
ar
X

iv
:2

30
2.

03
43

4v
1

 [
cs

.F
L

]
 7

 F
eb

 2
02

3

Theory of Computing Systems manuscript No.
(will be inserted by the editor)

Weighted Tree Automata with Constraints

Andreas Maletti · Andreea-Teodora Nász

Received: December 7, 2022 / Accepted: ??

Abstract The HOM problem, which asks whether the image of a regular tree lan-

guage under a given tree homomorphism is again regular, is known to be decidable

[Godoy & Giménez: The HOM problem is decidable. JACM 60(4), 2013]. However,

the problem remains open for regular weighted tree languages. It is demonstrated that

the main notion used in the unweighted setting, the tree automaton with equality and

inequality constraints, can straightforwardly be generalized to the weighted setting

and can represent the image of any regular weighted tree language under any non-

deleting and nonerasing tree homomorphism. Several closure properties as well as

decision problems are also investigated for the weighted tree languages generated by

weighted tree automata with constraints.

Keywords Weighted Tree Automaton · Subtree Equality Constraint · Tree

Homomorphism · HOM Problem · Weighted Tree Grammar · Subtree Inequality

Constraint · Closure Properties

Mathematics Subject Classification (2010) 68Q45 · 68Q42 · 68Q70 · 16Y60

1 Introduction

Numerous extensions of nondeterministic finite-state string automata have been pro-

posed in the past few decades. On the one hand, the qualitative evaluation of inputs

was extended to a quantitative evaluation in the weighted automata of [23]. This de-

velopment led to the fruitful study of recognizable formal power series [22], which

are well-suited for representing factors such as costs, consumption of resources, or

This is an extended and revised version of [Maletti, Nász: Weighted Tree Automata with Constraints. Proc.

26th DLT, LNCS 13257, Springer 2022].

A. Maletti and T. Nász

Universität Leipzig, Faculty of Mathematics and Computer Science

PO box 100 920, 04009 Leipzig, Germany

E-mail: {maletti,nasz}@informatik.uni-leipzig.de

http://arxiv.org/abs/2302.03434v1

2 A. Maletti and T. Nász

time and probabilities related to the processed input. The main algebraic structure

for the weight calculations are semirings [16,17], which offer a nice compromise be-

tween generality and efficiency of computation (due to their distributivity). On the

other hand, finite-state automata have been generalized to other input structures such

as infinite words [21] and trees [4]. Finite-state tree automata were introduced inde-

pendently in [7,24,25], and they and the tree languages they generate, called regular

tree languages, have been intensively studied since their inception [4]. They are suc-

cessfully utilized in various applications in many diverse areas like natural language

processing [18], picture generation [8], and compiler construction [28]. Indeed sev-

eral applications require the combination of the two mentioned generalizations, and

a broad range of weighted tree automaton (WTA) models has been studied (see [13,

Chapter 9] for an overview).

It is well-known that finite-state tree automata cannot ensure that two subtrees

(of potentially arbitrary size) are always equal in an accepted tree [14]. An exten-

sion proposed in [20] aims to remedy this problem and introduces a tree automaton

model that explicitly can require certain subtrees to be equal or different. Such mod-

els are very useful when investigating (tree) transformation models (see [13] for an

overview) that can copy subtrees (thus resulting in equal subtrees in the output), and

they are the main tool used in the seminal paper [15] that proved that the HOM prob-

lem is decidable. The HOM problem was a long-standing open problem in the theory

of tree languages and recently solved in [15]. It asks whether the image of an (ef-

fectively presented) regular tree language under a given tree homomorphism is again

regular. This is not necessarily the case as tree homomorphisms can create copies

of subtrees. Indeed removing this ability from the tree homomorphism, obtaining a

linear tree homomorphism, yields that the mentioned image is always regular [14].

In the solution to the HOM problem provided in [15] the image is first represented

by a tree automaton with constraints, and then it is investigated whether this tree

automaton actually generates a regular tree language.

The HOM problem is also interesting in the weighted setting as it once again

provides an answer whether a given homomorphic image of a regular weighted tree

language can be represented efficiently. While preservation of regularity has been

investigated [3,10,11,12] also in the weighted setting, the decidability of the HOM

problem remains wide open. With the goal of investigating this problem, we introduce

weighted tree grammars with constraints (WTGc for short) in this contribution. We

demonstrate that those WTGc can again represent all (nondeleting and nonerasing)

homomorphic images of the regular weighted tree languages. Thus, in principle, it

only remains to provide a decision procedure for determining whether a given WTGc

generates a regular weighted tree language. We approach this task by providing some

common closure properties following essentially the steps also taken in [15]. For

zero-sum free semirings we can also show that decidability of support emptiness and

finiteness are directly inherited from the unweighted case [15].

The present work is a revised and extended version of [29] presented at the 26th

Int. Conf. Developments in Language Theory (DLT 2022). We provide additional

proof details and examples, as well as a new pumping lemma for the class of (non-

deleting and nonerasing) homomorphic images of regular weighted tree languages.

We utilize this pumping lemma to show that for any zero-sum free semiring, the class

Weighted Tree Automata with Constraints 3

of homomorphic images of regular weighted tree languages is properly contained

in the class of weighted tree languages generated by all positive WTGc, which are

WTGc that utilize only equality constraints.

2 Preliminaries

We denote the set of nonnegative integers by N, and we let [k] = {i ∈ N | 1 ≤ i≤ k}
for every k ∈ N. For all sets T and Z let T Z be the set of all mappings ϕ : Z → T ,

and correspondingly we sometimes write ϕz instead of ϕ(z) for every ϕ ∈ T Z . The

inverse image ϕ−1(S) of ϕ for a subset S ⊆ T is ϕ−1(S) = {z ∈ Z | ϕ(z) ∈ S}, and

we write ϕ−1(t) instead of ϕ−1({t}) for every t ∈ T . The range of ϕ is

ran(ϕ) =
{

ϕ(z) | z ∈ Z
}

.

Finally, the cardinality of Z is denoted by |Z|.
A ranked alphabet (Σ , rk) is a pair consisting of a finite set Σ and a map rk ∈NΣ

that assigns a rank to each symbol of Σ . If there is no risk of confusion, we denote a

ranked alphabet (Σ , rk) by Σ . We write σ (k) to indicate that rk(σ) = k. Moreover, for

every k ∈ N we let Σk = rk−1(k). Let X = {xi | i ∈ N} be a countable set of (formal)

variables. For each k ∈ N we let Xk =
{

xi | i ∈ [k]
}

. Given a ranked alphabet Σ and a

set Z, the set TΣ (Z) of Σ -trees indexed by Z is the smallest set such that Z ⊆ TΣ (Z)
and σ(t1, . . . , tk) ∈ TΣ (Z) for every k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ (Z). We abbre-

viate TΣ (/0) simply to TΣ , and any subset L⊆ TΣ is called a tree language.

