Skip to main content

Quantum Service-Oriented Architectures: From Hybrid Classical Approaches to Future Stand-Alone Solutions

  • Chapter
  • First Online:
  • 1028 Accesses

Abstract

In this chapter, different experiments have been carried out and different analyses have been performed, from which several technical and technological deficiencies of current quantum computing have been extracted. Therefore, this chapter also proposes an approach to the development of hybrid quantum-classical services using Amazon Braket, in order to take advantage of problems that are difficult to address with classical computing algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steane A (1998) Quantum computing. Rep Prog Phys 61(2):117

    Article  MathSciNet  Google Scholar 

  2. Preskill J (2018) Quantum computing in the nisq era and beyond. Quantum 2:79

    Article  Google Scholar 

  3. MacQuarrie ER, Simon C, Simmons S, Maine E (2020) The emerging commercial landscape of quantum computing. Nat Rev Phys 2(11):596–598

    Article  Google Scholar 

  4. McCaskey A, Dumitrescu E, Liakh D, Humble T (2018) Hybrid programming for near-term quantum computing systems. In: 2018 IEEE International Conference on Rebooting Computing (ICRC). IEEE, pp 1–12

    Google Scholar 

  5. Sodhi B (2018) Quality attributes on quantum computing platforms. arXiv preprint. arXiv:1803.07407

    Google Scholar 

  6. Dragoni N, Giallorenzo S, Lafuente AL, Mazzara M, Montesi F, Mustafin R, Safina L (eds) (2017) Microservices: yesterday, today, and tomorrow. Present Ulterior Softw Eng:195–216

    Google Scholar 

  7. Nielsen MA, Chuang I (2002) Quantum computation and quantum information

    Google Scholar 

  8. Newman S (2015) Building microservices: designing fine-grained systems. O’Reilly Media

    Google Scholar 

  9. Richardson C (2018) Microservices patterns: with examples in Java. Manning Publications

    Google Scholar 

  10. Martin Fowler and James Lewis. Microservices, a definition of this new architectural term. 2014.

    Google Scholar 

  11. Brown K, Woolf B (2016) Implementation patterns of microservices architectures. HILLSIDE Proc Conf Pattern Lang Prog 22:1–35

    Google Scholar 

  12. Schwichtenberg S, Gerth C, Engels G (2017) From open API to semantic specifications and code adapters. In: Proceedings – 2017 IEEE 24th International Conference on Web Services, ICWS 2017. Institute of Electrical and Electronics Engineers, pp 484–491

    Google Scholar 

  13. Balalaie A, Heydarnoori A, Jamshidi P (2016) Microservices architecture enables DevOps: migration to a cloud-native architecture. IEEE Software 33(3):42–52

    Article  Google Scholar 

  14. Fitzgerald B, Stol KJ (2017) Continuous software engineering: a roadmap and agenda. J Syst Softw 123:176–189

    Article  Google Scholar 

  15. Jiang S, Britt KA, McCaskey AJ, Humble TS, Kais S (2018) Quantum annealing for prime factorization. Scientific Rep 8(1):1–9

    Google Scholar 

  16. Haring R, Ohmacht M, Fox T, Gschwind M, Satterfield D, Sugavanam K, Coteus P, Heidelberger P, Blumrich M, Wisniewski R et al (2011) The ibm blue gene/q compute chip. IEEE Micro 32(2):48–60

    Article  Google Scholar 

  17. Wang B, Feng H, Yao H, Wang C (2020) Prime factorization algorithm based on parameter optimization of Ising model. Scientific Rep 10(1):1–10

    Google Scholar 

  18. Motta M, Sun C, Tan ATK, O’Rourke MJ, Ye E, Minnich AJ, Brandao FGSL, Chan GK-L (2020) Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution. Nat Phys 16(2):205–210

    Article  Google Scholar 

  19. Kielpinski D, Monroe C, Wineland DJ (2002) Architecture for a large-scale ion-trap quantum computer. Nature 417(6890):709–711

    Article  Google Scholar 

  20. Feng H, Wang B-N, Wang N, Wang C (2019) Quantum machine learning with d-wave quantum computer. Quantum Eng 1(2):e12

    Google Scholar 

  21. Warren RH (2013) Adapting the traveling salesman problem to an adiabatic quantum computer. Quantum Inf Proc 12(4):1781–1785

    Article  MathSciNet  Google Scholar 

  22. Irie H, Wongpaisarnsin G, Terabe M, Miki A, Taguchi S (2019) Quantum annealing of vehicle routing problem with time, state and capacity. In: International Workshop on Quantum Technology and Optimization Problems. Springer, pp 145–156

    Chapter  Google Scholar 

  23. Papalitsas C, Andronikos T, Giannakis K, Theocharopoulou G, Fanarioti S (2019) A qubo model for the traveling salesman problem with time windows. Algorithms 12(11):224

    Article  MathSciNet  Google Scholar 

  24. Warren RH (2020) Solving the traveling salesman problem on a quantum annealer. SN Appl Sci 2(1):1–5

    Article  Google Scholar 

  25. Matsuo A, Suzuki Y, Yamashita S (2020) Problem-specific parameterized quantum circuits of the VQE algorithm for optimization problems. arXiv

    Google Scholar 

  26. Srinivasan K, Satyajit S, Behera BK, Panigrahi PK (2018) Efficient quantum algorithm for solving travelling salesman problem: an IBM quantum experience. arXiv

    Google Scholar 

  27. Leymann F, Barzen J, Falkenthal M, Vietz D, Weder B, Wild K (2020) Quantum in the cloud: application potentials and research opportunities. In: Proceedings of the 10th International Conference on Cloud Computing and Service Science (CLOSER 2020). SciTePress, pp 9–24

    Chapter  Google Scholar 

  28. Wild K, Breitenbücher U, Harzenetter L, Leymann F, Vietz D, Zimmermann M (2020) TOSCA4QC: two modeling styles for TOSCA to automate the deployment and orchestration of quantum applications. In: 24th IEEE International Enterprise Distributed Object Computing Conference, EDOC 2020, Eindhoven, The Netherlands, October 5–8, 2020. IEEE, pp 125–134

    Google Scholar 

  29. Sim S, Cao Y, Romero J, Johnson PD, Aspuru-Guzik A (2018) A framework for algorithm deployment on cloud-based quantum computers. arXiv preprint. arXiv:1810.10576

    Google Scholar 

  30. Adelomou AP, Ribe EG, Cardona XV (2020) Using the Parameterized Quantum Circuit combined with Variational-Quantum-Eigensolver (VQE) to create an Intelligent social workers’ schedule problem solver. arXiv

    Google Scholar 

  31. Cuomo D, Caleffi M, Cacciapuoti AS (2020) Towards a distributed quantum computing ecosystem. IET Quantum Commun 1(1):3–8

    Article  Google Scholar 

  32. Cross A (2018) The ibm q experience and qiskit open-source quantum computing software. APS March Meeting Abstracts 2018:L58–003

    Google Scholar 

  33. Li S, He Z, Jia Z, Zhong C, Cheng Z, Shan Z, Shen J, Babar MA (2021) Understanding and addressing quality attributes of microservices architecture: a systematic literature review. Inf Softw Technol 131:106449

    Article  Google Scholar 

  34. Cohen Y, Sivan I, Ofek N, Ella L, Drucker N, Shani T, Weber O, Grinberg H, Greenbaum M (2020) Quantum orchestration platform integrated hardware and software for design and execution of complex quantum control protocols. Bull Am Phys Soc 65

    Google Scholar 

  35. Gheorghe-Pop I-D, Tcholtchev N, Ritter T, Hauswirth M (2020) Quantum devops: towards reliable and applicable nisq quantum computing. In: 2020 IEEE Globecom Workshops (GC Wkshps). IEEE, pp 1–6

    Google Scholar 

  36. Phalak K, Ash-Saki A, Alam M, Topaloglu RO, Ghosh S (2021) Quantum puf for security and trust in quantum computing. arXiv preprint. arXiv:2104.06244

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Moguel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Valencia, D., Moguel, E., Rojo, J., Berrocal, J., Garcia-Alonso, J., Murillo, J.M. (2022). Quantum Service-Oriented Architectures: From Hybrid Classical Approaches to Future Stand-Alone Solutions. In: Serrano, M.A., Pérez-Castillo, R., Piattini, M. (eds) Quantum Software Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-05324-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05324-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05323-8

  • Online ISBN: 978-3-031-05324-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics