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Abstract 

Accurately finding proteins and genes that have a certain function is the prerequisite for a broad range of biomedical 

applications. Despite the encouraging progress of existing computational approaches in protein function prediction, it 

remains challenging to annotate proteins to a novel function that is not collected in the Gene Ontology and does not 

have any annotated proteins. This limitation, a “side effect” from the widely-used multi-label classification problem 

setting of protein function prediction, hampers the progress of studying new pathways and biological processes, and 

further slows down research in various biomedical areas. Here, we tackle this problem by annotating proteins to a 

function only based on its textual description so that we don’t need to know any associated proteins for this function. 

The key idea of our method ProTranslator is to redefine protein function prediction as a machine translation problem, 

which translates the description word sequence of a function to the amino acid sequence of a protein. We can then 

transfer annotations from functions that have similar textual description to annotate a novel function. We observed 

substantial improvement in annotating novel functions and sparsely annotated functions on CAFA3, SwissProt and 

GOA datasets. We further demonstrated how our method accurately predicted gene members for a given pathway in 

Reactome, KEGG and MSigDB only based on the pathway description. Finally, we showed how ProTranslator 

enabled us to generate the textual description instead of the function label for a set of proteins, providing a new scheme 

for protein function prediction. We envision ProTranslator will give rise to a protein function “search engine” that 

returns a list of proteins based on the free text queried by the user.  
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1 Introduction 
Accurately identifying protein functions serves as the basis for studying a wide range of biomedical problems [1-4], 

such as cell cycle regulation [5], neuronal morphogenesis [6], signal transduction [7] and drug discovery[8,9]. 

Experimentally testing the functions of millions of proteins across tens of thousands of functions is impractical. As a 

result, many computational approaches have been proposed to predict protein functions according to protein domains 

[1,10], protein motifs [11,12], protein sequence [13-17], protein-protein interactions [18-20], protein text description 

[21], and protein structures [22,23]. These features have also been integrated to jointly perform the prediction [24-27]. 
The standard problem setting of protein function prediction is to form it as a multi-label classification problem, where 

the input is the feature vector of a protein and the output is a set of functions predefined as controlled vocabulary in 

the Gene Ontology (GO) [28]. This problem setting enables protein function prediction to easily incorporate new 

machine learning techniques in the feature extraction or the classification component, but inevitably restricts the 

predicted function to be within the set of controlled vocabulary. As a result, existing methods are not able to classify 

proteins into functions that are not in the GO and do not have any annotated proteins. clusDCA is able to classify 

proteins to the function that do not have any annotated proteins [18], but it still requires that function to be within the 

GO graph. This limitation substantially hinders the progress towards understanding new molecular functions and 

biological processes, further slowing down research in downstream applications. 

We aim to develop an algorithm that enables us to classify proteins into any function that does not have any annotated 

proteins and is not in GO. The only information we need for that function is a textual description, which could be a 

few sentences describing this function. The key idea of our method is to embed descriptions of all GO functions into 

the same low-dimensional space, where similar functions are co-located. When we need to annotate a new function 

that is not in GO, we will project this new function in this low-dimensional space based on its textual description and 

then transfer annotations from other GO functions. To embed the textual description, we used large-scale language 

model PubMedBert [29], which is pre-trained on millions of scientific papers and obtained the state-of-art performance 

on specialized biomedicine tasks. We then embed proteins by integrating protein sequence, protein textual description 

and protein-protein interaction network. Finally, we learnt a linear transformation from protein embedding space to 

function embedding space according to known annotations. 

We validated our method on CAFA3 [2], SwissProt [30], and GOA [28] datasets and observed substantial 

improvement on functions that do not have any annotations and functions that are sparsely annotated. We further 
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demonstrated how our method could predict gene members of pathways in Reactome [31], KEGG [32], MsigDB [33] 

by only using the pathway description without seeing any specific gene belonging to it. Finally, we showed how to 

generate sentences that can best describe the function of a set of given proteins based on our method. We envision that 

our method enables us to build a “search engine” for function prediction, where users only need to provide a few 

keywords or sentences to describe the function that they want to annotate and then our system will return the associated 

proteins and genes for this function.  

 
Fig. 1. a, Flowchart of ProTranslator. ProTranslator embeds proteins into the low-dimensional space by integrating protein 

sequence, description and network features. It then embeds GO terms according to the textual description. GO terms are then 

projected into the protein embedding space according to known annotations. To annotate a new function, ProTranslator will project 
the new function into this low-dimensional space according to its textual description and annotate it using nearby proteins. b,c, Box 

plots comparing text-based GO similarity for GO terms that have different distances on the graph (b) and annotation similarity (c). 

