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Supporting floor-cleaning robots with a robust vision system is getting more
popular thanks to the new functionalities it can provide. From camera based
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Abstract. The implementation of a robust vision system in floor-
cleaning robots enables them to optimize their navigation and analysing
the surrounding floor, leading to a reduction on power, water and chem-
ical products’ consumption. In this paper, we propose a novel pipeline of
a vision system to be integrated into floor-cleaning robots. This vision
system was built upon the YOLOv5 framework, and its role is to detect
dirty spots on the floor. The vision system is fed by two cameras: one on
the front and the other on the back of the floor-cleaning robot. The goal
of the front camera is to save energy and resources of the floor-cleaning
robot, controlling its speed and how much water and detergent is spent
according to the detected dirt. The goal of the back camera is to act as
evaluation and aid the navigation node, since it helps the floor-cleaning
robot to understand if the cleaning was effective and if it needs to go back
later for a second sweep. A self-calibration algorithm was implemented
on both cameras to stabilize image intensity and improve the robustness
of the vision system. A YOLOv5 model was trained with carefully pre-
pared training data. A new dataset was obtained in an automotive fac-
tory using the floor-cleaning robot. A hybrid training dataset was used,
consisting on the Automation and Control Institute dataset (ACIN), the
automotive factory dataset, and a synthetic dataset. Data augmentation
was applied to increase the dataset and to balance the classes. Finally,
our vision system attained a mean average precision (mAP) of 0.7 on the
testing set.
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mapping [10] to detecting dirty spots on the floor [5], a robust vision system
allows for a more efficient cleaning and navigation. Previous published works that
managed to implement a vision system on their floor-cleaning robots, seem to
have done it for several purposes: economize cleaning resources [8], distinguishing
between different types of dirtiness [13], and distinguishing between dirty spots
and useful objects [4]. In this work, we attempt to tackle all of these challenges.
The vision system that we propose is able to distinguish between dirty spots and
useful objects by carefully selecting training images where objects are present.
We tackle three types of dirtiness: solid dirt, liquid dirt and stains. And, finally,
we integrated this vision system into an autonomous cleaning robot prototype
in order to economize the cleaning resources by controlling water, detergent and
mechanical parts of the cleaning system based on the dirty information.

This document is an extension of our previous work [7], and presents the
application of the proposed vision system in a real-world robot prototype. In
the previous work, we explored the strengths of implementing a Deep Learning
solution based on the YOLOv5 framework [9] to detect dirty spots. In that work,
we tried to tackle the most relevant challenges pointed by the literature in this
application. Those problems revolve around lack of data, complex floor patterns,
extreme light intensities, blurred images caused by the robot movement, and
dirt/clean discrimination. We tackled these problems by generating a synthetic
dataset with complex floors that contain objects other than dirty spots, adding
simulated light sources and shadows to the resulting artificial images. The main
conclusion that we retrieved from that work was that generating synthetic data
using complex floors that contain objects to train a YOLOv5 model is a viable
solution to not only detect dirty spots, but also to distinguish between useful
objects from dirt, as long as there is enough dirt variety. We also found that stains
contributed to a considerable amount of false positives during the testing step,
since this type of dirtiness is often overlooked in the literature and, therefore,
not labelled.

In this document, the stains on the ACIN dataset [1] are annotated, comple-
menting the annotations proposed in our previous work [7]. A real-world dataset
was captured in an automotive factory using the floor-cleaning robot, and part
of it was annotated. A synthetic dataset is generated using the tool [2] provided
by [4], that we had to improve to use in this application. A data augmenta-
tion pipeline is proposed to balance the number of samples per class. Then, a
YOLOv5 model is trained using a hybrid dataset consisting of the ACIN dataset,
the automotive factory dataset and the synthetic dataset. The new annotations
and the hybrid dataset are public, and the links provided at the end of the doc-
ument. A self-calibration algorithm is adapted from [12] to stabilize the image
intensity from the cameras installed on the floor-cleaning robot. Finally, the
main results and conclusions are discussed.

This document is structured as follows: Sect.2 presents the related work;
Sect. 3 presents the methodology; Sect.4 presents the results and discussion;
Sect. 5 presents the conclusion.
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2 Related Work

Building a vision system to aid floor-cleaning robots has been tackled in several
different ways in the literature. Some works try to approach the problem with
pre-processing and unsupervised techniques, which main advantage lies in avoid-
ing a learning step. This approach, while not needing previous knowledge to be
used, have some problems, such as detecting everything that is not within the
floor pattern as dirt. Wires, objects, walls, doors, shoes, carpets, just to name
a few examples, have a high chance of being detected as a dirty spot by this
approach. More problems revolve around blurred images, uneven illumination,
and floors with multiple patterns. Other works try to approach the problem
with object detection techniques, mainly based on Deep Learning. The litera-
ture seems to indicate that this approach is more successful, however it also has
some problems, specially if one does not know where the floor-cleaning robot will
operate. It is quite difficult to organize a robust and varied training data that
covers most real-word scenarios that the floor-cleaning robot might encounter.
If the area and dirty spots that the floor-cleaning robot needs to cover is known,
this problem can be overcome by capturing a dataset for the training step in
that area. However, if it is unknown, the training dataset must be diverse both
in floor patterns and dirt variety to enable the vision system to handle unknown
circumstances with as much accuracy as possible.

Griinauer et al. [8] proposed an unsupervised approach based on Gaussian
Mixture Models (GMMs) to detect dirty spots. Firstly, they do several pre-
processing steps such as converting the captured images to the CIELAB color
space, which main advantage lies in separating colour information from illumi-
nation. Then, the gradient is calculated, and the images are divided into blocks.
The mean and standard deviation are calculated for each block, and those values
are used by the GMMs to learn the floor pattern. If something in a given image
breaks this pattern, it is considered as dirt. This approach suffers from some
problems described above. However, it is a viable solution that does not require
a learning step.

Ramalingam et al. [13] proposed a multi-stage approach to detect solid and
liquid dirt based on a Single-Shot MultiBox Detector (SSD), a MobileNet, and a
Support Vector Machine. The MobileNet extracts features, the SSD detects the
dirty spots, and the SVM classifies liquid dirt based on size to identify spots that
are harder to clean. Their strategy was to collect data that the robot might face
during its cleaning operations, manually label it and use it to train the robot’s
vision system. This strategy allowed the robot to attain an accuracy higher than
96% in detecting solid and liquid dirt. The same first author proposed a three-
layer filtering framework which includes a periodic pattern detection filter, edge
detection, and noise filtering to detect dirty spots on complex floor patterns
in another work [14]. The periodic pattern detection filter is able to identify
the floor pattern and dirty spots, since floors generally have a defined pattern.
The edge detection step is performed on the background subtracted images to
sharpen the edges that may get blurred in the previous step. Finally, they filter
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the residual noise through a median filter. This work then proceeds to show
promising results on some challenging images.

Bormann et al. [4] tackled the lack of data in this particular application
by developing a tool to artificially generate data [2]. This tool is able to blend
dirty spots into clean floors in random locations, add simulated light sources and
shadows, and apply geometric transformations to both floors and dirty spots.
Consequently, this tool enables the generation of large datasets from a small
amount of images. Then, the authors proposed using the YOLOv3 framework to
detect dirty spots. The YOLO family is basically an object detection algorithm
supported by a CNN. This algorithm divides the image into a grid and outputs
a bounding box and its probability of belonging to a certain class for each block
of the grid. This approach allowed the YOLO framework to attain state-of-the-
art results measured through the mAP in several benchmarks, such as COCO.
And for the application of detecting dirty spots on the floor, this proposal also
managed to obtain state-of-the-art results, demonstrating better performance
than GMMs [8].

3 Methodology

This section is divided into subsections addressing the several steps carried out
in this work, from data preparation to the experiments.

