Skip to main content

Development of an Algorithm to Artificially Create Virtual Brain Deformations for Brain DICOM

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13303))

Abstract

This study proposes an algorithm to artificially create brain shifts in patients’ brain DICOM images. Then, we evaluate the SIFT, AKAZE, ORB, and BRISK feature point extraction algorithms for the automatic detection of local brain shifts from a patient’s pre-and postoperative DICOM images. Accurate and automatic detection of brain shifts could contribute toward the generation of accurate brain deformation models. The evaluation results suggested that the BRISK and AKAZE algorithms are most suitable for the above purpose.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sun, K., Pheiffer, T.S., Simpson, A.L., Weis, J.A., Thompson, R.C., Miga, M.I.: Near real-time computer assisted surgery for brain shift correction using biomechanical models. IEEE J. Transl. Eng. Health Med. 2, 1–13 (2014)

    Article  Google Scholar 

  2. Chen, I., Ong, R.E., Simpson, A.L., Sun, K., Thompson, R.C., Miga, M.I.: Integrating retraction modeling into an atlas-based framework for brain shift prediction. IEEE Trans. Biomed. Eng. 60(12), 3494–3504 (2013)

    Article  Google Scholar 

  3. DeLorenzo, C., Papademetris, X., Staib, L.H., Vives, K.P., Spencer, D.D., Duncan, J.S.: Volumetric intraoperative brain deformation compensation: model development and phantom validation. IEEE Trans. Med. Imaging 31(8), 1607–1619 (2012)

    Article  Google Scholar 

  4. Vigneron, L.M., Boman, R.C., Ponthot, J.-P., Robe, P.A., Warfield, S.K., Verly, J.G.: Enhanced FEM-based modeling of brain shift deformation in image-guided neurosurgery. J. Comput. Appl. Math. 234(7), 2046–2053 (2010)

    Article  MathSciNet  Google Scholar 

  5. Zacharaki, E.I., Hogea, C.S., Biros, G., Davatzikos, C.: A comparative study of biomechanical simulators in deformable registration of brain tumor images. IEEE Trans. Biomed. Eng. 55(3), 1233–1236 (2008). International Journal of Pharma Medicine and Biological Sciences, vol. 8, No. 3, July 201977

    Google Scholar 

  6. Payan, Y.: Soft Tissue Biomechanical Modeling for Computer Assisted Surgery, Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 11)

    Google Scholar 

  7. Valencia, A., Blas, B., Ortega, J.H.: Modeling of brain shift phenomenon for different craniotomies and solid models. J. Appl. Math. 2012(12), Article ID 409127, 20 pages, February 2012

    Google Scholar 

  8. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  9. Hassaballah, M., et al.: Image features detection description and matching. In: Awad, A., Hassaballah, M. (eds.) Image Feature Detectors and Descriptors. SCI, vol. 630, pp. 11–45. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28854-3_2

  10. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  11. Alcantarilla, P.F., et al.: KAZE features. In: European Conference on Computer Vision, pp. 214–227 (2012)

    Google Scholar 

  12. Alcantarilla, P.F., Nuevo, J., Bartoli, A.: Fast explicit diffusion for accelerated features in nonlinear scale spaces. Trans. Pattern Anal. Mach. Intell. 34(7), 1281–1298 (2011)

    Google Scholar 

  13. Rublee, E., et al.: ORB: An efficient alternative to SIFT or SURF. In: IEEE International Conference on Computer Vision, pp. 2564–2571 (2011)

    Google Scholar 

  14. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_34

  15. Calonder, M., et al.: Brief: binary robust independent elementary features. In: European Conference on Computer Vision, pp. 778–792 (2010)

    Google Scholar 

  16. Leutenegger, S., et al.: BRISK: Binary robust invariant scalable keypoints. In: IEEE International Conference on Computer Vision, pp. 2548–2555 (2011)

    Google Scholar 

  17. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  18. Noborio, H., Uchibori, S., Koeda, M., Watanabe, K.: Two-dimensional DICOM feature points and their mapping extraction for identifying brain shifts. Int. J. Pharma Med. Biol. Sci. 8(3), 71–78 (2019). http://www.ijpmbs.com/uploadfile/2019/0723/20190723045554314.pdf

  19. Noborio, H., Uchibori, S., Koeda, M., Watanabe, K.: Visualizing the correspondence of feature point mapping between DICOM images before and after surgery. In: Proceedings of the 2019 11th International Conference on Bioinformatics and Biomedical Technology, pp.1–7. ACM New York, Stockholm Sweden, 29–31 May, 2019. https://doi.org/10.1145/3340074.3340075ISBN: 978-1-4503-6231-3

  20. Shewchuk, J.R.: Delaunay refinement algorithms for triangular mesh generation. vol. 22, pp. 21–74 (2002). ISSN 0925–7721

    Google Scholar 

  21. Mori, T., Nonaka, M., Kunii, T., Koeda, M., Watanabe, K., Noborio, H.: Algorithm for automatic brain-shift detection using the distance between feature descriptors. In: Kurosu, M. (eds.) HCII 2022. LNCS, vol. 13303, pp. 376–387. Springer, Cham (2022, to appear)

    Google Scholar 

Download references

Acknowledgment

This study was supported partly by the 2020 Grants-in-Aid for Scientific Research (No. 20K04407 and 20K12053) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Noborio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mori, T., Nonaka, M., Kunii, T., Koeda, M., Noborio, H. (2022). Development of an Algorithm to Artificially Create Virtual Brain Deformations for Brain DICOM. In: Kurosu, M. (eds) Human-Computer Interaction. Technological Innovation. HCII 2022. Lecture Notes in Computer Science, vol 13303. Springer, Cham. https://doi.org/10.1007/978-3-031-05409-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05409-9_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05408-2

  • Online ISBN: 978-3-031-05409-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics