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On perfect coverings of two-dimensional grids

Elias Heikkilä, Pyry Herva and Jarkko Kari

Abstract

We study perfect multiple coverings in translation invariant graphs with vertex set

Z2 using an algebraic approach. In this approach we consider any such covering as a

two-dimensional binary configuration which we then express as a two-variate formal

power series. Using known results, we conclude that any perfect multiple covering

has a non-trivial periodizer, that is, there exists a non-zero polynomial whose formal

product with the power series presenting the covering is a two-periodic configuration.

If a non-trivial periodizer has line polynomial factors in at most one direction, then

the configuration is known to be periodic. Using this result we find many setups where

perfect multiple coverings of infinite grids are necessarily periodic. We also consider

some algorithmic questions on finding perfect multiple coverings.

1 Introduction and preliminaries

A perfect multiple covering in a graph is a set of vertices, a code, such that the number of
codewords in the neighborhood of an arbitrary vertex depends only on whether the vertex is
in the code or not. In this paper we study these codes on translation invariant graphs with
the vertex set Z2. We present codes as two-dimensional binary configurations and observe
that the perfect covering condition provides an algebraic condition that can be treated with
the algebraic tools developed in [8]. We focus on periodic codes and, in particular, study
setups where all codes are necessarily periodic. The approach we take was initially mentioned
in an example in the survey [6] by the third author, and considered in the Master’s thesis
[5] by the first author.

We start by giving the basic definitions, presenting the aforementioned algebraic approach
and stating some past results relevant to us. In Section 2 we describe an algorithm to find the
line polynomial factors of any given (Laurent) polynomial. In Section 3 we formally define
the perfect multiple coverings in graphs and prove some periodicity results concerning them.
We give new algebraic proofs of some known results concerning perfect multiple coverings
on the infinite square grid and on the triangular grid [1, 12], and provide a new result
on the forced periodicity of such coverings on the king grid. Furthermore, we generalize
the definition of perfect coverings for two-dimensional binary configurations with respect to
different neighborhoods and covering constants. In Section 4 we consider some algorithmic
questions concerning perfect coverings. Using a standard argument by H. Wang we show
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that under certain constraints it is algorithmically decidable to determine whether there
exist any perfect coverings with given neighborhood and given covering constants.

Configurations, periodicity, finite patterns and subshifts

A d-dimensional configuration is a coloring of the infinite grid Zd using finitely many colors,
that is, an element of AZd

which we call the d-dimensional configuration space where A
is some finite alphabet. For a configuration c we let cu = c(u) to be the symbol or color
that c has in cell u. The translation τ t by a vector t ∈ Zd shifts a configuration c such
that τ t(c)u = cu−t for all u ∈ Zd. A configuration c is t-periodic if τ t(c) = c and c is
periodic if c is t-periodic for some non-zero t ∈ Zd. We also say that a configuration c is
periodic in direction v ∈ Zd \ {0} if c is kv-periodic for some k ∈ Q. A d-dimensional
configuration c is strongly periodic if it has d linearly independent vectors of periodicity.
Strongly periodic configurations are then periodic in all directions. Two-dimensional strongly
periodic configurations are called two-periodic.

A finite pattern is an assignment of symbols on some finite shape D ⊆ Zd, that is, an
element of AD where A is some fixed alphabet. In particular, the finite patterns in AD

are called D-patterns. Let us denote by A∗ the set of all finite patterns over alphabet A
where the dimension d is known from the context. A finite pattern p ∈ AD appears in a
configuration c ∈ AZd

if τ t(c)|D = p for some t ∈ Zd. A configuration c contains the pattern
p if it appears in c. For a fixed shape D, the set of all D-patterns that appear in c is the set
LD(c) = {τ t(c)|D | t ∈ Zd} and the set of all finite patterns in c is denoted by L(c) which
we call the language of c. For a set S ⊆ AZd

of configurations we define LD(S) and L(S) as
the unions of LD(c) and L(c) over all c ∈ S, respectively.

Let us review some basic concepts of symbolic dynamics we need. For a reference see
e.g. [3, 10, 11]. The configuration space AZd

can be made a compact topological space by
endowing A with the discrete topology and considering the product topology it induces on
AZd

– the prodiscrete topology. This topology is induced by a metric where two configurations
are close if they agree on a large area around the origin. Thus AZd

is a compact metric space.
A subset S ⊆ AZd

of the configuration space is a subshift if it is topologically closed and
translation-invariant meaning that if c ∈ S then for any t ∈ Zd also τ t(c) ∈ S. Equivalently
we can define subshifts using forbidden patterns: Given a set F ⊆ A∗ of forbidden finite
patterns, the set

XF = {c ∈ AZd

| L(c) ∩ F = ∅}

of configurations that avoid all forbidden patterns is a subshift, and every subshift is obtained
by forbidding some set of finite patterns. If F ⊆ A∗ is finite then we say that XF is a subshift
of finite type (SFT).

The orbit of a configuration c is the set O(c) = {τ t(c) | t ∈ Zd} of its every translate.
The orbit closure O(c) is the topological closure of its orbit under the prodiscrete topology.
The orbit closure of a configuration c is the smallest subshift that contains c. It consists of
all configurations c′ such that L(c′) ⊆ L(c).
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The algebraic approach

To present a configuration c ∈ AZd

algebraically we make the assumption that A ⊆ Z. Then
we identify the configuration c with the formal power series

c(X) =
∑

u∈Zd

cuX
u

over d variables x1, . . . , xd where we have denoted X = (x1, . . . , xd) and X
u = xu1

1 · · ·xud

d for
any u = (u1, . . . , ud) ∈ Zd. For d = 2 we usually denote X = (x, y). More generally we study
the set of all formal power series over d variables x1, . . . , xd with complex coefficients which
we denote by C[[X±1]] = C[[x±1

1 , . . . , x±1
d ]]. A power series is finitary if it has only finitely

many different coefficients and integral if its coefficients are all integers. Thus we identify
configurations with finitary and integral power series.

We also use Laurent polynomials which we call from now on simply polynomials. We
use the term “proper” when we talk about proper (i.e., non-Laurent) polynomials. Let us
denote by C[X±1] = C[x±1

1 , . . . , x±1
d ] the set of all (Laurent) polynomials over d variables

x1, . . . , xd with complex coefficients, which is the Laurent polynomial ring. We say that two
polynomials have no common factors if all of their common factors are units and that they
have a common factor if they have a non–unit common factor.

A product of a polynomial and a power series is well defined. We say that a polynomial
f = f(X) annihilates (or is an annihilator of) a power series c = c(X) if fc = 0, that is,
if their product is the zero power series. We say that a formal power series c = c(X) is
periodic if it is annihilated by a difference polynomial Xt− 1 where t is non-zero. Note that
this definition is consistent with the definition of periodicity of configurations defined above.
Indeed if c = c(X) is a configuration then multiplying it by a monomial Xt produces the
translated configuration τ t(c) and hence c is t-periodic if and only if c = τ t(c) = Xtc, which
is equivalent to (Xt − 1)c = 0. So it is natural to study the annihilator ideal

Ann(c) = {f ∈ C[X±1] | fc = 0}

of a power series c ∈ C[[X±1]], which indeed is an ideal of the Laurent polynomial ring. Hence
the question whether a configuration (or any formal power series) is periodic is equivalent to
asking whether its annihilator ideal contains a difference polynomial. Another useful ideal
that we study is the periodizer ideal

Per(c) = {f ∈ C[X±1] | fc is strongly periodic}.

Note that clearly Ann(c) is a subset of Per(c). Note also that a configuration c has a non-
trivial (= non-zero) annihilator if and only if it has a non-trivial periodizer. The following
theorem states that if a configuration has a non-trivial periodizer then it has in fact an
annihilator of a particular simple form – a product of difference polynomials.

Theorem 1 ([8]). Let c be a configuration in any dimension that has a non-trivial periodizer.
Then there exist pairwise linearly independent vectors t1, . . . , tm with m ≥ 1 such that

(Xt1 − 1) · · · (Xtm − 1) ∈ Ann(c).
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Line polynomials

The support of a power series c =
∑

u∈Zd cuX
u is the set supp(c) = {u ∈ Zd | cu 6= 0}.

Thus a polynomial is a power series with a finite support. A line polynomial is a polynomial
whose support contains at least two points and the points of the support lie on a unique line.
In other words, a polynomial f is a line polynomial if it is not a monomial and there exist
vectors u,v ∈ Zd such that supp(f) ⊆ u+Qv. In this case we say that f is a line polynomial
in direction v. We say that non-zero vectors v,v′ ∈ Zd are parallel if v′ ∈ Qv, and clearly
then a line polynomial in direction v is also a line polynomial in any parallel direction. A
vector v ∈ Zd is primitive if its components are pairwise relatively prime. If v is primitive
then Qv∩Zd = Zv. For any non-zero v ∈ Zd there exists a parallel primitive vector v′ ∈ Zd.
It follows that we may assume the vector v in the definition of a line polynomial f to be
primitive so that supp(f) ⊆ u+Zv. In the following our preferred presentations of directions
are in terms of primitive vectors.

Any line polynomial φ in a (primitive) direction v can be written uniquely in the form

φ = Xu(a0 + a1X
v + . . .+ anX

nv) = Xu(a0 + a1t + . . .+ ant
n)

where u ∈ Zd, n ≥ 1, a0 6= 0, an 6= 0 and t = Xv. Let us call the single variable proper
polynomial a0 + a1t + . . . + ant

n ∈ C[t] the normal form of φ. Moreover, for a monomial
aXu we define its normal form to be a. Thus two line polynomials in the direction v have
the same normal form if and only if they are the same polynomial up to multiplication by
Xu, for some u ∈ Zd.

Difference polynomials are line polynomials and hence the annihilator provided by The-
orem 1 is a product of line polynomials. Annihilation by a difference polynomial means
periodicity. More generally, annihilation of a configuration c by a line polynomial in a
primitive direction v can be understood as the annihilation of the one-dimensional v-fibers
∑

k∈Z cu+kvX
u+kv of c in direction v, and since annihilation in the one-dimensional setting

implies periodicity we conclude that a configuration is periodic if and only if it is annihilated
by a line polynomial. It is known that if c has a periodizer with line polynomial factors in
at most one direction then c is periodic:

Theorem 2 ([9]). Let c be a two-dimensional configuration and f ∈ Per(c). Then the
following conditions hold.

• If f does not have any line polynomial factors then c is two-periodic.

• If all line polynomial factors of f are in the same direction then c is periodic in this
direction.

Proof sketch. The periodizer ideal Per(c) is a principal ideal generated by a polynomial
g = φ1 · · ·φm where φ1, . . . , φm are line polynomials in pairwise non-parallel directions [9].
Because f ∈ Per(c) we know that g divides f . If f does not have any line polynomial factors
then g = 1 and thus c = gc is two-periodic. If f has line polynomial factors and they are
in the same primitive direction v then g is a line polynomial in this direction. Since gc is
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two-periodic it is annihilated by (Xkv − 1) for some k ∈ Z. Then the configuration c is
annihilated by the line polynomial (Xkv − 1)g in direction v. We conclude that c is periodic
in direction v.

(See the Appendix for an alternative proof that mimics the usage of resultants in [7], instead
of relying on the structure of the ideal Per(c).)

2 Line polynomial factors

The open and closed discrete half planes determined by a non-zero vector v ∈ Z2 are the
sets Hv = {u ∈ Z2 | 〈u,v⊥〉 > 0} and Hv = {u ∈ Z2 | 〈u,v⊥〉 ≥ 0}, respectively, where
v⊥ = (v2,−v1) is orthogonal to v = (v1, v2). Let us also denote by lv = Hv \Hv the discrete
line parallel to v that goes through the origin. In other words, the half plane determined by
v is the half plane “to the right” of the line lv when moving along the line in the direction of
v. We say that a finite set D ⊆ Z2 has an outer edge in direction v if there exists a vector
t ∈ Z2 such that D ⊆ Hv + t and |D∩ (lv + t)| ≥ 2. We then call D ∩ (lv + t) an outer edge
of D in direction v. An outer edge corresponding to v means that the convex hull of D has
an edge in direction v in the clockwise orientation around D.

If a finite non-empty set D does not have an outer edge in direction v then there exists
a vector t ∈ Z2 such that D ⊆ Hv + t and |D ∩ (lv + t)| = 1 and then we say that D has a
vertex in direction v and we call D ∩ (lv + t) a vertex of D in direction v. We say that a
polynomial f has an outer edge or a vertex in direction v if its support has an outer edge or
a vertex in direction v, respectively. Note that every finite shape D has either an edge or a
vertex in any non-zero direction. Note also that in this context directions v and −v are not
the same: a shape may have an outer edge in direction v but no outer edge in direction −v.
The following lemma shows that a polynomial can have line polynomial factors only in the
directions of its outer edges.

Lemma 3 ([7]). Let f be a non-zero polynomial with a line polynomial factor in direction
v. Then f has outer edges in directions v and −v.

Let v ∈ Z2 \ {0} be any non-zero primitive vector and let f =
∑

fuX
u be a polynomial.

Recall that a v-fiber of f is a polynomial of the form
∑

k∈Z fu+kvX
u+kv for some u ∈ Z2.

Thus a non-zero v-fiber of a polynomial is either a line polynomial or a monomial. Let us
denote by Fv(f) the set of different normal forms of all non-zero v-fibers of a polynomial f ,
which is thus a finite set. The following simple example illustrates the concept of fibers and
their normal forms.

Example 4. Let us determine the set Fv(f) for f = f(X) = f(x, y) = 3x+ y + xy2 + xy +
x3y3 + x4y4 and v = (1, 1). By grouping the terms we can write

f = 3x+ y(1 + xy) + xy(1 + x2y2 + x3y3) = X(1,0) · 3 +X(0,1)(1 + t) +X(1,1)(1 + t2 + t3)

where t = X(1,1) = xy. Hence Fv(f) = {3, 1 + t, 1 + t2 + t3}. See Figure 1 for a pictorial
illustration.
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Figure 1: The support of f = 3x+ y + xy2 + xy + x3y3 + x4y4 and its different (1, 1)-fibers.

As noticed in the example above, polynomials are linear combinations of their fibers: for any
polynomial f and any non-zero primitive vector v we can write

f = Xu1ψ1 + . . .+Xunψn

for some u1, . . . ,un ∈ Z2 where ψ1, . . . , ψn ∈ Fv(f). We use this in the proof of the next
theorem.

Theorem 5. A polynomial f has a line polynomial factor in direction v if and only if the
polynomials in Fv(f) have a common factor.

Proof. For any line polynomial φ in direction v, and for any polynomial g, the v-fibers of the
product φg have a common factor φ. In other words, if a polynomial f has a line polynomial
factor φ in direction v then the polynomials in Fv(f) have the normal form of φ as a common
factor.

For the converse direction, assume that the polynomials in Fv(f) have a common factor
φ which is thus a line polynomial in direction v. Then there exist vectors u1, . . . ,un ∈ Z2

and polynomials φψ1, . . . , φψn ∈ Fv(f) such that

f = Xu1φψ1 + . . .+Xunφψn.

Hence φ is a line polynomial factor of f in direction v.

Note that Lemma 3 actually follows immediately from Theorem 5: A vertex instead of
an outer edge in direction v or −v provides a non-zero monomial v-fiber, which implies that
the polynomials in Fv(f) have no common factors.

Thus to find out the line polynomial factors of f we first need to find out the possible
directions of the line polynomials, that is, the directions of the (finitely many) outer edges
of f , and then we need to check for which of these possible directions v the polynomials in
Fv(f) have a common factor. There are clearly algorithms to find the outer edges of a given
polynomial and to determine whether finitely many line polynomials have a common factor.
If such a factor exists then f has a line polynomial factor in this direction by Theorem 5.
Thus we have proved the following theorem.

Theorem 6. There is an algorithm to find the line polynomial factors of a given (Laurent)
polynomial.
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(a) The square grid (b) The king grid (c) The triangular grid

Figure 2: The 1-neighborhoods of the black vertex in (a) the square grid, (b) the king grid,
and (c) the triangular grid.

3 Perfect coverings

In this paper a graph is a tuple G = (V,E) where V is the (possibly infinite) vertex set of
G and E ⊆ {{u, v} | u, v ∈ V, u 6= v} is the edge set of G. Thus the graphs we consider are
simple and undirected. We also assume that all vertices have only finitely many neighbors in
the graph. For a graph G = (V,E) we call any subset S ⊆ V of the vertex set a code in G.
The distance d(u, v) of two vertices u, v ∈ V is the length of a shortest path between them.
The (closed) r-neighborhood of a vertex u ∈ V is the set Nr(u) = {v ∈ V | d(v, u) ≤ r}, that
is, the ball of radius r centered at u. Let us now give the definition of the family of codes
we consider.

Definition 7. Let G = (V,E) be a graph. A code S ⊆ V is an (r, b, a)-covering in G for
non-negative integers b and a if the r-neighborhood of every vertex in S contains exactly b
elements of S and the r-neighborhood of every vertex not in S contains exactly a elements
of S, that is, if for every u ∈ V

|Nr(u) ∩ S| =

{

b if u ∈ S

a if u 6∈ S
.

By a perfect (multiple) covering we mean any (r, b, a)-covering.

3.1 Infinite grids

An infinite grid is a translation invariant graph with the vertex set Z2. In other words,
in infinite grids we have Nr(u) = u + Nr(0) for all u ∈ Z2. The square grid is the graph
(Z2, ES) with ES = {{u,v} | u−v ∈ {(±1, 0), (0,±1)}}, the king grid is the graph (Z2, EK)
with EK = {{u,v} | u − v ∈ {(±1, 0), (0,±1), (±1,±1)}} and the triangular grid is the
graph (Z2, ET ) with ET = {{u,v} | u− v ∈ {(±1, 0), (0,±1), (1, 1), (−1,−1)}}. See Figure
2 for the 1-neighborhoods of a vertex in these graphs. A code S ⊆ Z2 is periodic if S = S+ t

for some non-zero t ∈ Z2. It is two-periodic if S = S + t1 and S = S + t2 where t1 and t2
are linearly independent. The following result is by Axenovich.

Theorem 8 ([1]). If b− a 6= 1 then any (1, b, a)-covering in the square grid is two-periodic.

A code S ⊆ Z2 in any infinite grid can be presented as a configuration c ∈ {0, 1}Z
2
which is

defined such that cu = 1 if u ∈ S and cu = 0 if u 6∈ S. The positioning of the codewords in
the r-neighborhood of any vertex u ∈ Z2 is then presented as a finite pattern c|u+Nr(0).
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Definition 9. A configuration c ∈ {0, 1}Z
2
is a (D, b, a)-covering for a finite shape D ⊆ Z2

(the neighborhood) and non-negative integers b and a (the covering constants) if for all
u ∈ Z2 the pattern c|u+D contains exactly b symbols 1 if cu = 1 and exactly a symbols 1 if
cu = 0.

We call also any (D, b, a)-covering perfect and hence a perfect covering is either a code in a
graph or a two-dimensional binary configuration.

Definitions 7 and 9 are consistent in infinite grids: a code S in an infinite grid G is
an (r, b, a)-covering if and only if the configuration c ∈ {0, 1}Z

2
presenting S is a (D, b, a)-

covering where D is the r-neighborhood of 0 in G. For a set D ⊆ Z2 we define its char-
acteristic polynomial to be fD(X) =

∑

u∈DX
−u. Let us denote by 1(X) the constant

power series
∑

u∈Z2 X
u. If c is a (D, b, a)-covering then from the definition we get that

fD(X)c(X) = (b− a)c(X) + a1(X) which is equivalent to (fD(X)− (b− a)) c(X) = a1(X).
Thus if c is a (D, b, a)-covering then fD(X)− (b− a) ∈ Per(c). Using our formulation we get
a simple proof for Theorem 8:

Reformulation of Theorem 8. Let D be the 1-neighborhood of 0 in the square grid and
assume that b− a 6= 1. Then every (D, b, a)-covering is two-periodic.

Proof. Let c be an arbitrary (D, b, a)-covering. We show that g = fD − (b − a) = x−1 +
y−1 + 1− (b− a) + x+ y ∈ Per(c) has no line polynomial factors. Then c is two-periodic by
Theorem 2. The outer edges of g are in directions (1, 1), (−1,−1), (1,−1) and (−1, 1) and
hence by Lemma 3 any line polynomial factor of g is either in direction (1, 1) or (1,−1). For
v ∈ {(1, 1), (1,−1)} we have Fv(g) = {1 + t, 1 − (b − a)}. See Figure 3 for an illustration.
Since 1− (b− a) is a non-trivial monomial, by Theorem 5 the periodizer g ∈ Per(c) has no
line polynomial factors.

The following result was already proved in a more general form in [12]. We give a short proof
using our algebraic approach.

Theorem 10 ([12]). Let r ≥ 2 and let D be the r-neighborhood of 0 in the square grid. Then
every (D, b, a)-covering is two-periodic. In other words, all (r, b, a)-coverings in the square
grid are two-periodic for all r ≥ 2.

Proof. Let c be an arbitrary (D, b, a)-covering. Again, by Theorem 2, it is enough to show
that g = fD − (b − a) ∈ Per(c) has no line polynomial factors. By Lemma 3 any line
polynomial factor of g has direction (1, 1) or (1,−1). So assume that v ∈ {(1, 1), (1,−1)}.
We have φ1 = 1+ t+ . . .+ tr ∈ Fv(g) and φ2 = 1+ t+ . . .+ tr−1 ∈ Fv(g). See Figure 3 for an
illustration in the case r = 2. Since φ1−φ2 = tr, the polynomials φ1 and φ2 have no common
factors, and hence by Theorem 5 the periodizer g has no line polynomial factors.

If a 6= b then for all r ≥ 1 any (r, b, a)-covering in the king grid is two-periodic:

Theorem 11. Let r ≥ 1 be arbitrary and let D be the r-neighborhood of 0 in the king grid
and assume that a 6= b. Then any (D, b, a)-covering is two-periodic. In other words, all
(r, b, a)-coverings in the king grid are two-periodic whenever a 6= b.
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1
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t

1
−

(b
−

a
)

1
+
t
+
t
2

1
+
t

1 + t + t2 + t3 + t4

1 + t + (1 − (b − a))t2 + t3 + t4

Figure 3: The constellation on the left illustrates the proof of Theorem 8, the constellation
on the center illustrates the proof of Theorem 10 with r = 2 and the constellation on the
right illustrates the proof of Theorem 11 with r = 2.

Proof. Let c be an arbitrary (D, b, a)-covering. By Theorem 2 it is sufficient to show that
g = fD − (b − a) has no line polynomial factors. The outer edges of g are in directions
(1, 0), (−1, 0), (0, 1) and (0,−1). Hence by Lemma 3 any line polynomial factor of g has
direction (1, 0) or (0, 1). Let v ∈ {(1, 0), (0, 1)}. We have φ1 = 1 + t + . . . + tr−1 + (1 −
(b− a))tr + tr+1 + . . .+ t2r ∈ Fv(g) and φ2 = 1 + t + . . .+ t2r ∈ Fv(g). See Figure 3 for an
illustration with r = 2. Since φ2 − φ1 = (b− a)tr is a non-trivial monomial, φ1 and φ2 have
no common factors. Thus g has no line polynomial factors by Theorem 5.

Similarly as in the square grid we can give simple proofs for known results from [12] con-
cerning forced periodicity in the triangular grid:

Theorem 12 ([12]). Let D be the 1-neighborhood of 0 in the triangular grid and assume that
b − a 6= −1. Then every (D, b, a)-covering in the triangular grid is two-periodic. In other
words, all (1, b, a)-coverings in the triangular grid are two-periodic whenever b− a 6= −1.

Theorem 13 ([12]). Let r ≥ 2 and let D be the r-neighborhood of 0 in the triangular grid.
Then every (D, b, a)-covering is two-periodic. In other words, all (r, b, a)-coverings in the
triangular grid are two-periodic for r ≥ 2.

3.2 General convex neighborhoods

A shape D ⊆ Z2 is convex if it is the intersection D = conv(D)∩Z2 where conv(D) ⊆ R2 is
the real convex hull of D.

Let D ⊆ Z2 be a finite convex shape. Any (D, b, a)-covering has a periodizer g =
fD − (b − a). As earlier, we study whether g has any line polynomial factors. For any
v 6= 0 the set Fv(fD) contains only polynomials φn = 1+ . . .+ tn−1 for different n ≥ 1 since
D is convex: if D contains two points then D contains every point between them. Thus
Fv(g) contains only polynomials φn for different n ≥ 1 and, if b − a 6= 0, also a polynomial
φn0 − (b− a)tm0 for some n0 ≥ 1 such that φn0 ∈ Fv(fD) and for some m0 ≥ 0. If b− a = 0
then g = fD and thus Fv(g) = Fv(fD).

Two polynomials φm and φn have a common factor if and only if gcd(m,n) > 1. More gen-
erally, the polynomials φn1, . . . , φnr

have a common factor if and only if d = gcd(n1, . . . , nr) >

9



1 and, in fact, their greatest common factor is the dth cyclotomic polynomial

∏

1≤k≤d
gcd(k,d)=1

(t− ei·
2πk
d ).

Let us introduce the following notation. For any polynomial f , we denote by F ′
v
(f) the

set of normal forms of the non-zero fibers
∑

k∈Z fu+kvX
u+kv for all u 6∈ Zv. In other words,

we exclude the fiber through the origin. Let us also denote fibv(f) for the normal form of
the fiber

∑

k∈Z fkvX
kv through the origin. We have Fv(f) = F ′

v
(f)∪{fibv(f)} if fibv(f) 6= 0

and Fv(f) = F ′
v
(f) if fibv(f) = 0.

Applying Theorems 2 and 5 we have the following theorem that gives sufficient conditions
for every (D, b, a)-covering to be periodic for a finite and convex D. The first part of the
theorem was also mentioned in [4] in a more general form.

Theorem 14. Let D be a finite convex shape, g = fD − (b− a) and let E be the set of the
outer edge directions of g.

• Assume that b − a = 0. For any v ∈ E denote dv = gcd(n1, . . . , nr) where Fv(g) =
{φn1, . . . , φnr

}. If dv = 1 holds for all v ∈ E then every (D, b, a)-covering is two-
periodic. If dv = 1 holds for all but some parallel v ∈ E then every (D, b, a)-covering
is periodic.

• Assume that b − a 6= 0. For any v ∈ E denote dv = gcd(n1, . . . , nr) where F ′
v
(g) =

{φn1, . . . , φnr
}. If the dv’th cyclotomic polynomial and fibv(g) have no common factors

for any v ∈ E then every (D, b, a)-covering is two-periodic. If the condition holds for
all but some parallel v ∈ E then every (D, b, a)-covering is periodic. (Note that the
condition is satisfied, in particular, if dv = 1.)

4 Algorithmic aspects

All coverings are periodic, in particular, if there are no coverings at all! It is useful to be
able to detect such trivial cases.

The set
S(D, b, a) = {c ∈ {0, 1}Z

2

| (fD − (b− a))c = a1(X)}

of all (D, b, a)-coverings is an SFT for any given finite shape D and non-negative integers b
and a. Hence the question whether there exist any (D, b, a)-coverings for given neighborhood
D and covering constants b and a is equivalent to the question whether the SFT S =
S(D, b, a) is non-empty. The question of emptiness of a given SFT is in general undecidable,
but if the SFT is known to be not aperiodic then the problem becomes decidable. In
particular, if g = fD − (b− a) has line polynomial factors in at most one direction then this
question is decidable:
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Theorem 15. Let finite D ⊆ Z2 and non-negative integers b and a be given such that the
polynomial g = fD − (b − a) has line polynomial factors in at most one parallel direction.
Then there exists an algorithm to determine whether there exist any (D, b, a)-coverings.

Proof. Let S = S(D, b, a) be the SFT of all (D, b, a)-coverings. Since g has line polyno-
mial factors in at most one direction, by Theorem 2 every element of S is periodic. Any
two-dimensional SFT that contains periodic configurations contains also two-periodic con-
figurations, so S is either empty or contains a two-periodic configuration. By a standard
argumentation by H. Wang [13] there exist semi-algorithms to determine whether a given
SFT is empty and whether a given SFT contains a two-periodic configuration. Running
these two semi-algorithms in parallel gives us an algorithm to test whether S 6= ∅.

One may also want to design a perfect (D, b, a)-covering for given D, b and a. This can be
effectively done under the assumptions of Theorem 15: As we have seen, if S = S(D, b, a) is
non-empty it contains a two-periodic configuration. For any two-periodic configuration c it is
easy to check if c contains a forbidden pattern. By enumerating two-periodic configurations
one-by-one one is guaranteed to find eventually one that is in S.

If the polynomial g has no line polynomial factors then the following stronger result holds:

Theorem 16. If the polynomial g = fD − (b − a) has no line polynomial factors for given
finite shape D ⊆ Z2 and non-negative integers b and a then the SFT S = S(D, b, a) is finite.
One can then effectively construct all the finitely many elements of S.

The proof of the first part of above theorem relies on the fact that a two-dimensional subshift
is finite if and only if it contains only two-periodic cofigurations [2]. If g has no line polynomial
factors then every configuration it periodizes (including every configuration in S) is two-
periodic by Theorem 2, and hence S is finite. The “moreover” part of the theorem, i.e., the
fact that one can effectively produce all the finitely many elements of S holds generally for
finite SFTs. (The proof is provided in the Appendix for the sake of completeness.)
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1 + t

1 + (1 − (b − a))t + t2

1 + t + t2

1 + t + t2 + t3

Figure 4: The constellation on the left illustrates the proof of Theorem 12 and the constel-
lation on the right illustrates the proof of Theorem 13 with r = 2.

Appendix

Proofs of Theorems 12 and 13

Theorem 12.. Let D be the 1-neighborhood of 0 in the triangular grid and assume that
b − a 6= −1. Then every (D, b, a)-covering in the triangular grid is two-periodic. In other
words, all (1, b, a)-coverings in the triangular grid are two-periodic whenever b− a 6= −1.

Proof. Let c be an arbitrary (D, b, a)-covering. Once again, we show that g = fD − (b−a) =
x−1y−1 + x−1 + y−1 + 1 − (b − a) + x + y + xy has no line polynomial factors, so that
by Theorem 2 the configuration c is two-periodic. The outer edges of g have directions
(1, 1), (−1,−1), (1, 0), (−1, 0), (0, 1) and (0,−1) and hence by Lemma 3 any line polynomial
factor of g has direction (1, 1), (1, 0) or (0, 1). So, let v ∈ {(1, 1), (1, 0), (0, 1)}. We have
Fv(g) = {1+t, 1+(1−(b−a))t+t2}. See Figure 4 for an illustration. Polynomials φ1 = 1+t
and φ2 = 1 + (1− (b− a))t + t2 satisfy φ2

1 − φ2 = (1 + b− a)t so that they do not have any
common factors if b− a 6= −1. Thus g has no line polynomial factors by Theorem 5.

Theorem 13. Let r ≥ 2 and let D be the r-neighborhood of 0 in the triangular grid.
Then every (D, b, a)-covering is two-periodic. In other words, all (r, b, a)-coverings in the
triangular grid are two-periodic for r ≥ 2.

Proof. Let c be an arbitrary (D, b, a)-covering. We show that g = fD − (b − a) ∈ Per(c)
has no line polynomial factors, which by Theorem 2 implies that the configuration c is two-
periodic. The outer edges of g have directions (1, 1), (−1,−1), (1, 0), (−1, 0), (0, 1) and
(0,−1), and hence by Lemma 3 any line polynomial factor of g has direction (1, 1), (1, 0) or
(0, 1). So, let v ∈ {(1, 1), (1, 0), (0, 1)}. There exists n ≥ 1 such that 1+ t+ . . .+ tn ∈ Fv(g)
and 1 + t + . . .+ tn+1 ∈ Fv(g). See Figure 4 for an illustration with r = 2. Since these two
polynomials have no common factors g has no line polynomial factors by Theorem 5.

An alternative proof of Theorem 2

Theorem 2.. Let c be a two-dimensional configuration and f ∈ Per(c). Then the following
conditions hold.
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• If f does not have any line polynomial factors then c is two-periodic.

• If all line polynomial factors of f are in the same direction then c is periodic in this
direction.

Second proof sketch. The existence of a non-trivial periodizer f implies by Theorem 1 that
c has a special annihilator g = φ1 · · ·φm that is a product of (difference) line polynomials
φ1, . . . , φm in pairwise different directions. All irreducible factors of g are line polynomials. If
f does not have any line polynomial factors then the periodizers f and g do not have common
factors. We can assume that both are proper polynomials as they can be multiplied by a
monomial if needed. The x-resultant of f, g ∈ C[x, y] is a polynomial Resx(f, g) = αf + βg

for some α, β ∈ C[x, y] such that the variable x is eliminated, i.e., Resx(f, g) is a polynomial
in variable y only. Moreover, since f and g do not have common factors, Resx(f, g) is not
identically zero. Because f, g ∈ Per(c) also Resx(f, g) ∈ Per(c), implying that c has a non-
trivial annihilator containing only variable y. This means that c is periodic in the vertical
direction. Analogously, the y-resultant Resy(f, g) shows that c is horizontally periodic, and
hence two-periodic.

The proof for the case that f has line polynomial factors only in one direction v goes
analogously by considering φc instead of c, where φ is the greatest common line polynomial
factor of f and g in the direction v. We get that φc is two-periodic, implying that c is
periodic in the direction v.

An algorithm to find all elements of a given finite SFT

Theorem 17. Given a finite F ⊆ A∗ such that XF is finite, one can effectively construct
the elements of XF .

Proof. Given a finite F ⊆ A∗ and a pattern p ∈ AD, assuming that strongly periodic
configurations are dense in XF , one can effectively check whether p ∈ L(XF ). Indeed, we
have a semi-algorithm for the positive instances that guesses a strongly periodic configuration
c and verifies that c ∈ XF and p ∈ L(c). A semi-algorithm for the negative instances exists
for any SFT XF and is a standard compactness argument: guess a finite E ⊆ Zd such that
D ⊆ E and verify that every q ∈ AE such that q|D = p contains a forbidden subpattern.

Consequently, given finite F,G ⊆ A∗, assuming that strongly periodic configurations are
dense in XF and XG, one can effectively determine whether XF = XG. Indeed, XF ⊆ XG

if and only if no p ∈ G is in L(XF ), a condition that we have shown above to be decidable.
Analogously we can test XG ⊆ XF .

Finally, let a finite F ⊆ A∗ be given such that XF is known to be finite. All elements
of XF are strongly periodic so that strongly periodic configurations are certainly dense in
XF . One can effectively enumerate all finite sets P of strongly periodic configurations. For
each P that is translation invariant (and hence a finite SFT) one can construct a finite set
G ⊆ A∗ of forbidden patterns such that XG = P . As shown above, there is an algorithm
to test whether XF = XG = P . Since XF is finite, a set P is eventually found such that
XF = P .
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