2 Methods 
2.1 Problem definition 

Previous studies modelled the protein function prediction as a multi-label classification problem. They used features 

of proteins, denoted as 𝑋, to predict a subset 𝑌 of predefined functions 𝑌0 =  {𝑦1, 𝑦2, . . . , 𝑦𝑧0
} where 𝑧0 denotes the 

number of predefined functions. For each function 𝑦𝑗 in 𝑌0, it has annotated protein feature set 𝑋𝑗 collected for the 

model training.  However, this modelling approach restricts the scope of protein prediction research to the function 

within the controlled vocabulary 𝑌0. To tackle this problem, we redefine this problem by considering the potential 

novel function set without any annotated protein collected. The novel function set is defined as 𝑈0 = {𝑢1, 𝑢2, . . . , 𝑢𝑧1
} 

and 𝑧1 denotes the number of novel functions. There is also a new protein feature set 𝑋𝑈
𝑗 for each 𝑢𝑗  and 𝑋𝑈

𝑗 ∉

{𝑋1, . . . , 𝑋𝑧0
} . This problem is defined as: with only protein features {𝑋1, . . . , 𝑋𝑧0

} and their annotations {𝑌1,𝑌2, . . . , 𝑌𝑧0
} 

seen before, the prediction method should learn to classify a new protein feature set 𝑋𝑈
𝑗 into a novel function 𝑢𝑗 .   

2.2 Embedding GO functions based on the textual description 

We use the textual description to embed GO functions. They are collected from the “definition” field from the Gene 

Ontology. In order to embed a new function to the same low-dimensional space only based on textual description, we 

disregard other information, such as GO graph and protein annotations, when embedding GO functions. We obtain 

the vector representation for each GO term using PubMedBert, which is pre-trained on both the PubMed’s abstracts 

and PubMedCentral’s full-text articles [29]. The corpus used by PubMedBert is best aligned with our task in 

comparison to other pre-trained language models. To obtain a fixed-size feature vector for GO definitions with various 
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numbers of words, We average the last hidden states’ output on each dimension across all tokens (words or subwords) 

to obtain the low-dimensional text representations. The final representation vector for each GO term is 𝑑𝐵𝑒𝑟𝑡 

dimensions. 

2.3 Embedding proteins based on sequence, description and network 

To embed proteins, we consider three widely-used features: sequence, description and network. We followed the state-

of-the-art approach DeepGOPlus to extract the sequence features using convolution neural networks (CNN) [14]. 

Multiple 1-d convolution kernels with different sizes are used in the first layer and the size ranges from 𝑅𝐷 to 𝑅𝑈 with 

step 𝑇, which results in 𝑒 different sizes. The number of filters of each size is set to 𝑑0. Then a max pooling layer is 

used to extract information across kernels.  

𝐹𝑆𝑡  = 𝑓1( [𝜔𝟏,𝒕 ∗ 𝑥𝑠
1:𝑡,  𝝎𝟏,𝒕 ∗ 𝑥𝑠

2:1+𝑡, . . . , 𝜔𝟏,𝒕 ∗ 𝑥𝑠
𝐿−𝑡+1:𝐿]),                                         (1) 

where 𝜔𝟏,𝒕 represents the 1-d convolution kernel in the first layer with the window size 𝑡 and 𝑥𝑠 ∈ ℝ𝑛×21×𝐿 represents 

the input sequence one-hot encodings. 𝑛 denotes the number of proteins. 𝑓1 denotes the max pooling layer with the 

kernel size 𝐿 − 𝑡 + 1. We then concatenate different 𝐹𝑆𝑡 ∈ ℝ𝑛×𝑑0 together as the sequence features 𝐹𝑆 ∈ ℝ𝑛×𝑑𝑠𝑒𝑞. 

   𝐹𝑆 =  𝑐𝑜𝑛𝑐𝑎𝑡(𝐹𝑆𝑡1
, 𝐹𝑆𝑡2

, . . . 𝐹𝑆𝑡𝑒
), 𝑡1 ≤ 𝑡2 ≤. . . ≤ 𝑡𝑒 ≤ 𝐿.                                          (2) 

We embed the protein descriptions similarly to the process of embedding the textual description of GO functions. The 

description of each protein was obtained from GeneCards [34,35]. Each protein is then represented by a low-

dimensional vector 𝐹𝐷 ∈ ℝ𝑑𝐵𝑒𝑟𝑡 . The gene network data 𝐹𝑁 ∈ ℝ𝑑𝑀𝑎𝑠ℎ𝑢𝑝  is provided by the pre-trained Mashup 

representations of each protein according to their topology in multiple protein-protein interaction networks [20]. Then 

we add one-depth fully connected layers to reshape each kind of feature (𝐹𝑆, 𝐹𝐷 and 𝐹𝑁) and set the output dimension 

to h. The fully connected layers are denoted as 𝐿𝑎𝑦𝑒𝑟𝐹𝐶𝑁,1, 𝐿𝑎𝑦𝑒𝑟𝐹𝐶𝑁,2, 𝐿𝑎𝑦𝑒𝑟𝐹𝐶𝑁,3: 

𝑀𝑆 , 𝑀𝐷, 𝑀𝑁  =  𝐿𝑎𝑦𝑒𝑟𝐹𝐶𝑁,1(𝐹𝑆), 𝐿𝑎𝑦𝑒𝑟𝐹𝐶𝑁,2(𝐹𝐷), 𝐿𝑎𝑦𝑒𝑟𝐹𝐶𝑁,3(𝐹𝑁).                                (3) 

𝑀𝑆 , 𝑀𝐷, 𝑀𝑁 denote the processed features vector of protein sequence, description and network respectively, where 

𝑀𝑆, 𝑀𝐷, 𝑀𝑁 are all 𝑛 × ℎ matrices. Then we concatenate them together and denote it as 𝑀𝑆𝐷𝑁, which is 𝑛 × 3ℎ.  

                                𝑀𝑆𝐷𝑁  =  𝑐𝑜𝑛𝑐𝑎𝑡(𝑀𝑠, 𝑀𝐷, 𝑀𝑁).                                                              (4)  

2.4 Protein function prediction based on GO embeddings and protein embeddings 

Our model predicts the protein function by projecting GO terms and proteins into the same low-dimensional space. 

Let 𝐹𝑇 ∈ ℝ𝑧×𝑑𝐵𝑒𝑟𝑡 be the representation vectors of the protein function text data, where 𝑧 represents the number of 

protein functions. Let 𝐵 be the binary label matrix, which is 𝑛 by 𝑧. 𝐵𝑖,𝑗 = 1 only if protein 𝑖 has the function 𝑗. The 

binary cross-entropy loss function is defined as: 

𝐿 = ∑ ∑[−𝐵𝑖,𝑗 × 𝑙𝑜𝑔(1/1 + 𝑒𝑥𝑝(𝑀𝑆𝐷𝑁𝑊(𝐹𝑇)𝑇)))

𝑧

𝑗=1

𝑛

𝑖=1

 

−(1 − 𝐵𝑖,𝑗) × 𝑙𝑜𝑔(𝑒𝑥𝑝(𝑀𝑆𝐷𝑁𝑊(𝐹𝑇)𝑇)/(1 + 𝑒𝑥𝑝(𝑀𝑆𝐷𝑁𝑊(𝐹𝑇)𝑇)],                                (5) 

where 𝑊 ∈ 𝑅3ℎ×𝑑𝐵𝑒𝑟𝑡 are learnable parameters. During the prediction process, we can annotate a new protein using 

the following equation: 

 𝑝𝑗 = 1/(1 + 𝑒𝑥𝑝(𝑚𝑆𝐷𝑁𝑊(𝐹𝑇𝑗 )𝑇)),                                                          (6)  

where we use 𝑝𝑗 to represent the probability of the new protein has the function 𝑗 and 𝑚𝑆𝐷𝑁 denotes this protein’s 

concatenated features extracted by the method in 2.3. Since our method utilizes the textual description of a new 

function to classify proteins, it is able to annotate a new function even if it is not annotated to any protein in the training 

data. 

2.5 Annotate novel functions, sparse functions and gene sets to pathways 

As for the terms seen in the training, we could combine the similarity based prediction method using DiamondScore 

[14,36] to enhance ProTranslator, which is denoted as ProTranslator+DiamondScore. The previous prediction score 

𝑆𝑗
𝑃𝑟𝑜𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑜𝑟  for function 𝑗 is the output of the deep learning model. Therefore we redefine the overall prediction 

score of ProTranslator+DiamondScore on function 𝑗 as: 

 𝑆𝑃𝑟𝑜𝑇𝑎𝑛𝑠𝑙𝑎𝑡𝑜𝑟+𝐷𝑖𝑎𝑚𝑜𝑛𝑑𝑆𝑐𝑜𝑟𝑒
𝑗 =  𝛼 × 𝑆𝑗

𝐷𝑖𝑎𝑚𝑜𝑛𝑑𝑆𝑐𝑜𝑟𝑒  + (1 − 𝛼) × 𝑆𝑗
𝑃𝑟𝑜𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑜𝑟 .                      (7) 

The DiamondScore is calculated as: 

   𝑆𝑗
𝐷𝑖𝑎𝑚𝑜𝑛𝑑𝑆𝑐𝑜𝑟𝑒  =

∑𝑥𝑠∈𝐸𝑏𝑖𝑡𝑠𝑐𝑜𝑟𝑒(𝑥𝑠
𝑞 ,𝑥𝑠)×𝐼(𝑗 ∈ 𝐽𝑥𝑠)

∑𝑥𝑠∈𝐸𝑏𝑖𝑡𝑠𝑐𝑜𝑟𝑒(𝑥𝑠
𝑞 ,𝑥𝑠)

,                                                      (8) 

where 𝑥𝑠
𝑞  is the query sequence and 𝐸 is the similar sequences set. 𝐽𝑥𝑠

𝑖
 is the annotations set of proteins with 

sequence feature 𝑥𝑠. 𝐼 is the identity function and 𝑏𝑖𝑡𝑠𝑐𝑜𝑟𝑒 is the sequence similarity score predicted by BLAST [10].  

2.6 Text generation by the protein sequence features 

We develop a model to generate the description of proteins from the sequence features based on the Transformer 

architecture [37]. For each GO function, we average all the one hot encodings of the sequences of its samples as the 
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input in the text generation model. We still leverage the convolutional kernels in DeepGOCNN [14] to process the 

sequence features. Then we add the main Transformer architecture. Since the DeepGOCNN model discards the 

positional information when setting the max pooling layer to the maximum size, we remove the positional encodings 

at the encoder stack bottoms in Transformer. The multi-head self-attention could be written as: 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑀𝑆𝐷𝑁,𝑙, 𝑀𝑆𝐷𝑁,𝑙, 𝑀𝑆𝐷𝑁,𝑙)  =  𝑐𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, . . . , ℎ𝑒𝑎𝑑𝑜),  

ℎ𝑒𝑎𝑑𝑖  =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑀𝑆𝐷𝑁,𝑙 𝐴𝑖

𝑄(𝑀𝑆𝐷𝑁,𝑙𝐴𝑖
𝐾)𝑇

√𝑑𝑘
)𝑀𝑆𝐷𝑁,𝑙𝐴𝑖

𝑉,                                                  (9) 

where 𝑀𝑆𝐷𝑁,𝑙  represents the input of the 𝑙𝑡ℎ  sub-layer. 𝐴𝑖
𝑄 , 𝐴𝑖

𝐾, 𝐴𝑖
𝑉  are learnable parameters. To make the 

optimization process more stable, we adopt the pre-layer normalization in the Transformer [38]:  

𝑀𝑆𝐷𝑁,𝑙+1  =  𝑀𝑆𝐷𝑁,𝑙 + ℱ(𝐿𝑁(𝑀𝑆𝐷𝑁,𝑙 ;  𝜃𝑙 )),                                                    (10) 

where 𝑆𝐷𝑁𝑙 and 𝑆𝐷𝑁𝑙+1 represent the 𝑙𝑡ℎ sub-layer’s input and output. 𝐿𝑁 denotes the layer normalization and 𝜃𝑙  

represents the parameters of the sub-layer ℱ in the encoder or decoder.  

 

3 Experimental setup 
3.1 Calculating similarities between GO functions 

We calculated three kinds of similarities between two GO functions: text-based similarity, GO graph-based similarity 

and annotation-based similarity. The text-based similarity is calculated using the cosine similarity between the 

representation vectors of their textual descriptions. We calculated the GO graph-based similarity using the shortest 

distance between two GO functions on the GO graph, which is built based on “is_a” and “part_of” relationships. We 

calculated the annotation-based similarity by using the cosine similarity between the binary annotation vectors of two 

GO functions. The binary annotation vector 𝐴𝑛𝑛𝑡𝑗  ⊆ ℝ𝑧  of a GO function 𝑗 is defined as 𝐴𝑛𝑛𝑡𝑖
𝑗 = 1 if function 𝑗 is 

𝑖 or one of 𝑖′𝑠 ancestor in the GO hierarchy otherwise 𝐴𝑛𝑛𝑡𝑖
𝑗 = 0. 