3.1 Vision System

The vision system of the robot was built based on the Robot Operating System
(ROS). ROS provides a set of libraries and tools to build robot applications.
We have built two nodes for our vision system: a node to access the cameras
and a node to detect dirty spots. The node to access the cameras starts them
up, calibrates the colormetric parameters of both cameras, accesses the captured
images, and publishes them to the dirt detection node. Figure1 illustrates the
importance of calibrating the cameras.

Fig. 1. An example of an overexposed image on the left and a calibrated image on the
right.

This is a result of a self-calibration algorithm adapted from [12] which is
based on the image luminance histogram. With this histogram, it is possible to
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indicate if the image is underexposed or overexposed by dividing the histogram
of the grayscale image into five regions to calculate its mean sample value (MSV).
The histogram is uniform if MSV = 2.5. Based on this value, we implemented a
Proportional-Integral controller (PI) to regulate the gain and exposure of both
cameras. This results in uniform images, which makes dirty spots more visible.

Afterwards, the dirt detection node receives those calibrated images, detects
the dirty spots, calculates the dirty area present in the images, and publishes
that information. Based on the dirty area calculated from the images captured
by the front camera, the floor-cleaning robot will regulate its speed, water, and
detergent. If significant dirty spots are detected on images captured by the back
camera, it is an indication that the cleaning was not successful. All the regions
that were unsuccessfully cleaned are mapped such that the floor-cleaning robot
goes back for a second sweep at the end of its cleaning procedure. Figure 2 shows
our floor-cleaning robot prototype.

Fig. 2. Floor-cleaning robot prototype where the vision system was implemented and
tested.

3.2 Automotive Factory Dataset

A real-world dataset was captured using the floor-cleaning robot prototype under
development. This dataset was captured in a challenging environment: an auto-
motive factory. It was noted a huge variety in dirty spots, particularly in size.
Since the overall dirty spots on the ACIN dataset are minuscule, part of the
automotive factory dataset was used to train the YOLOv5 model. It is expected
that by doing so, the model is capable of accurately detecting dirty spots inde-
pendently of their size. 39 captured images were annotated using the Labellmg
tool [3], resulting in 92 instances of solid dirt, 3 instances of liquid dirt, and 804
instances of stains. Figure 3 illustrates some samples of this dataset.
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Fig. 3. Automotive factory dataset annotations using Labellmg.

3.3 Stain Annotations on the ACIN Dataset

As mentioned in Sect. 1, stains are also a type of dirtiness that is often over-
looked during labeling. In this work, all stains on the ACIN dataset were anno-
tated using the Labellmg tool. These new annotations complemented the ones
proposed in our previous work [7], resulting in 1785 instances of solid dirt, 634
instances of liquid dirt, and 4162 instances of stains. The ACIN dataset consists
of 968 images. Figure4 illustrates some examples of stain annotations.

Fig. 4. Stain annotations using Labellmg.

3.4 Data Augmentation

Data augmentation is a well known technique used in Machine Learning to
increase and enhance training data. This can be done by applying geometric
transformations, color space augmentations, feature space augmentations, ran-
dom erasing, and so on. This is particularly useful in tackling overfitting. Over-
fitting occurs whenever the network learns a function with very high variance
to fit the training data, which makes it unreliable when facing new data. This
phenomenon can happen when the network is too complex and/or the training
data is too small.

Since the YOLOv5 network is complex, the ACIN dataset only has 968
images, and the automotive factory dataset only has 39 annotated images, it
was expected to occur overfitting during the training step. Therefore, we per-
formed data augmentation on both datasets. For this, we used a tool called
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Albumentations [6]. This tool offers several image transformations. However, we
had to make some modifications to the original code to fit our needs. Whenever
we applied a perspective transformation to the image, sometimes dirty spots on
the transformed image were out of bounds. The tool deals with these scenarios
with a minimum visibility threshold, deleting any bounding box if the threshold
is not met, however it was not working properly for our case. For this reason,
changes were implemented in the tool such that no bounding box is deleted, and
its position is returned even if it completely goes out of bounds. This change
gave us the possibility to handle these situations better. Since some dirty spots
are quite small, sometimes during a perspective transformation, dirty spots that
were near the image borders hardly became visible. To avoid this partial visi-
bility problem, we only generated images where dirty spots were fully visible or
fully invisible.

We divided the ACIN dataset and the automotive factory dataset into train-
ing sets and validation sets. We only applied data augmentation on the training
sets. From each ACIN training image, four were generated, and from each auto-
motive factory training image, five were generated. This data augmentation was
performed by applying the following transformations with a probability p:

— Flip either horizontally, vertically, or both horizontally and vertically.
(p=0.75).

Randomly change hue, saturation and value, or randomly change gamma, or
randomly change brightness and contrast (p=1).

Randomly shift values for each channel of the input RGB image (p=0.5).

— Perform a random four point perspective transform (p=0.75),

Figure 5 illustrates an augmentation example.

Fig. 5. Original image on the left, augmented image on the right.

3.5 Synthetic Dataset

In this work, we use an adapted version of the data generation tool proposed
by [4]. As mentioned in Sect. 2, this tool is able to blend dirty spots into clean
floors in random locations, add simulated light sources and shadows, and apply
geometric transformations to both floors and dirty spots. We made some adap-
tations to this tool as mentioned in our previous work [7]. It is now able to
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generate liquid dirt by manipulating their transparency, it checks if there is a
mask associated with the floor image such that dirty spots are only generated
on the floor, and the output labels are converted to the YOLO format.

In order to generate these images, we needed floor images, solid dirt samples,
and liquid dirt samples. Regarding floor images, 496 samples were obtained from
Google Search. It was given priority to floor images that approximately simulated
the distance from the floor (0.7m) and angle (45 to 70°C downwards) of the
cameras placed on our floor-cleaning robot. Some images only represented a clean
floor, while others had some objects in it such as shoes, wires, doors, carpets,
walls, and so on. This helps the network to distinguish between a dirty spot
and an object, reducing false positives. Regarding solid dirt, 141 samples were
obtained from the Trashnet dataset [15] and Google Search. As for liquid dirt, 45
samples were obtained from Google Search. All of these samples were segmented
using a tool proposed by Marcu et al. [11].

Before the data generation, we divided the floor images, solid dirt samples,
and liquid dirt samples so the training set and validation set do not use the same
images. It is possible to adjust the parameters of the synthetic data generation
tool such as the number of dirty spots per image and the number of augmenta-
tions. These parameters were adjusted considering the amount of dirt instances
on the ACIN dataset and the automotive factory dataset. This was done so that
when we created the hybrid dataset by combining the three datasets, it should
have a balanced number of samples per class. We have also increased the dirt
size ceiling to compensate for the ACIN dataset small dirt size.

3.6 Training

For the experiment, we created a hybrid dataset. Specifically, the previously
created training sets were combined, as well as the validation sets. Table 1 aims
to provide a better insight on the training and validation sets.

Table 1. Training and validation sets.

Set Images | Solid dirt | Liquid dirt | Stains
Training | 9470 23670 23426 22367
Validation | 388 506 584 599

There are several YOLOv5 models with different complexities. We chose
the medium network (YOLOv5m6) since it was the best performing one for
this type of data, as concluded in our previous work [7]. Transfer Learning was
implemented by freezing the backbone, which helps to tackle overfitting. We
used the Stochastic Gradient Descent (SGD) optimizer with a learning rate of
0.01 and a decay of 0.0005. The image size was set to 640 x 640, the batch size
was set to 32, and the training was done over 50 epochs with early stopping,
saving the best weights. This was performed with an Nvidia GeForce RTX 3080
GPU and an AMD Ryzen 5 5600X 6-Core 3.7GHz CPU.



386 D. Canedo et al.

3.7 Testing

We created a small testing set to test our network and the network from our
previous proposal [7] for comparison. For this, we annotated a few images from
the automotive factory dataset that are different from the ones used in the
training, as well as a few images from the IPA dataset [1]. The following Table 2
aims to provide a better insight on the testing set.

