] =
nX

i=1

nX

h=1

A[i].a�1X

j=A[i].a�B

E[Xi,j ] =
n
2 ·B
|S1|

 nB.

Over all iterations, the expected time is a constant factor from B1n(1 +

B2 + . . .+B
dlogB2

OPTe
2 ) = O(n ·OPT ).

Extending the above pseudo-code to enable semi-global chaining, i.e.,
free end gap on queries, is also simple. In each i-loop, the connection
to anchor Aleft must be always considered, and for last iteration when
i = n, j must be set to 1. Second, a revised cost function must be used
when connecting to either Aleft or Aright where a gap penalty is used
only for gaps over the query sequence. The experiments done in this work
use an implementation of this algorithm for the case of strong-precedence
and variable-length anchors.

5 Evaluation
There are multiple open-source libraries/tools that implement edit distance
computation. Edlib (v1.2.6) tool by Šošić and Šikić (2017) implements
Myers’s bit-vector algorithm (Myers (1999)) and Ukkonen’s banded
algorithm (Ukkonen (1985)), and is known to be the fastest implementation
currently. From a scalability perspective, the banded alignment is
advantageous only when (i) sequence divergence is low, and (ii) the
alignment mode being considered is global, i.e., end-to-end sequence
comparison. We will show that optimal co-linear chaining cost computed
using the proposed theoretically well-founded cost function provides a
favorable trade-off between correlation with edit distance and scalability.
In this section, we aim to show the following: (i) The proposed algorithm
as well as existing chaining methods achieve significant speedup compared

to Edlib, (ii) In contrast to existing chaining methods, our implementation
consistently achieves high Pearson correlation (> 0.90) with edit distance
while requiring modest time and memory resources, (iii) Sensitivity of our
algorithm can be affected by what input anchors are provided, and (iv) Our
algorithm can be useful for phylogeny reconstruction.

We implemented the proposed algorithm (Section 4) in C++, and refer
to it as ChainX. Inputs to ChainX are a target string, one or more query
strings, comparison mode (global or semi-global), anchor type preferred,
i.e., maximal unique matches (MUMs) or maximal exact matches (MEMs),
and a minimum match length. ChainX includes a pre-processing step to
index target string using the same suffix array-based algorithm (Vyverman
et al. (2013)) as used in Nucmer4 (Marçais et al. (2018)). For each query-
target pair, ChainX outputs optimal chaining cost.

Existing co-linear chaining implementations. Co-linear chaining
has been implemented previously as a stand-alone tool in Coconut
(Abouelhoda et al. (2008)), Clasp (Otto et al. (2011)), and also used
as a heuristic in commonly used genome-to-genome mapper Nucmer4
(Marçais et al. (2018)) and long-read mapper Minimap2 (Li (2018)). Out of
these, Clasp (v1.1), Nucmer4 (v4.0.0rc1) and Minimap2 (v2.17-r941) tools
are available as open-source, and used here for comparison purpose. Unlike
ChainX, these tools execute their respective chaining algorithms using a
maximization objective function to enable local pattern matching. Clasp,
being a stand-alone chaining method returns chaining scores in its output,
whereas we modified Minimap2 and Nucmer4 to print the maximum
chaining score for each query-target string pair, and skip subsequent steps.
To enable a fair comparison, all methods were run with single thread and
same minimum anchor size 20, which is also used as a default in Nucmer4.
Accordingly, ChainX, Clasp and Nucmer4 were run with MUMs of length
� 20, and Minimap2 was allowed to use minimizer k-mers of length
20. For these tests, we made use of an Intel Xeon Processor E5-2698 v3
processor with 32 cores and 128 GB RAM. All tools were required to
consider only the forward strand of each query string.

ChainX and Clasp are exact solvers of co-linear chaining problem, but
use different gap-cost functions. Clasp supports two cost functions which
were referred to as sum-of-pair and linear gap cost functions in their paper
(Otto et al. (2011)). Unlike ChainX, Clasp only permits non-overlapping
anchors in a chain. Clasp solves the co-linear chaining using RmQ data
structure, requiringO(n log2 n) andO(n logn) time for the two gap cost
functions respectively. Clasp requires a set of anchors as input, therefore,
we supplied it the same set of anchors, i.e., MUMs of length� 20 as used
by ChainX. We tested Clasp with both of its gap-cost functions, and refer
to these two versions as Clasp and Clasp-linear respectively. Minimap2
and Nucmer4 use co-linear chaining as part of their seed-chain-extend
pipelines. Both Minimap2 and Nucmer2 permit anchor overlaps in a chain,
as well as penalize gaps using their own functions. However, both these
tools employ heuristics (e.g., enforce a maximum gap between adjacent
chained anchors) for faster processing which can result in sub-optimal
chaining results.

Runtime and memory comparison. We downloaded the same set
of query and target strings that were used for benchmarking in
Edlib paper (Šošić and Šikić (2017)). This test data allowed us to
compare tools for end-to-end comparisons as well as semi-global
comparisons at various degrees of similarity levels. For testing end-to-
end comparisons, the target string had been mutated at various rates using
mutatrix (https://github.com/ekg/mutatrix), whereas for the semi-global
comparisons, a substring of the target string had been mutated. Table 1
presents runtime and memory comparison of all tools. Columns of the
table are organized to show tools in three categories: edit distance (Edlib);
optimal co-linear chaining tools (ChainX, Clasp, Clasp-linear); and
heuristic implementations (Nucmer4, Minimap2). We make the following
observations here. First, chaining methods tend to be significantly faster
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Table 1. Runtime and memory usage comparison of edit distance solver Edlib and co-linear chaining methods ChainX, Clasp, Nucmer4 and Minimap2.

Sequence Similarity No. of Edlib ChainX Clasp Clasp (linear) Nucmer4 Minimap2
sizes MUMs Time* (Memory**) Time (Memory) Time (Memory) Time (Memory) Time (Memory) Time (Memory)

Semi-global sequence comparisons
104 ⇥ 5 ⇤ 106 99% 67 190 (17) 2.0 (57) 1.8 (57) 0.9 (57) 1.8 (60) 1.5 (75)

104 ⇥ 5 ⇤ 106 97% 160 642 (17) 2.1 (57) 4.8 (57) 1.8 (57) 4.1 (60) 3.0 (75)

104 ⇥ 5 ⇤ 106 94% 176 1165 (17) 2.4 (57) 5.9 (57) 2.1 (57) 3.2 (60) 1.4 (75)

104 ⇥ 5 ⇤ 106 90% 135 2168 (17) 2.6 (57) 4.7 (57) 2.0 (57) 5.5 (60) 1.4 (75)

104 ⇥ 5 ⇤ 106 80% 28 2360 (17) 3.4 (57) 2.5 (57) 2.2 (57) 3.4 (60) 2.4 (75)

104 ⇥ 5 ⇤ 106 70% 3 4297 (17) 3.3 (57) 2.2 (57) 2.3 (57) 5.5 (60) 1.8 (75)

Global sequence comparisons
106 ⇥ 106 99% 7012 949 (8) 46.1 (24) 1236.8 (1800) 182.8 (257) 68.7 (26) 92.1 (35)

106 ⇥ 106 97% 15862 1308 (8) 486.7 (24) 5363.7 (8742) 765.4 (1278) 87.8 (26) 80.5 (36)

106 ⇥ 106 94% 18389 2613 (8) 654.8 (24) 11737.1 (20501) 1021.0 (1694) 113.5 (27) 65.3 (34)

106 ⇥ 106 90% 14472 6233 (8) 851.2 (24) 5110.3 (8277) 115.3 (27) 121.8 (26) 53.4 (33)

106 ⇥ 106 80% 2964 12506 (8) 161.5 (24) 504.8 (572) 133.7 (24) 148.9 (26) 46.2 (32)

106 ⇥ 106 70% 195 29602 (8) 138.0 (23) 140.6 (23) 139.6 (23) 167.3 (26) 46.7 (32)

*Runtime is measured in milliseconds across the columns. **Memory usage is always noted in MBs.

than Edlib in most cases, and we see up to three order of magnitude
speedup. Second, within optimal chaining methods, Clasp’s time and
memory consumption increases quickly with increase in count of anchors,
which is likely due to irregular memory access and storage overhead
of using a 2d-RmQ data structure. Finally, we note that Minimap2 and
Nucmer4 are often faster than ChainX during global string comparisons
due to their fast heuristics. All tools (except Edlib) use an indexing step
such as building a k-mer hash table (Minimap2) or computing suffix array
(ChainX, Clasp, Nucmer4). Indexing time was excluded from reported
results, and was found to be comparable. For instance, in the case of semi-
global comparisons, ChainX, Nucmer4, Minimap2 required 590 ms, 736
ms, 236 ms for index computation respectively.

Correlation with edit distance. Subsequently we checked how well the
chaining cost (or score) correlates with edit distance. ChainX computes
co-linear chaining cost (minimization problem), whereas remaining tools
compute chaining score (maximization problem). As a result, a positive
correlation with edit distance is expected in case of ChainX, and negative
correlation for others. For the purpose of comparison, we use absolute
value of Pearson correlation coefficient. In this experiment, we simulated
100 query strings within each similarity range: 90 � 100%, 80 �
90%, 75� 80%. Table 2 shows the correlation achieved by all the tools.
Here we make the following observations. First, for closely-related inputs
(i.e., 90 � 100% similarity), all tools achieve strong correlation close to
one, although ChainX, Clasp and Minimap2 are superior to Clasp-linear
and Nucmer4. For distantly-related inputs (i.e., 75 � 80% similarity),
ChainX and Clasp achieve superior accuracy than Clasp-linear, Nucmer4
and Minimap2. As ChainX requires much less resources in terms of
runtime and memory compared to Clasp, it can be used as an alternative to
edit distance. An optimal co-linear chain can also be used as a coarse-
grained pairwise sequence alignment, which can be further extended
to a fine-grained base-to-base alignment (not-necessarily optimal) using
efficient ‘seed-extension’ heuristics.

Effect of anchor type and minimum length. The choice of anchor-
finding strategy naturally affects the performance and accuracy of ChainX.
Suppose anchors are chosen as all maximal exact matches of length
� lmin between a pair of strings, each being s-long. Consider one extreme
case where lmin is set to s. In this case, ChainX can return only two values:
0 if the input strings are equal, and s otherwise. Another extreme case is
when lmin is set to one. Then, ChainX’s output is guaranteed to match
edit distance between the input strings, however, the excessive count of
anchors will make the chaining problem computationally prohibitive. We

tested runtime and accuracy of ChainX while varying the anchor type
(MUMs/MEMs) and lmin parameter (Table 3). When MUMs are used as
anchors, then ChainX maintains good scalability, and lowering lmin from
20 to 10 improves accuracy, but the accuracy saturates afterwards. This is
because very short matches will unlikely be unique and won’t be selected
as MUMs. However, when MEMs are used as anchors, accuracy continues
to improve with decreasing minimum length parameter, however, runtime
grows exponentially using lmin = 7. By default, ChainX uses MUMs of
length � 20, and requires O(OPT · n + n logn) average-case time as
proved in Section 4.

Phylogenetic tree (newick) viewer
This is an online tool for phylogenetic tree view (newick format) that allows multiple sequence alignments to be shown together with the trees
(fasta format). It uses the tree drawing engine implemented in the ETE toolkit, and offers transparent integration with the NCBI taxonomy
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(a) Tree computed using Edlib (b) Tree computed using ChainX

Fig. 12. Phylogenetic trees obtained using simulated genomes.
Application to phylogeny reconstruction. Although ChainX is not

explicity designed for building phylogenetic trees, ChainX’s strong
correlation with edit distance makes it useful to get a good estimation
of mutation rate. In this experiment, we created a family of Escherichia
coli genomes using the same simulation methodology as used by Marçais
et al. (2019). The simulation framework starts with E.coli K-12 MG1655
(NC_000913.2) genome, and recursively creates two children by adding an
insertion sequence (IS) at two random locations. Using four IS elements
(IS1, IS5, IS2, and IS186), their framework created 16 genomes, and
the goal is to recover the history of these insertion events. In this context,
similarity metrics such as Jaccard similarity which treat genomes as ‘bag of
words’ won’t be applicable because of near-identicalk-mer content, but co-
linear chaining techniques are well-suited to handle this. ChainX supports
an–all2allmode to execute all-to-all global comparisons among query
strings and report chaining costs as a phylip-formatted distance matrix.
Figure 12 shows that trees constructed by using Edlib and ChainX exhibit
identical structure. During simulation, each genome was named using a
binary number, s.t. common prefix indicates shared lineage, and siblings
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Table 2. Absolute Pearson correlation coefficients of chaining costs (or scores) computed by various methods with the corresponding edit distances.

Seq. sizes [count of comparisons] Similarity Correlation coefficient
ChainX Clasp Clasp (linear) Nucmer4 Minimap2

Semi-global sequence comparisons
104 ⇥ 5 ⇤ 106 [100] 90%-100% 0.996 0.994 0.986 0.968 0.995

104 ⇥ 5 ⇤ 106 [100] 80%-90% 0.975 0.976 0.786 0.864 0.958

104 ⇥ 5 ⇤ 106 [100] 75%-80% 0.927 0.915 0.732 0.733 0.808

Global sequence comparisons
106 ⇥ 106 [100] 90%-100% 0.999 0.997 0.994 0.991 0.999

106 ⇥ 106 [100] 80%-90% 0.998 0.998 0.922 0.955 0.996

106 ⇥ 106 [100] 75%-80% 0.992 0.993 0.871 0.907 0.860

Table 3. Effect of anchor computation method on the performance of ChainX.

Seq. sizes [count] Similarity Using MUMs Using MEMs
len � 20 len � 10 len � 7 len � 1 len � 20 len � 10 len � 7

Time* (coeff.**) Time (coeff.) Time (coeff.) Time (coeff.) Time (coeff.) Time (coeff.) Time (coeff.)

104 ⇥ 5 ⇤ 106 [100] 90%-100% 7.2 (0.996) 2.9 (0.997) 3.5 (0.997) 11.5 (0.997) 5.1 (0.996) 8.1 (0.997) 2652 (0.998)

104 ⇥ 5 ⇤ 106 [100] 80%-90% 4.5 (0.975) 5.6 (0.992) 3.2 (0.992) 4.8 (0.992) 4.5 (0.975) 7.4 (0.993) 5413 (0.995)

104 ⇥ 5 ⇤ 106 [100] 75%-80% 5.3 (0.927) 5.9 (0.977) 1.9 (0.977) 3.8 (0.977) 5.0 (0.927) 10.9 (0.987) 9221 (0.992)

*Runtime is measured in seconds across the columns. **Pearson correlation coefficient.

in the last generation have equal three-digit prefix. As can be seen, the tree
computed using either of the two tools resolved most of the lineages.

6 Conclusions
This work presented new algorithmic insights for co-linear chaining, a
routinely used method within sequence mapping tools. We addressed the
general case of this problem which allows anchor overlaps and penalizes
gap cost between adjacent chained anchors. Since many commonly used
mappers (e.g., Nucmer4, Minimap2) also require chaining with overlap
and gap-costs, designing faster, rigorous algorithms and superior cost
functions is important. We presented the first subquadratic time algorithms
for multiple versions of this problem, e.g., using fixed-length (k-mers)
or variable-length anchors (maximal matches), and using weak or strong
precedence ordering criteria. We also provided a new cost function for
the co-linear chaining problem, which made it possible to mathematically
link co-linear chaining and the edit distance problem. This result is a
useful addition to a prior result by Mäkinen and Sahlin (2020) where
a connection between the co-linear chaining problem and the longest
common subsequence problem was established. Scalability and accuracy
of ChainX was demonstrated using both global and semi-global sequence
comparison modes. ChainX code as well as datasets used for benchmarking
are available at https://github.com/at-cg/ChainX.
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