3.2 Datasets and evaluation 

We used the Gene Ontology (GO) that was released on June 16, 2021. The descriptions in the ‘def’ field were used as 

the textual description. We considered three datasets: CAFA3 [2], SwissProt [30], and GOA(Human) [28]. The 

preprocessed CAFA3 challenge dataset and SwissProt dataset were obtained from the online data files provided by 

DeepGOPlus. The pre-trained gene network features for humans were downloaded from STRING database v9.1 [39]. 

We collected the gene descriptions from GeneCards [34,35]. The CAFA3 dataset was released in September, 2016. 

We selected the proteins from the intersection of the CAFA3 dataset, the gene network features file and the gene 

description file and 11,679 proteins were finally selected. The SwissProt dataset was published in January, 2016 and 

we finally selected 5,889 proteins. The annotations were propagated according to the hierarchical structure of GO 

based on “is_a” and “part_of” relationships. We collected the annotations of the GOA(Human) dataset from the Gene 

Ontology Consortium website. The annotation file was generated on May 1, 2021. We leveraged 3-fold cross-

validiation to evaluate these datasets and selected 10% of the leaf nodes in the GO graph as the novel functions in the 

zero-shot setting and excluded their annotations in the training dataset. We investigated the performance of 

ProTranslator and current state-of-art methods on annotating sparse functions with proteins less than 20 using the 

same GOA(Human) dataset and additional GOA(Mouse) dataset. The 3-fold cross-validiation was adopted. We 

calculated the area under the receiver of characteristic curve (AUROC)  [40] of our model on the novel and sparse 

functions. In the text generation, we used the bilingual evaluation understudy (BLEU)  [41] score as the metric. The 

BLEU score was computed first between segments of generated texts and references and then averaged over them.  

To classify genes into pathways, we collected the Reactome [31] and KEGG [32] pathways description and gene sets. 

We finally obtained 2,007 and 264 pathways in Reactome and KEGG, the average gene number in each pathway is 

4.6 and 22.6 respectively. We also collected the Molecular Signatures Database (MSigDB) [33] for pathway 

prediction. The text in “DESCRIPTION_FULL” was selected as the text data. We evaluated our approach on pathway 

C2, which has the most complete textual description. There were 3,704 pathways and the average number of genes 

for each pathway is 3.7 in pathway C2. In each pathway, the genes in both the genesets and STRING database for 

humans were selected for evaluation. In the text generation part, we leveraged the GOA(Human) datasets. We select 

70% functions in GO data as the training functions and 30% function as validation functions.  

The input length 𝐿 of a protein was set to 2000 in annotating functions. We set the range of convolutional kernel size 

𝑅𝐷 and 𝑅𝑈 to 8 and 128, and the step 𝑇 was 8. Then we could get 𝑒 = 16 different sizes of kernels. We set 𝑑0 to 512 

and therefore 𝑑𝑠𝑒𝑞 was 8192. The dimension of PubMedBert representations 𝑑𝐵𝑒𝑟𝑡 is 768. The dimension of Mashup 

representations 𝑑𝑀𝑎𝑠ℎ𝑢𝑝 = 800 and 𝑑𝑀𝑎𝑠ℎ𝑢𝑝 = 1000 for GOA(Human) and GOA(Mouse) datasets. The dimension h 

was set to 1500. When combining the similarity based prediction method, ProTranslator used the setting of 

DeepGOPlus, and 𝛼 = 0.68, 𝛼 = 0.63, 𝛼 = 0.46 for BP, MF and CC. In the Transformer architecture, we used 6 

encoder layers and 6 decoder layers. We set the hidden dimension of the Transformer to 512. The attention layer heads 
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number 𝑜 was 8 and 𝑑𝑘 was 64. We also used the warm-up stage during the training process. Here we set the warm-

up steps to 2000. We used the greedy decode strategy in the inference process. 

3.3 Comparison approaches 

We compared our method to two comparison approaches that have the same model architecture while replacing the 

combined features with sequence features only. In one comparison approach, we replaced the PubMedBert embedded 

text vectors with Term Frequency–Inverse Document Frequency (TF-IDF) embeddings to investigate the influence of 

text embedding methods. In the other comparison approach, the text vectors were replaced with the ontology network 

vectors to make comparison with the representations of topological features. We named these two comparison 

approaches ‘tf-idf’ and ‘Graph-based’. To investigate how our method performed compared with current state-of-art 

methods when annotating sparsely annotated functions, we selected DeepGOPlus as the comparison approaches since 

it has been shown to exceed multiple benchmarks in the previous research [14]. DeepGOPlus used the latest released 

‘alphas’ when considering similarity based predictions, which are 0.68, 0.63 and 0.46 for BP, MF and CC. 

 

4 Results 
4.1 Gene Ontology term description similarity reflects function annotation similarity 

The key idea of our method is to annotate a novel function by transferring annotations from other functions that have 

similar textual description. Therefore, we first examined the correlation between the text-based GO term similarity 

and the annotation-based GO term similarity (see Experimental Setup). We observed a strong correlation between 

these two similarities, indicating that GO terms with similar textual description tend to have similar protein annotations 

(Fig. 1c). We next compared the text-based similarity with GO graph-based similarity. We found that terms that are 

close on the graph have much higher textual similarity (Fig. 1b). Since previous work has demonstrated how GO 

graph can be used to assist function annotation, especially for sparsely annotated functions [18,42,43], the strong 

consistency between text-based GO similarity and GO graph-based similarity further raises our confidence that textual 

description can be used to enhance protein function prediction. 

4.2 ProTranslator enables protein function prediction in the zero-shot setting 

We next sought to examine whether ProTranslator can classify proteins in the zero-shot setting where the test function 

does not have any annotated proteins in the training data. We summarized the results of ProTranslator on three GO 

domains of biological process (BP), molecular function (MF) and cellular component (CC) across three datasets in 

Fig. 2. To simulate the zero-shot setting, we held out all protein annotations of test functions from the training data. 

We first compared ProTranslator to TF-IDF, which models the textual description using a frequency-based vector 

space model, and observed at least 13%, 11%, 14% improvements on BP, MF, CC domains on three datasets by using 

ProTranslator, indicating the superior performance of embedding text description using large-scale pre-trained 

language models. We then compared ProTranslator to a graph-based approach, which embeds the GO graph structure 

to annotate novel functions. ProTranslator also outperformed this graph-based approach by a large margin, which 

demonstrates the advantage of using text data against GO graphs to annotate novel functions. More importantly, the 

graph-based approach requires the function to be within the GO graph, whereas ProTranslator supports the annotation 

of any function only based on a short text description.  

 
Fig. 2 Performance of ProTranslator in the zero-shot setting. Bar Plots comparing the AUROC of ProTranslator, tf-idf and the 
graph-based approach on CAFA3, SwissProt, GOA(Human). We held out all protein annotations of test functions from the training 

data. 

 

4.3 ProTranslator obtains substantial improvement in the few-shot setting 

After confirming the superior performance of ProTranslator in the zero-shot setting, we next investigated whether 
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ProTranslator can achieve better performance in the few-shot setting where each test GO term only has very few 

annotated proteins. We compared ProTranslator to the state-of-the-art approach DeepGOPlus [14] on GOA Human 

and Mouse datasets (Fig. 3). Similar to DeepGOPlus, we also incorporated the protein sequence feature into our model 

to improve the performance and denoted it as ProTranslator+DiamondScore. We observed substantial improvement 

of ProTranslator over DeepGOPlus when each GO term only has a limited number of annotation proteins between 1 

to 20. We further found that the improvement of our method is larger for terms that have fewer annotated proteins, 

indicating the more prominent performance of our method in annotating new functions.  

To further understand the effect of sequence-based features, we excluded the sequence-based DiamondScore from 

both our method and DeepGOPlus. DeepGOCNN [14] is the implementation of DeepGOPlus without using sequence-

based DiamondScore. We observed a decreased performance for both our method and DeepGOPlus. Nevertheless, 

ProTranslator still outperforms DeepGOCNN with a large margin. Moreover, ProTranslator without DiamondScore 

also outperforms DeepGOPlus on functions that have less than 10 annotated proteins on GOA(Human), again 

indicating the prominent performance of using textual description for protein function prediction. 