Table 2. Testing set.

Set Images | Solid dirt | Liquid dirt | Stains
Testing | 24 80 2 212

The type of dirtiness on the automotive factory dataset mainly consists of
stains and solid dirt, but only a few liquid dirt instances. That is why the classes
on the testing set are not balanced. However, the testing step will provide an
overall view of how the proposed vision system is capable of handling real-world
settings. The testing was done for a binary classification (dirty or not dirty) since
what is important in our application is the detection of dirty spots, and not so
much the classification of those given spots.

4 Results and Discussion

Table 3 shows the mAP on the testing set of this work compared with our pre-
vious work. Figure 6 shows the respective precision-recall curves.

Table 3. Comparing the network of this work with our previous work.

Previous YOLOv5m6 [7] | Current YOLOv5m6
mAP |0.29 0.70

Precision

—— YOLOV5mé6_current
—— YOLOVS5m6_previous

0.0 0.2 0.4 0.6 0.8 1.0
Recall

Fig. 6. Precision-recall curves on the testing set.
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These results show how relevant stains are. This type of dirtiness is quite
common because it is mostly caused by shoes. Although the previous network
is able to detect some stains, it cannot outperform a network that was trained
considering this type of dirtiness. Figure 7 illustrates the results of some images
of the testing set for both networks, side by side.

It is possible to observe that the current network not only performs better
in detecting stains, but also in detecting the other types of dirtiness. This was
expected, since the previous network was only trained with a synthetic dataset
with two classes: solid dirt and liquid dirt. The current network was trained on
a hybrid dataset with one more class than the previous network: stains. Class
balance and data augmentation was also considered in this work. Therefore,
these results were expected and desired, since this is the network that will be
used by our floor-cleaning robot.

Fig. 7. Results on the testing set. Previous network on the top, current network on
the bottom.

However, these results can still be improved by increasing the variety of floor
images, solid dirt, liquid dirt, and stains of the training set. Dirty spots can
come in different sizes, different colours, and complex shapes. Adding this to the
limitless amount of floor patterns makes it sometimes difficult to detect dirty
spots. During the testing step the network encountered some problems, mainly
when the floor is worn out. Figure8 illustrates an image where the network
struggled to distinguish between holes and dirty spots.
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Fig. 8. Results on an image from the testing set.

As it is possible to observe, there are some holes in this image that are
detected as dirty spots. We did not consider adding worn out floors to the train-
ing set, and therefore the network struggles to distinguish worn out features
from actual dirty spots. However, this is one of the problems of trying to have a
network that strives to generalize every single scenario. Generally, the applica-
tion of a floor-cleaning robot is self-contained, meaning that the floor patterns
and expected dirty spots are known in advance. In those cases, one can build a
vision system that has a close to perfect efficiency.

5 Conclusion

In this work we proposed a vision system for a floor-cleaning robot. This is a
novel approach that uses two cameras, one on the front and one on the back.
The front camera is responsible for adjusting the speed, water, and detergent
of the floor-cleaning robot. The back camera is responsible for mapping regions
that were not successfully cleaned, such that the floor-cleaning robot goes back
for a second sweep later on. The colormetric parameters of the cameras are
autonomously calibrated to adapt the light conditions and floor type, a major
contribution to spot dirt. A hybrid dataset was built using the ACIN dataset, the
automotive factory dataset which was captured using our floor-cleaning robot,
and a synthetic dataset. In this work, we paid special attention to a type of
dirtiness that is often overlooked in the literature: stains. For this reason, we
annotated all the stains on the ACIN dataset.

Finally, we trained a YOLOv5m6 network on the hybrid dataset. We then
tested that network on a testing set which was built using a few images from
the automotive factory dataset and the IPA dataset. We attained a mAP of 0.7,
which was a considerable improvement over the result of our previous work: 0.29.

The ACIN annotations are available at https://tinyurl.com/3hjpxehw and
the built Hybrid dataset is available at https://tinyurl.com/2p8ryr7s.
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