4.4 ProTranslator annotated genes to pathways by only using the pathway description 

After observing the superior performance of ProTranslator on functions collected in the Gene Ontology, we next 

evaluate ProTranslator on a more challenging setting of classifying genes into a pathway without knowing any genes 

in that pathway. Since ProTranslator could annotate any GO term as long as its textual description is available, we 

hypothesized that ProTranslator could also predict genes of a given pathway by only using the description of that 

pathway. Specifically, we trained ProTranslator using the function annotation and text description of Gene Ontology 

and then applied this model to pathways in Reactome, KEGG and MSigDB. Notably, even though graph-based 

approaches, such as clusDCA, are able to annotate GO terms that do not have any proteins, they cannot be applied to 

these pathways as they require the functions to be within the GO graph. In contrast, our method does not have this 

restriction, as it only relies on a short description of pathways. We summarized the performance of ProTranslator on 

Reactome, KEGG and MSigDB pathway in Fig. 4a-c. To avoid potential data leakage between pathways and GO 

terms, we excluded pathways that have more than 90% shared genes with an existing GO term. We examined the 

performance of our method at different AUROC thresholds and found that our method could annotate 81% of 

Reactome pathways with AUROC larger than 0.85 and 84% of KEGG pathways with AUROC larger than 0.75, 

demonstrating the accuracy of annotating genes to pathways and functions that are not collected in the GO. 

 
Fig. 3. Performance of ProTranslator on sparsely annotated functions. Plots comparing the AUROC of using ProTrainslator 

with sequence feature (ProTranslator+DiamondScore), ProTranslator, DeepGOPlus and DeepGOCNN on annotating functions 
with number of annotated proteins from 1 to 20 in the training data in GOA(Human) (a-c) and GOA(Mouse) (d-f). 

 

To better understand the prominent performance of ProTranslator on classifying genes into these functions, we further 

investigated how the text information determined the performance of ProTranslator. We observed that the pathway 

descriptions of Reactome and KEGG dataset were closer to the GO descriptions than those of MSigDB in the 

 

               

    

    

    

    

    

    

    

    

    

                            

 
 

 
 

 

             

 

               

    

    

    

    

    

    

    

    

    

                            

 
 

 
 

 
              

 

               

    

    

    

    

    

    

    

    

    

                            

 
 

 
 

 

             

               

    

    

    

    

    

    

    

    

    

                            

 
 

 
 

 

              

 

               

    

    

    

    

    

    

    

    

    

                            

 
 

 
 

 

             

               

    

    

    

    

    

    

    

    

    

                            

 
 

 
 

 

             

                                                          



 

7 

embedding space (Fig. 5a), which explains the more prominent performance of ProTranslator on Reactome and KEGG 

than MSigDB. Then we plotted the three datasets separately and colored each pathway using its AUROC during the 

cross-validation (Fig. 5b-d). We observed a clear pattern that the pathway whose textual description is closer to GO 

description tends to have a higher AUROC. This again indicates the substantial contribution of textual description in 

classifying genes into pathways and shows that the performance of our method depends on the quality of  the textual 

description. 

4.5 ProTranslator generates text description for a gene set 

The superior performance of ProTranslator comes from its novel setting of modeling the protein function prediction 

as a machine translation problem. We have extensively validated how to find associated proteins for a given function. 

Here, we aim to explore whether we can also generate the functional textual description for a set of proteins. For a 

given set of proteins, we used the average feature representations of them as input and then generated a novel textual 

description using ProTranslator. We evaluated this method on the GOA (Human) dataset by comparing the generated 

textual description to the ground truth curated GO term description and obtained a 0.26 BLEU. To avoid potential 

data leakage, we excluded the test term that has more than 0.5 Jaccard annotation-based similarity with any training 

GO term. By further examining the generated text, we observed that many of them are highly consistent with the 

curated GO term description (Table 1), suggesting the possibility of using our method to automatically expand GO 

and curate new functions. 

 
Fig. 4. Classifying genes into pathways only based on pathway description. a-c, Bar plots showing the percentage of pathways 

with AUROC greater than different thresholds (x-axis) on Reactome (a) and KEGG (b) and MSigDB (c). We didn’t see any genes 

of these pathways in the training stage. Pathways that have many overlapped genes with an existing GO term are excluded. 

 
Fig. 5. Visualization of the joint embedding space of pathways and GO terms based on textual description.  a, t-SNE plot 

showing the embedding space of GO terms and pathways in Reactome, KEGG, and MSigDB dataset. 1500 randomly selected GO 

terms are shown here. GO terms and pathways are embedded using their textual descriptions. b,c,d, t-SNE plots show the co-

embedding space of Reactome (b), KEGG (c), MSigDB (d) and GO term. Each pathway is collected by its AUROC during the 
cross-validation. 500 randomly selected GO terms are shown in each plot. 

Table 1. GO term description generated by our method according to the annotated proteins. The nearest text refers to the 

text of the training GO term that is closest to the test GO term. 
 

 GO:0032588 

Generated text the lipid bilayer surrounding a vesicle transporting substances between the trans - golgi network and other parts of the cell .  

Nearest text in the 

training 

The network of interconnected tubular and cisternal structures located within the Golgi apparatus on the side distal to the 
endoplasmic reticulum, from which secretory vesicles emerge. The trans-Golgi network is important in the later stages of 

protein secretion where it is thought to play a key role in the sorting and targeting of secreted proteins to the correct 
destination. 

Ground truth text the lipid bilayer surrounding any of the compartments that make up the trans - golgi network . 

 GO:0048738 

Generated text the process whose specific outcome is the progression of a cardiac cell over time , from its formation to the mature state . a 

cardiac cell is a cell that will form part of the cardiac organ of an individual . 

Nearest text in the 

training 

The process in which a relatively unspecialized cell acquires the specialized structural and/or functional features of a cell 

that will form part of the cardiac organ of an individual. 

Ground truth text the process whose specific outcome is the progression of cardiac muscle over time , from its formation to the mature 
structure . 
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4.6 Ablation experiment 

ProTranslator integrated protein sequence, protein description and protein-protein network as features to embed 

proteins. To understand the contribution of each kind of feature, we conducted ablation studies on the GOA(Human) 

dataset to explore how the performances would change with different feature combinations (Fig. 6 ). We found that 

each of these three components makes an important contribution for the function annotation. ProTranslator could 

achieve the best performance with all the three features together and the AUROC was lowest with only the sequence 

feature. This observation verified that ProTranslator could be applied to cases where the protein sequence, description 

and network data were not all available.  

 
Fig. 6. Ablations studies on contributions of different features. Bar plots comparing the AUROC of using different feature 
combinations. S, D and N denote the protein sequence, description and network respectively. The tick label under each bar implies 

the combination, e.g., SN means using protein sequence and network features. 

 

5 Conclusion and discussion 
We have presented ProTranslator, a text based protein function prediction framework. Through experiments on 

predicting GO terms in zero-shot and few-shot settings, we have verified that our approach was able to annotate novel 

functions by only using textual descriptions. We have further successfully applied ProTranslator to annotate genes to 

pathways from Reactome, KEGG and MsigDB [31-33] using only the pathway description. We observed that the 

performance of ProTranslator was better for functions that have text descriptions similar to GO term descriptions. 

Finally, we have demonstrated how our method can be used to generate novel textual descriptions for a given set of 

genes, offering the possibility to automatically curate new GO terms. 

Despite the novelty and prominent performance of our method, there are still a few limitations of our method. Firstly, 

textual description is required to annotate the new function, which could be difficult to get for an under-studied new 

function. We plan to incorporate genomics of these functions into our framework to supplement the text information. 

We will also provide interactive interfaces for users to modify their text based on the annotations provided by our 

method. Secondly, the AUROCs of these novel functions are relatively lower compared to AUROCs of functions that 

have many annotations. Predicting for densely annotated functions is known to be less challenging [18]. Although 

AUROC values are not very high, our method can be used to narrow down the candidate proteins for a given new 

function, thus substantially reducing the experimental and other validation efforts. 

This work is inspired by the decade-long attempts to automatically curate Gene Ontology, including NeXO [44] and 

CliXO [45]. The key difference between us and these pioneering works is that they reconstructed the hierarchical 

structure and gene clusters in the GO, whereas we generate the textual description of terms. These textual descriptions 

play a key role in scientific communication and collaborations and their curation is often most labor -intensive. Our 

method complements these existing efforts by using a novel natural language processing perspective and fills in an 

important gap towards automating GO curation. Another line of related works is automatically generating the term 

name for a set of genes or proteins [46-48]. Compared to these approaches, we generate a free text that contains a few 

sentences, which are more informative than a simple term name. Moreover, these existing approaches restricted the 

generated term to be a known phrase in the existing literature, whereas the text generated by our method is  de novo, 

thus offering the unique description to a novel function or pathway. 
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