Let Σ be a ranked alphabet, Z a set, and t ∈ TΣ (Z). The set pos(t) of positions of t

is inductively defined by pos(z) = {ε} for all z ∈ Z and by

pos
(
σ(t1, . . . , tk)

)
=
{

ε
}
∪
⋃

i∈[k]

{
iw | w ∈ pos(ti)

}

for all k∈N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ (Z). The size |t| of t is defined as |t|= |pos(t)|,
and its height ht(t) is ht(t) = maxw∈pos(t)|w|. For w ∈ pos(t) and t ′ ∈ TΣ (Z), the la-

bel t(w) of t at w, the subtree t|w of t at w, and the substitution t[t ′]w of t ′ into t at w

are defined by z(ε) = z|ε = z and z[t ′]ε = t ′ for all z ∈ Z and for t = σ(t1, . . . , tk)
by t(ε) = σ , t(iw′) = ti(w

′), t|ε = t, t|iw′ = ti|w′ , t[t ′]ε = t ′, and

t[t ′]iw′ = σ
(
t1, . . . , ti−1, ti[t

′]w′ , ti+1, . . . , tk
)

for all k ∈ N, σ ∈ Σk, t1, . . . , tk ∈ TΣ (Z), i ∈ [k], and w′ ∈ pos(ti). For all S ⊆ Σ ∪Z,

we let posS(t) =
{

w ∈ pos(t) | t(w) ∈ S
}

and var(t) =
{

x ∈ X | posx(t) 6= /0
}

. For a

single σ ∈ Σ ∪Z we abbreviate pos{σ}(t) simply by posσ (t).
The yield mapping yield: TΣ (Z)→ Z∗ is recursively defined by

yield
(
z
)
= z and yield

(
σ(t1, . . . , tk)

)
= yield(t1) · · ·yield(tk)

for every z ∈ Z, k ∈ N, σ ∈ Σk, and trees t1, . . . , tk ∈ TΣ (Z). A tree t ∈ TΣ (Z) is

called context if |posz(t)|= 1 for every z ∈ Z. We write CΣ (Z) for the set of such con-

texts and ĈΣ (Xk) =
{

c ∈CΣ (Xk) | yield(c) = x1 · · ·xk

}
. Finally, for every t ∈ TΣ (Z),

4 A. Maletti and T. Nász

finite V ⊆ Z, and θ ∈ TΣ (Z)
V , the substitution θ applied to t is written as tθ and

defined by vθ = θv for every v ∈V , zθ = z for every z ∈ Z \V , and

σ(t1, . . . , tk)θ = σ(t1θ , . . . , tkθ)

for all k∈N, σ ∈Σk, and t1, . . . , tk ∈ TΣ (Z). We also write the substitution θ ∈ TΣ (Z)
V

as [v1 ← θv1
, . . . ,vn ← θvn] if V = {v1, . . . ,vn}. Finally, we abbreviate it further to

just [θv1
, . . . ,θvn] if V = Xn.

A commutative semiring [17,16] is a tuple (S,+, ·,0,1) such that (S,+,0) and

(S, ·,1) are commutative monoids, · distributes over +, and 0 · s = 0 for all s ∈ S.

Examples include (i) the Boolean semiring B =
(
{0,1},∨,∧,0,1

)
, (ii) the semi-

ring N =
(
N,+, ·,0,1), (iii) the tropical semiring T =

(
N∪{∞},min,+,∞,0

)
, and

(iv) the arctic semiring A=
(
N∪{−∞},max,+,−∞,0

)
. Given two semirings

(S,+, ·,0,1) and (T,⊕,⊙,⊥,⊤) ,

a semiring homomorphism is a mapping h ∈ TS such that h(0) = ⊥, h(1) = ⊤, and

h(s1 + s2) = h(s1)⊕h(s2) as well as h(s1 · s2) = h(s1)⊙h(s2) for all s1,s2 ∈ S. When

there is no risk of confusion, we refer to a semiring (S,+, ·,0,1) simply by its carrier

set S. A semiring S is a ring if there exists −1 ∈ S such that −1+ 1 = 0. Let Σ be

a ranked alphabet. Any mapping A ∈ STΣ is called a weighted tree language over S,

and its support is supp(A) = {t ∈ TΣ | At 6= 0}.
Let Σ and ∆ be ranked alphabets and h′ ∈ T∆ (X)Σ a map such that h′σ ∈ T∆ (Xk)

for all k ∈ N and σ ∈ Σk. We extend h′ to h ∈ T
TΣ

∆ by (i) h(α) = h′α ∈ T∆ (X0) = T∆

for all α ∈ Σ0 and (ii) h
(
σ(t1, . . . , tk)

)
= h′σ

[
h(t1), . . . ,h(tk)

]
for all k ∈ N, σ ∈ Σk,

and t1, . . . , tk ∈ TΣ . The mapping h is called the tree homomorphism induced by h′, and

we identify h′ and its induced tree homomorphism h. It is nonerasing if h′σ /∈ X for

all k∈N and σ ∈Σk, and it is nondeleting if var(h′σ)=Xk for all k∈N and σ ∈Σk. Let

h ∈ T
TΣ

∆ be a nonerasing and nondeleting homomorphism. Then h is input finitary;

i.e., the set h−1(u) is finite for every u ∈ T∆ because |t| ≤ |u| for each t ∈ h−1(u).
Additionally, let A ∈ STΣ be a weighted tree language. We define the weighted tree

language h(A) ∈ ST∆ for every u ∈ T∆ by h(A)u = ∑t∈h−1(u) At .

3 Weighted Tree Grammars with Constraints

Let us start with the formal definition of our weighted tree grammars. They are a

weighted variant of the tree automata with equality and inequality constraints orig-

inally introduced in [1,5]. Compared to [1,5] our model is slightly more expressive

as we allow arbitrary constraints, whereas constraints were restricted to subtrees oc-

curring in the productions in [1,5]. This more restricted version will be called clas-

sic in the following. An overview of further developments for these automata can be

found in [26]. We essentially use the version recently utilized to solve the HOM prob-

lem [15, Definition 4.1]. For the rest of this section, let (S,+, ·,0,1) be a commutative

semiring.

Definition 1 (see [15, Definition 4.1]) A weighted tree grammar with constraints

(WTGc) is a tuple G = (Q,Σ ,F,P,wt) such that

Weighted Tree Automata with Constraints 5

– Q is a finite set of nonterminals and F ∈ SQ assigns final weights,

– Σ is a ranked alphabet of input symbols,

– P is a finite set of productions of the form (ℓ,q,E, I), where ℓ∈ TΣ (Q)\Q, q∈Q,

and E, I ⊆N∗×N∗ are finite sets, and

– wt ∈ SP assigns a weight to each production. ⊓⊔

In the following, let G = (Q,Σ ,F,P,wt) be a WTGc. The components of a pro-

duction p = (ℓ,q,E, I) ∈ P are the left-hand side ℓ, the target nonterminal q, the set E

of equality constraints, and the set I of inequality constraints. Correspondingly, the

production p is also written ℓ
E,I
−→ q or even ℓ

E,I
−→wtp q if we want to indicate its

weight. Additionally, we simply list an equality constraint (v,v′) ∈ E as v = v′ and

an inequality constraint (v,v′) ∈ I as v 6= v′. A production ℓ
E,I
−→ q ∈ P is normal-

ized if ℓ = σ(q1, . . . ,qk) for some k ∈ N, σ ∈ Σk, and q1, . . . ,qk ∈ Q. It is positive

if I = /0; i.e., it has no inequality constraints, and it is unconstrained if E = /0 = I; i.e.,

the production has no constraints at all. Instead of ℓ
/0, /0
−→ q we also write just ℓ→ q.

The production is classic if {v,v′} ⊆ posQ(ℓ) for all constraints (v,v′) ∈ E ∪ I. In

other words, in a classic production the constraints can only refer to nonterminal-

labeled subtrees of the left-hand side. The WTGc G is a weighted tree automaton

with constraints (WTAc) if all productions p ∈ P are normalized, and it is a weighted

tree grammar (WTG) [14] if all productions p ∈ P are unconstrained. If G is both a

WTAc as well as a WTG, then it is a weighted tree automaton (WTA) [14]. All these

devices have Boolean final weights if F ∈ {0,1}Q, they are positive if every p ∈ P is

positive, and they are classic if every production p∈ P is classic. Finally, if we utilize

the Boolean semiring B, then we reobtain the unweighted versions and omit the ‘W’

in the abbreviations and the mapping ‘wt’ from the tuple.

The semantics for our WTGc G is a slightly non-standard derivation semantics

when compared to [15, Definitions 4.3 & 4.4]. Let (v,v′) ∈ N∗ ×N∗ and t ∈ TΣ .

If v,v′ ∈ pos(t) and t|v = t|v′ , we say that t satisfies (v,v′), otherwise t dissatis-

fies (v,v′). Let now C ⊆ N∗×N∗ be a finite set of constraints. We write t |= C if t

satisfies all (v,v′) ∈C, and t | 6
∀
=C if t dissatisfies all (v,v′) ∈ C. Universally dissatis-

fying C is generally stronger than simply not satisfying C.

Definition 2 A sentential form (for G) is simply a tree of ξ ∈ TΣ (Q). Given an in-

put tree t ∈ TΣ , sentential forms ξ ,ζ ∈ TΣ (Q), a production p = ℓ
E,I
−→ q ∈ P, and a

position w ∈ pos(ξ), we write ξ ⇒p,w
G,t ζ if ξ |w = ℓ, ζ = ξ [q]w, and the constraints

E and I are fulfilled on t|w; i.e., t|w |= E and t|w | 6
∀
=I. A sequence

d = (p1,w1) · · · (pn,wn) ∈ (P×N
∗)∗

is a derivation of G for t if there exist ξ1, . . . ,ξn ∈ TΣ (Q) such that

t⇒p1,w1
G,t ξ1⇒

p2,w2
G,t · · · ⇒pn,wn

G,t ξn .

It is left-most if additionally w1 ≺ w2 ≺ ·· · ≺ wn, where� is the lexicographic order

on N∗ in which prefixes are larger, so ε is the largest element. ⊓⊔

6 A. Maletti and T. Nász

Note that the sentential forms ξ1, . . . ,ξn are uniquely determined if they exist,

and for any derivation d for t there exists a unique permutation of d that is a left-

most derivation for t. The derivation d is complete if ξn ∈ Q, and in that case it

is also called a derivation to ξn. The set of all complete left-most derivations for t

to q ∈Q is denoted by D
q
G(t). The WTGc G is unambiguous if ∑q∈supp(F)|D

q
G(t)| ≤ 1

for every t ∈ TΣ .

Let p = ℓ
E,I
−→ q ∈ P be a production. Since there exist unique k = |posQ(ℓ)|,

c ∈ ĈΣ (Xk), and q1, . . . ,qk ∈ Q such that ℓ= c[q1, . . . ,qk], we also simply write

c[q1, . . . ,qk]
E,I
−→ q

instead of p. Using this notation, we can present a recursion for the set D
q
G(t) of

complete derivations for t ∈ TΣ to q ∈ Q.

D
q
G(t) =

{
d1 · · ·dk(p,ε)

∣∣∣ k ∈ N, p = c[q1, . . . ,qk]
E,I
−→ q ∈ P, t |= E, t | 6

∀
=I

t1, . . . , tk ∈ TΣ , t = c[t1, . . . , tk], ∀i ∈ [k] : di ∈D
qi

G(ti)
}

Specifically, let d =(p1,w1) · · · (pn,wn) be a complete derivation for some tree t ∈ TΣ .

For a given position w ∈ {w1, . . . ,wn}, we let k ∈ N and 1 ≤ i1 < · · · < ik ≤ n be the

indices such that
{

i1, . . . , ik
}
=
{

i ∈ [n] | wi = ww′i
}

; i.e., the indices of the deriva-

tion steps applied to positions below w with w′i being the suffix of wi following the

prefix w for all i ∈ {i1, . . . , ik}. The derivation for t|w incorporated in d is the deriva-

tion (pi1 ,w
′
i1
), . . . ,(pik ,w

′
ik
). Conversely, for every w ∈ N∗ we abbreviate the deriva-

tion (p1,ww1) · · · (pn,wwn) by simply wd.

Definition 3 The weight of a derivation d = (p1,w1) · · · (pn,wn) is defined to be

wtG(d) =
n

∏
i=1

wt(pi) .

The weighted tree language generated by G, written simply G ∈ STΣ , is defined for

every t ∈ TΣ by

Gt = ∑
q∈Q,d∈D

q
G(t)

Fq ·wtG(d) . ⊓⊔

Two WTGc are equivalent if they generate the same weighted tree language. Fi-

nally, a weighted tree language is

– regular if it is generated by some WTG,

– positive constraint-regular if it is generated by some positive WTGc,

– classic constraint-regular if it is generated by some classic WTGc, and

– constraint-regular if it is generated by some WTGc.

Since the weights of productions are multiplied, we can assume without loss of gen-

erality that wtp 6= 0 for all p ∈ P.

Weighted Tree Automata with Constraints 7

σ

γ

α

γ

γ

α

⇒p1 ,111
G,t ⇒p2 ,11

G,t ⇒p1 ,21
G,t ⇒p2 ,2

G,t
⇒

p3 ,ε
G,t

σ

γ

α

γ

γ

q

σ

γ

α

γ

q

σ

γ

q

γ

q

σ

qγ

q

q′

Fig. 1 Illustration of the derivation mentioned in Example 1.

Example 1 Consider the WTGc G = (Q,Σ ,F,P,wt) over the arctic semiring A with

nonterminals Q = {q,q′}, Σ = {α(0),γ(1),σ (2)}, Fq = −∞, Fq′ = 0, and P and ‘wt’

given by the productions p1 =α→0 q, p2 = γ(q)→1 q, and p3 = σ
(
γ(q),q

) 11=2
−→1 q′.

Clearly, G is positive and classic, but not a WTAc. The tree t = σ
(
γ(γ(α)),γ(α)

)
has

the unique left-most derivation

d = (p1,111)(p2,11)(p1,21)(p2,2)(p3,ε)

to the nonterminal q′, which is illustrated in Figure 1. Overall, we have

supp(G) =
{

σ
(
γ i+1(α),γ i(α)

)
| i ∈ N

}

and Gt = |posγ(t)| for every t ∈ supp(G), where γ i(t) abbreviates γ(· · ·γ(t) · · ·) con-

taining i-times the unary symbol γ atop t. ⊓⊔

Next, we introduce another semantics, called initial algebra semantics, which is

based on the presented recursive presentation of derivations and often more conve-

nient in proofs.

Definition 4 For every nonterminal q ∈ Q we recursively define the map wt
q
G ∈ STΣ

such that for every t ∈ TΣ by

wt
q
G(t) = ∑

p=c[q1,...,qk]
E,I
−→q∈P

t1,...,tk∈TΣ
t=c[t1 ,...,tk]

t|=E,t| 6
∀
=I

wtp ·
k

∏
i=1

wt
qi

G(ti) . (1)

⊓⊔

It is a routine matter to verify that wt
q
G(t) = ∑d∈D

q
G(t)

wtG(d) for every q ∈ Q

and t ∈ TΣ . This utilizes the presented recursive decomposition of complete deriva-

tions as well as distributivity of the semiring S.

As for WTG and WTA [13], also every (positive) WTGc can be turned into an

equivalent (positive) WTAc at the expense of additional nonterminals by decompos-

ing the left-hand sides.

Lemma 1 (cf. [15, Lemma 4.8]) WTGc and WTAc are equally expressive. This also

applies to positive WTGc.

8 A. Maletti and T. Nász

Proof Let G = (Q,Σ ,F,P,wt) be a WTGc with a non-normalized production

p = σ(ℓ1, . . . , ℓk)
E,I
−→ q ∈ P ,

let U ⊇Q and let ϕ ∈UTΣ (Q) be an injective map such that ϕq = q for all q∈Q. We de-

fine the WTGc G′ = (Q′,Σ ,F ′,P′,wt′) such that Q′ = Q∪{ϕℓ1
, . . . ,ϕℓk

}, F ′q = Fq for

all q ∈Q and F ′
q′
= 0 for all q′ ∈ Q′ \Q, and

P′ =
(
P\ {p}

)
∪
{

σ(ϕℓ1
, . . . ,ϕℓk

)
E,I
−→ q

}
∪
{
ℓi→ ϕℓi

| i ∈ [k], ℓi /∈ Q
}

,

and for every p′ ∈ P′

wt′p′ =

wtp′ if p′ ∈ P\ {p}

wtp if p′ = σ(ϕℓ1
, . . . ,ϕℓk

)
E,I
−→ q

1 otherwise.

To prove that G′ is equivalent to G we observe that for every left-most derivation

d = (p1,w1) · · · (pn,wn)

of G, there exists a corresponding derivation d′ of G′, which is obtained by replacing

each derivation step (pa,wa) with pa = p by the sequence

(ℓi→ ϕℓi
, wai)i∈[k],ℓi /∈Q

(
σ(ϕℓ1

, . . . ,ϕℓk
)

E,I
−→ q,wa

)

of derivation steps of G′ (yielding also a unique corresponding left-most derivation).

This replacement preserves the weight of the derivation. Vice versa any left-most

derivation of G′ that utilizes the production σ(ϕℓ1
, . . . ,ϕℓk

)
E,I
−→ q ∈ P′ at w needs to

previously utilize the productions ℓi→ ϕℓi
∈ P′ at wi for all i ∈ [k] with ℓi /∈ Q since

these are the only productions that generate the nonterminal ϕℓi
. Thus, we established

a weight-preserving bijection between the left-most derivations of G and G′, so it

is obvious that G′ = G. Repeated application of the normalization eventually (after

finitely many steps) yields an equivalent WTAc. Finally, we note that the constructed

WTAc is positive if the original WTGc is positive. ⊓⊔

As we will see in the next example, the construction used in the proof of Lemma 1

does not preserve the classic property.

Example 2 Consider the classic and positive WTGc G of Example 1 and its non-

normalized production p = σ
(
γ(q),q

) 11=2
−→1 q′. Applying the construction in the

proof of Lemma 1 we replace p by the productions σ(q′′,q)
11=2
−→1 q, which is not

classic, and γ(q)→0 q′′, where q′′ is some new nonterminal. The WTGc obtained

this way is already a positive WTAc. ⊓⊔

Another routine normalization turns the final weights into Boolean final weights

following the approach of [2, Lemma 6.1.1]. This is achieved by adding special copies

of all nonterminals that terminate the derivation and pre-apply the final weight.

Weighted Tree Automata with Constraints 9

Lemma 2 WTGc and WTGc with Boolean final weights are equally expressive. This

also applies to positive WTGc, classic WTGc, and classic positive WTGc as well as

the same WTAc.

Proof Let G = (Q,Σ ,F,P,wt) be a WTGc. Let f ∈ CQ be bijective with C∩Q = /0.

We construct the WTGc G′ = (Q∪C,Σ ,F ′,P∪P′,wt∪wt′) such that p′ = ℓ
E,I
−→ fq

belongs to P′ and wt′
p′
= wtp ·Fq for every p = ℓ

E,I
−→ q ∈ P. No other productions

belong to P′. Finally, F ′q = 0 for all q ∈ Q and Fc = 1 for all c ∈ C. The proof of

equivalence is straightforward showing for every t ∈ TΣ and q ∈ Q that

wt
q

G′
(t) = wt

q
G(t) and wt

f (q)
G′

(t) = wt
q
G(t) ·Fq .

The construction trivially preserves the properties normalized, positive, and classic.

⊓⊔

Let d ∈ D
q
G(t) be a derivation for some q ∈ Q and t ∈ TΣ . Since we often argue

with the help of such derivations d, it is a nuisance that we might have wtG(d) = 0.

This anomaly can occur even if wtp 6= 0 for all p ∈ P due to the presence of zero-

divisors, which are elements s,s′ ∈ S\ {0} such that s · s′ = 0. However, we can for-

tunately avoid such anomalies altogether utilizing a construction of [19], which has

been lifted to tree automata in [9].

Lemma 3 For every WTGc G there exists a WTGc G′ = (Q′,Σ ,F ′,P′,wt′) that is

equivalent and wt′
G′
(d′) 6= 0 for all q′ ∈Q′, t ′ ∈ TΣ , and d′ ∈D

q′

G′
(t ′). This also applies

to positive WTGc, classic WTGc, and classic positive WTGc as well as the same

WTAc. The construction also preserves Boolean final weights.

Proof Let G = (Q,Σ ,F,P,wt). Obviously, (S, ·,1,0) is a commutative monoid with

zero. Let (s1, . . . ,sn) be an enumeration of the finite set wt(P)\{1}⊆ S. We consider

the monoid homomorphism h : Nn→ S, which is given by

h(m1, . . . ,mn) =
n

∏
i=1

s
mi
i

for every m1, . . . ,mn ∈ N. According to DICKSON’s lemma [6] the set minh−1(0)
is finite, where the partial order is the standard pointwise order on Nn. Hence there

is u∈N such that minh−1(0)⊆{0, . . . ,u}n =U . We define the operation⊕ : U2→U

by (v⊕v′)i = min(vi+v′i,u) for every v,v′ ∈U and i ∈ [n]. Moreover, for every i ∈ [n]
we let 1si

∈U be the vector such that (1si
)i = 1 and (1si

)a = 0 for all a ∈ [n] \ {i}.
Let V = U \ h−1(0). We construct the equivalent WTGc G′ such that Q′ = Q×V ,

F ′〈q,v〉=Fq for all 〈q,v〉 ∈Q′, and P′ and wt′ are given as follows. For every production

p = c[q1, . . . ,qk]
E,I
−→ q ∈ P

and all v1, . . . ,vk ∈V such that v = 1wtp ⊕
⊕k

i=1 vi ∈V the production

c
[
〈q1,v1〉, . . . ,〈qk,vk〉

] E,I
−→ 〈q,v〉

10 A. Maletti and T. Nász

belongs to P′ and its weight is wt′
p′
= wtp. No further productions are in P′. The

construction trivially preserves the properties positive, classic, and normalized. For

correctness, let q′= 〈q,v〉 ∈Q′, t ′ ∈ TΣ , and d′ ∈D
q′

G′
(t ′). We suitably (for the purpose

of zero-divisors) track the weight of the derivation in v and hv 6= 0 by definition.

Consequently, wt′
G′
(d′) 6= 0 as required. We note that possibly wtG′(d

′) 6= hv. ⊓⊔

For zero-sum free semirings [16,17] we obtain that the support supp(G) of an

WTGc can be generated by a TGc. A semiring is zero-sum free if s = 0 = s′ for every

s,s′ ∈ S such that s+ s′ = 0. Clearly, rings are never zero-sum free, but the mentioned

semirings B, N, T, and A are all zero-sum free.

Corollary 1 (of Lemmata 2 and 3) If S is zero-sum free, then supp(G) is (positive,

classic) constraint-regular for every (respectively, positive, classic) WTGc G.

Proof We apply Lemma 2 to obtain an equivalent WTGc with Boolean final weights

and then Lemma 3 to obtain the WTGc G′ = (Q′,Σ ,F ′,P′,wt′) with Boolean final

weights. As mentioned we can assume that wt′
p′
6= 0 for all p′ ∈ P′. Let q′ ∈ supp(F ′)

and t ′ ∈ TΣ with D
q′

G′
(t ′) 6= /0. Since wt′

G′
(d′) 6= 0 for every derivation d′ ∈ D

q′

G′
(t ′)

and s+ s′ 6= 0 for all s,s′ ∈ S\{0} due to zero-sum freeness, we obtain t ′ ∈ supp(G′).
Thus, the existence of a complete derivation for t ′ to an accepting nonterminal (i.e.,

one with final weight 1) characterizes whether we have t ′ ∈ supp(G′). Consequently,

the TGc
(
Q′,Σ ,supp(F ′),P′

)
generates the tree language supp(G′), which is thus

constraint-regular. The properties positive and classic are preserved in all the con-

structions. ⊓⊔

4 Closure Properties

Next we investigate several closure properties of the constraint-regular weighted tree

languages. We start with the (point-wise) sum, which is given by (A+A′)t = At +A′t
for every t ∈ TΣ and A,A′ ∈ S

TΣ . Given WTGc G and G′ generating A and A′ we can

trivially use a disjoint union construction to obtain a WTGc generating A+A′. We

omit the details.

Proposition 1 The (positive, classical) constraint-regular weighted tree languages

(over a fixed ranked alphabet) are closed under sums. ⊓⊔

The corresponding (point-wise) product is the HADAMARD product, which is

given by (A ·A′)t = At ·A
′
t for every t ∈ TΣ and A,A′ ∈ STΣ . With the help of a stan-

dard product construction we show that the (positive) constraint-regular weighted

tree languages are also closed under HADAMARD product. As preparation we intro-

duce a special normal form. A WTAc G = (Q,Σ ,F,P,wt) is constraint-determined if

E = E ′ and I = I′ for all productions

σ(q1, . . . ,qk)
E,I
−→ q ∈ P and σ(q1, . . . ,qk)

E ′,I′
−→ q ∈ P .

In other words, two productions cannot differ only in the sets of constraints. It is

straightforward to turn any (positive) WTAc into an equivalent constraint-determined

Weighted Tree Automata with Constraints 11

(positive) WTAc by introducing additional nonterminals (e.g. annotate the constraints

to the nonterminal on the right-hand side).

Theorem 1 The (positive) constraint-regular weighted tree languages (over a fixed

ranked alphabet) are closed under HADAMARD products.

Proof Let A,A′ ∈ STΣ be constraint-regular. Without loss of generality (see Lemma 1)

we can assume constraint-determined WTAc

G = (Q,Σ ,F,P,wt) and G′ = (Q′,Σ ,F ′,P′,wt′)

that generate A and A′, respectively. We construct the direct product WTAc

G×G′ = (Q×Q′,Σ ,F ′′,P′′,wt′′)

such that F ′′〈q,q′〉 = Fq · F
′
q′

for every q ∈ Q and q′ ∈ Q′ and for every production

p = σ(q1, . . . ,qk)
E,I
−→ q ∈ P and production p′ = σ(q′1, . . . ,q

′
k)

E ′,I′
−→ q′ ∈ P′ the pro-

duction

p′′ = σ
(
〈q1,q

′
1〉, . . . ,〈qk,q

′
k〉
) E∪E ′,I∪I′

−→ 〈q,q′〉

belongs to P′′ and its weight is wt′′
p′′

= wtp ·wt′
p′

. No other productions belong to P′′.

It is straightforward to see that the property positive is preserved. The correctness

proof that G×G′ = A ·A′ is a straightforward induction proving

wt
〈q,q′〉
G×G′

(t) = wt
q
G(t) ·wt

q′

G′
(t)

for all t ∈ TΣ using the initial algebra semantics. The WTAc G and G′ are required

to be constraint-determined, so that we can uniquely identify the basic productions

p ∈ P and p′ ∈ P′ that construct a newly formed production p′′ ∈ P′′.

We can obtain a constraint-determined WTAc at the expense of a polynomial

increase in the number of productions (assuming that the ranked alphabet of input

symbols is fixed). Let r = maxσ∈Σ rk(σ) be the maximal rank of an input symbol

and c = |P| be the number of productions of the given WTAc G = (Q,Σ ,F,P,wt).
First, we modify the target nonterminal q of each production ρ = (ℓ,q,E, I) ∈ P to

additionally include the identifier ρ , which yields the production (ℓ,〈q,ρ〉,E, I). This

effectively yields the new nonterminal set Q× P, which has size |Q| · c. Then we

create copies of the production (σ(q1, . . . ,qk),〈q,ρ〉,E, I) by the set of productions

{(
σ(〈q1,ρ1〉, . . . ,〈qk,ρk〉),〈q,ρ〉,E, I

) ∣∣∣ ρ1, . . . ,ρk ∈ P
}

.

Clearly, this turns each production into at most cr productions since k ≤ r, so the

overall number of productions after all replacements is at most cr+1. The product

construction itself is then quadratic. ⊓⊔

We note that the previous construction also works for classic WTAc.

12 A. Maletti and T. Nász

Example 3 Let G =
(
{q},Σ ,F,P,wt

)
and G′ =

(
{z},Σ ,F ′,P′,wt′

)
be WTAc over A

and Σ = {α(0),γ(1),σ (2)}, Fq = F ′z = 0, and the productions

α →0 q γ(q)→2 q σ(q,q)
1=2
−→0 q (P)

α →0 z γ(z)
11 6=12
−→ 1 z σ(z,z)→1 z . (P′)

We observe that

supp(G) =
{

t ∈ TΣ | ∀w ∈ posσ (t) : t|w1 = t|w2

}

supp(G′) =
{

t ∈ TΣ | ∀w ∈ posγ (t) : if t(w1) = σ then t|w11 6= t|w12

}

and Gt = 2|posγ(t)| as well as G′
t′
= |posγ(t

′)|+ |posσ (t
′)| for every tree t ∈ supp(G)

and tree t ′ ∈ supp(G′). We obtain the WTAc G×G′ =
(
{〈q,z〉},Σ ,F ′′,P′′,wt′′

)
with

F ′′〈q,z〉 = 0 and the following productions.

α→0 〈q,z〉 γ
(
〈q,z〉

) 11 6=12
−→ 3 〈q,z〉 σ

(
〈q,z〉,〈q,z〉

) 1=2
−→1 〈q,z〉

Hence we obtain the equality (G×G′)t = 3|posγ(t)|+ |posσ (t)| = Gt ·G
′
t for every

tree t ∈ supp(G)∩ supp(G′). ⊓⊔

Next, we use an extended version of the classical power set construction to obtain

an unambiguous WTAc that keeps track of the reachable nonterminals, but preserves

only the homomorphic image of its weight. The unweighted part of the construction

mimics a power-set construction and the handling of constraints roughly follows [15,

Definition 3.1].

Theorem 2 Let h ∈ T
S be a semiring homomorphism into a finite semiring T. For

every (classic) WTAc G=(Q,Σ ,F,P,wt) over S there exists an unambiguous (classic)

WTAc G′ = (TQ,Σ ,F ′,P′,wt′) such that for every tree t ∈ TΣ and ϕ ∈ TQ

wt
ϕ
G′
(t) =

{
1 if ϕq = h

(
wt

q
G(t)

)
for all q ∈ Q

0 otherwise.

Moreover, G′t = h(Gt) for every t ∈ TΣ .

Proof For every σ ∈ Σ , let

Cσ =
{

E | σ(q1, . . . ,qk)
E,I
−→ q ∈ P

}
∪
{

I | σ(q1, . . . ,qk)
E,I
−→ q ∈ P

}

be the constraints that occur in productions of G whose left-hand side contains σ .

We let F ′ϕ = ∑q∈Q h(Fq) ·ϕq for every ϕ ∈ TQ. For all k ∈ N, σ ∈ Σk, nontermi-

nals ϕ1, . . . ,ϕk ∈ T
Q, and constraints E ⊆ Cσ we let p′ = σ(ϕ1, . . .ϕk)

E ,I
−→ ϕ ∈ P′,

where I = Cσ \E and for every q ∈ Q

ϕq = ∑
p=σ(q1,...,qk)

E,I
−→q∈P

E⊆E , I⊆I

h(wtp) ·ϕ
1
q1
· . . . ·ϕk

qk
. (2)

Weighted Tree Automata with Constraints 13

No additional productions belong to P′. Finally, we set wt′
p′
= 1 for all p′ ∈ P′. In

general, the WTAc G′ is certainly not deterministic due to the choice of constraints,

but G′ is unambiguous since the resulting 2|Cσ | rules for each left-hand side have mu-

tually exclusive constraint sets. In fact, for each t ∈ TΣ there is exactly one left-most

complete derivation of G′ for t, and it derives to ϕ ∈ TQ such that ϕq = h
(
wt

q
G(t)

)
for

every q ∈ Q. The weight of that derivation is 1. These statements are proven induc-

tively. The final statement G′t = h(Gt) for every t ∈ TΣ is an easy consequence of the

previous statements. If G is classic, then also the constructed WTAc G′ is classic. ⊓⊔

Example 4 Recall the WTAc G and G′ from Example 3. Consider the WTAc gen-

erating their disjoint union, as well as the semiring homomorphism h ∈ BA given

by ha = 1 for all a ∈ A \ {−∞} and h−∞ = 0. The sets Cγ and Cσ of utilized con-

straints are Cγ =
{
(11,12)

}
and Cσ =

{
(1,2)

}
, and we write ϕ ∈ B

Q simply as

subsets of Q. We obtain the unambiguous WTAc G′′ with the following sensible

(i.e., having satisfiable constraints) productions for all Q′,Q′′ ⊆ {q,z}, which all have

weight 1.

α −→ {q,z}

γ(Q′)
11=12
−→ Q′∩{q} γ(Q′)

11 6=12
−→ Q′

σ(Q′,Q′′)
1=2
−→ Q′∩Q′′ σ(Q′,Q′′)

1 6=2
−→ Q′∩Q′′∩{z}

Each t ∈ TΣ has exactly one left-most complete derivation in G′′; it derives to Q′,

where (i) q∈Q′ iff t ∈ supp(G) and (ii) z∈Q′ iff t ∈ supp(G′). It is F ′′/0 = 0 and F ′′Q = 1

for all non-empty Q⊆ {q,z}. ⊓⊔

Corollary 2 (of Theorem 2) Let S be finite. For every (classic) WTAc over S there

exists an equivalent unambiguous (classic) WTAc. ⊓⊔

Corollary 3 (of Theorem 2) Let S be zero-sum free. For every (classic) WTAc G

over S there exists an unambiguous (classic) TAc generating supp(G).

Proof Utilizing Lemma 2 we can first construct an equivalent WTAc with Boolean fi-

nal weights. If S is zero-sum free, then there exists a semiring homomorphism h∈ BS

by [27]. By Lemma 3 we can assume that each derivation of G has non-zero weight

and sums of non-zero elements remain non-zero by zero-sum freeness. Thus we

can simply replace the factor h(wtp) by 1 in (2). The such obtained TAc gener-

ates supp(G). ⊓⊔

Corollary 4 (of Theorem 2) Let S be zero-sum free. For every (classic) WTAc G

over S there exists an unambiguous (classic) TAc generating TΣ \ supp(G).

Proof Let G′= (Z,Σ ,Z0,P
′) be the unambiguous TAc given by Corollary 3. Since G′

is also complete in the sense that every input tree has a derivation, the desired unam-

biguous TAc G′′ is simply G′′ = (Z,Σ ,Z \Z0,P
′). ⊓⊔

Let A,A′ ∈ STΣ . It is often useful (see [15, Definition 4.11]) to restrict A to the

support of A′ but without changing the weights of those trees inside the support. For-

mally, we define A|supp(A′) ∈ STΣ for every t ∈ TΣ by A|supp(A′)(t) = At if t ∈ supp(A′)

14 A. Maletti and T. Nász

and A|supp(A′)(t) = 0 otherwise. Utilizing unambiguous WTAc and the HADAMARD

product, we can show that A|supp(A′) is constraint-regular if A and A′ are constraint-

regular and the semiring S is zero-sum free.

Theorem 3 Let S be zero-sum free. For all (classic) WTAc G and G′ there exists a

(classic) WTAc H such that H = G|supp(G′).

Proof By Corollary 1 the support supp(G′) is constraint-regular. Hence we can ob-

tain an unambiguous WTAc G′′ for supp(G′) using Theorem 2. Without loss of gen-

erality we assume that both G and G′′ are constraint-determined; we note that the

normalization preserves unambiguous WTAc. Finally we construct G×G′′, which

by Theorem 1 generates exactly G|supp(G′) as required. ⊓⊔

In the following, we establish a special property for classic WTGc. To this end, we

first need another notion. Let G = (Q,Σ ,F,P,wt) be a WTGc. A nonterminal⊥ ∈ Q

is a sink nonterminal (in G) if F⊥ = 0 and

{
σ(⊥, . . . ,⊥)→1 ⊥ | σ ∈ Σ

}
=
{
ℓ

E,I
−→s q ∈ P | q =⊥

}
.

In other words, for every sink nonterminal ⊥ the production σ(⊥, . . . ,⊥)→⊥ be-

longs to P with weight 1 for every symbol σ ∈ Σ . Additionally, no other produc-

tions have the sink nonterminal ⊥ as target nonterminal. Given a set E ⊆ N∗×N∗

of equality constraints, we let ≡E = (E ∪E−1)∗ be the smallest equivalence relation

containing E and [w]≡E
be the equivalence class of w ∈ N∗. Additionally, for every

production c[q1, . . . ,qk]
E,I
−→ q ∈ P we let

c(E) =
{
(i, j) ∈ [k]× [k] | (v,v′) ∈ E, c(v) = xi, c(v′) = x j

}

be a representation of the equality constraints on the indices [k].

Definition 5 A classic WTGc G = (Q,Σ ,F,P,wt) is eq-restricted if there exists a

sink nonterminal ⊥ ∈ Q such that for every production p = c[q1, . . . ,qk]
E,I
−→ q ∈ P

and index i ∈ [k] there exists a nonterminal q′ ∈ Q such that

1. {q j | j ∈ [i]≡c(E)
} ⊆ {q′,⊥} and

2. there exists exactly one index j ∈ [i]≡c(E)
, also called governing index for i in p,

such that q j = q′.

The mapping gp : [k]→ [k] assigns to each index i ∈ [k] its governing index for i in p.

⊓⊔

In other words, in an eq-restricted classic WTGc one subtree is generated nor-

mally by the WTGc and all the subtrees that are required to be equal by means of the

equality constraints are generated by the sink nonterminal⊥, which can generate any

tree with weight 1. In this manner, the restrictions on subtree and weight generation

induced by the WTGc are exhibited completely on a single subtree and the “copies”

are only provided by the equality constraint, but not further restricted by the WTGc.

We will continue to use⊥ for the suitable sink nonterminal of an eq-restricted classic

WTGc.

Weighted Tree Automata with Constraints 15

Finally, we show that the weighted tree languages generated by eq-restricted

positive classic WTGc are closed under relabelings. A relabeling is a tree homo-

morphism π ∈ T∆ (X)Σ such that for every k ∈ N and σ ∈ Σk there exists δ ∈ ∆k

with πσ = δ (x1, . . . ,xk). In other words, a relabeling deterministically replaces sym-

bols respecting their rank. We often specify a relabeling just as a mapping π ∈ ∆ Σ

such that πσ ∈ ∆k for every k ∈ N and σ ∈ Σk.

Theorem 4 The weighted tree languages generated by eq-restricted positive classic

WTGc are closed under relabelings.

Proof Let WTGc G = (Q,Σ ,F,P,wt) be an eq-restricted positive classic WTGc with

sink nonterminal ⊥. Without loss of generality, suppose that Σ ∩X = /0. Moreover,

let π ∈ ∆ Σ be a relabeling. We first extend π to a mapping π ′ ∈ (∆ ∪X)Σ∪X , in which

we treat the elements of X as nullary symbols, for every σ ∈ Σ and x ∈ X by π ′σ = πσ

and π ′x = x. Let G′ = (Q,∆ ,F,P′,wt′) be the eq-restricted positive classic WTGc such

that

P′ =
{

π ′(c)[q1, . . . ,qk]
E, /0
−→ q | c[q1, . . . ,qk]

E, /0
−→ q ∈ P, q 6=⊥

}

∪
{

δ (⊥, . . . ,⊥)→⊥ | δ ∈ ∆
}

and for every production p′ = c′[q1, . . . ,qk]
E, /0
−→ q ∈ P′ with q 6=⊥ we let

wt′p′ = ∑
p=c[q1,...,qk]

E, /0
−→q∈P

c∈(π ′)−1(c′)

wtp . (3)

Finally, wt′
(
δ (⊥, . . . ,⊥)→⊥

)
= 1 for all δ ∈ ∆ . For correctness we prove the fol-

lowing equality for every u ∈ T∆ and q ∈Q by induction on u

wt
q

G′
(u) =

{
∑t∈π−1(u) wt

q
G(t) if q 6=⊥

1 otherwise.
(4)

The second case is immediate since there is a single derivation, namely the one uti-

lizing only nonterminal ⊥, for u to ⊥ and its weight is 1. In the remaining case we

have q 6=⊥. Then

wt
q

G′
(u)

(1)
= ∑

p′=c′[q1,...,qk]
E, /0
−→q∈P′

u1,...,uk∈T∆
u=c′[u1,...,uk]

u|=E

wt′p′ ·
k

∏
i=1

wt
qi

G′
(ui)

IH
= ∑

p′=c′[q1,...,qk]
E, /0
−→q∈P′

u1,...,uk∈T∆
u=c′[u1,...,uk]

u|=E

wt′p′ · ∏
i∈[k]
qi 6=⊥

(
∑

ti∈π−1(ui)

wt
qi

G(ti)
)
· ∏

i∈[k]
qi=⊥

1 .

16 A. Maletti and T. Nász

Recall that gp : [k]→ [k] assigns to each index its governing index. For better readabil-

ity, we write just g′. Note that due to the special form of substitution we automatically

fulfill u |= E and can thus drop it.

(3)
= ∑

p′=c′[q1,...,qk]
E, /0
−→q∈P′

∀i∈ran(g′) : ui∈T∆ ,ti∈π−1(ui)
u=c′[ug′(1),...,ug′(k)]

(
∑

p=c[q1,...,qk]
E, /0
−→q∈P

c∈(π ′)−1(c′)

wtp

)
· ∏

i∈ran(g′)

wt
qi

G(ti)

We note that gp′ = gp for all used productions p, so we just write g. Additionally, for

every qi with i ∈ [k]\ ran(g) we have qi =⊥ and thus wt
qi

G(tg(i)) = 1 because there is

exactly one such derivation with weight 1.

= ∑
p=c[q1,...,qk]

E, /0
−→q∈P

∀i∈ran(g) : ti∈TΣ
u=π(c[tg(1),...,tg(k)])

wtp ·
k

∏
i=1

wt
qi

G(tg(i))

= ∑
t∈π−1(u)

(

∑
p=c[q1,...,qk]

E, /0
−→q∈P

t1,...,tk∈TΣ
t=c[t1 ,...,tk]

t|=E

wtp ·
k

∏
i=1

wt
qi

G(ti)

)
(1)
= ∑

t∈π−1(u)

wt
q
G(t)

We complete the proof for every u ∈ T∆ as follows.

G′u = ∑
q∈Q

Fq ·wt
q

G′
(u)

(4)
= ∑

q∈Q\{⊥}

Fq ·
(

∑
t∈π−1(u)

wt
q
G(t)

)

= ∑
t∈π−1(u)

(
∑
q∈Q

Fq ·wt
q
G(t)

)
= ∑

t∈π−1(u)

Gt ⊓⊔

5 Towards the HOM Problem

The strategy of [15] for deciding the HOM problem first represents the homomorphic

image L′ = h(L) of the regular tree language L with the help of an WTGc G′. For

deciding whether L′ is regular, a tree automaton G′′ simulating the behavior of G′ up

to a certain bounded height is constructed. If the automata G′ and G′′ are equivalent,

i.e., G′′ = G′, then L′ is regular. In the remaining case, pumping arguments are used

to prove that it is impossible to find any TA for L′. Overall, this reduces the HOM

problem to an equivalence problem.

Towards solving the HOM problem in the weighted case we now proceed simi-

larly. First, we show that WTGc can encode each (well-defined) homomorphic image

of a regular weighted tree language. This ability motivated their definition in the un-

weighted case [15, Proposition 4.6], and it also applies in the weighted case with

minor restrictions that just enforce that all obtained sums are finite.

Weighted Tree Automata with Constraints 17

Theorem 5 Let G= (Q,Σ ,F,P,wt) be a WTA and h∈ T
TΣ

∆ be a nondeleting and non-

erasing tree homomorphism. There exists an eq-restricted positive classic WTGc G′

with G′ = h(G).

Proof We construct a WTGc G′ for h(G) in two stages. First, let

G′′ =
(
Q∪{⊥},∆ ∪∆ ×P,F ′′,P′′,wt′′

)

such that for every p = σ(q1, . . . ,qk)→ q ∈ P and hσ = u = δ (u1, . . . ,un),

p′′ =
(
〈δ , p〉(u1, . . . ,un)Jq1, . . . ,qkK

E, /0
−→ q

)
∈ P′′

with E =
⋃

i∈[k] posxi
(u)2, in which the substitution 〈δ , p〉(u1, . . . ,un)Jq1, . . . ,qkK re-

places for every i ∈ [k] only the left-most occurrence of xi in 〈δ , p〉(u1, . . . ,un) by qi

and all other occurrences by ⊥. Moreover wt′′
p′′

= wtp. Additionally, we let

p′′δ = δ (⊥, . . . ,⊥)→⊥∈ P′′

with weight wt′′
p′′

δ
= 1 for every k ∈N and δ ∈ ∆k ∪∆k×P. No other productions are

in P′′. Finally, we let F ′′q = Fq for all q∈Q and F ′′⊥ = 0. Obviously, G′′ is eq-restricted,

positive, and classic.

In order to better describe the behaviour of G′′, let us introduce the follow-

ing notation. Given a tree t = σ(t1, . . . , tk) ∈ TΣ and a complete left-most deriva-

tion d = (p1,w1) · · · (pm,wm) of G for t, let d1, . . . ,dk be the derivations for t1, . . . , tk,

respectively that are incorporated in d and hσ = δ (u1, . . . ,un). Then we define the

tree h(t,d) ∈ T∆∪∆×P inductively by

h(t,d) = 〈δ , pm〉(u1, . . . ,un)
[
h(t1,d1), . . . ,h(tk,dk)

]
.

Using this notation, let us now prove that for each q ∈ Q we have

{
s ∈ T∆∪∆×P | D

q

G′′
(s) 6= /0

}
=
{

h(t,d) | t ∈ TΣ ,d ∈ D
q
G(t)

}
(5)

and, in turn, every such D
q

G′′
(s) is a singleton set with wtG′′(d

′′) = wtG(d) for the

unique d′′ ∈ D
q

G′′

(
h(t,d)

)
.

We start with the inclusion from right to left. To this end, let t ∈ TΣ be a tree

and d = (p1,w1) · · · (pm,wm) be a complete left-most derivation of G for t to some

nonterminal q ∈ Q. Let t = σ(t1, . . . , tk) be the input tree with hσ = δ (u1, . . . ,un),
let pm = σ(q1, . . . ,qk)→ q be the production utilized last in d, and let di be the

complete left-most derivation for ti to qi incorporated in d for every i ∈ [k]. For ev-

ery i ∈ [k], we utilize the induction hypothesis to conclude that D
qi

G′′

(
h(ti,di)

)
is a

singleton set, so let d′′i ∈ D
qi

G′′

(
h(ti,di)

)
be the unique element, for which we addi-

tionally have wtG′′(d
′′
i) = wtG(di). Moreover, for every i ∈ [k] there is a derivation d⊥i

for h(ti,di) with weight 1 that exclusively utilizes the nonterminal⊥. We define

s = 〈δ , pm〉(u1, . . . ,un)
[
h(t1,d1), . . . ,h(tk,dk)

]
.

For every i ∈ [k], let vi be the left-most occurrence of xi in hσ . We consider the

derivations v1h(t1,d1), . . . ,vkh(tk,dk), and for every other occurrence v of xi in hσ

18 A. Maletti and T. Nász

we consider the derivation vd⊥i . Let d′′ be the derivation assembled from the con-

sidered subderivations followed by (p′′m,ε), where the production p′′m at the root is

p′′m = 〈δ , pm〉(u1, . . . ,un)Jq1, . . . ,qkK
E, /0
−→ q with the constraints E =

⋃k
i=1 posxi

(hσ)
2.

Clearly, the production p′′m is the only applicable one since the only other production

whose left-hand side is labeled by 〈δ , pm〉 at the root reaches ⊥ 6= q. Reordering the

derivation d′′ to be left-most, we obtain the desired complete left-most derivation d′′

for s, for which we also have wtG′′(d
′′) = wtG(d). This proves that d′′ is the required

single element of D
q

G′′
(s) = D

q

G′′

(
h(t,d)

)
6= /0.

On the other hand, consider s ∈ T∆∪∆×P such that there exists a complete left-

most derivation d′′ = (p′′1 ,w
′′
1) · · · (p′′m,w

′′
m) for s to q; i.e. d′′ ∈ D

q

G′′
(s) 6= /0. The final

rule p′′m that is applied must be of the form

p′′m = 〈δ , p〉(u1, . . . ,un)Jq1, . . . ,qkK
E, /0
−→ q

with δ (u1, . . . ,un)Jq1, . . . ,qkK = hσ Jq1, . . . ,qkK for some symbol σ ∈ Σk and produc-

tion p = σ(q1, . . . ,qk)→ q. For every i ∈ [k], we denote by wi the unique position

in hσJq1, . . . ,qkK labeled by qi. By the induction hypothesis applied to s|wi
, for which

the complete left-most derivation d′′i for s|wi
to qi incorporated in d′′ exists, there

exists a tree ti ∈ TΣ and a complete left-most derivation di of G for ti to qi such

that s|wi
= h(ti,di) and wtG(di) = wtG′′(d

′′
i). For the tree t = σ(t1, . . . , tk) we obtain

that s = h(t,d) for the complete left-most derivation d ∈ D
q
G(t) given by

d = (1d1) · · · (kdk)(p,ε) ,

for which we also have wtG(d) = wtG′′(d
′′), which completes this proof.

So far, Q′′ and P′′ are larger than Q and P only by a constant (assuming a fixed

alphabet Σ) caused by the additional sink nonterminal⊥ and its productions, but the

alphabet size increases by the summand |∆ | · |P|.
We now delete the annotation with the help of the relabeling π ∈ ∆ ∆∪∆×P given

for every δ ∈ ∆ and p ∈ P by πδ = π〈δ ,p〉 = δ following the construction in Theo-

rem 4.

π(G′′)u = ∑
s∈π−1(u)

G′′s = ∑
s∈π−1(u)

(
∑
q∈Q

F ′′q ·wt
q

G′′
(s)
)
= ∑

q∈Q,s∈π−1(u)
d′′∈D

q

G′′
(s)

F ′′q ·wtG′′(d
′′)

(5)
= ∑

q∈Q,s∈π−1(u)
t∈TΣ ,d∈D

q
G
(t)

s=h(t,d)

Fq ·wtG(d) = ∑
q∈Q

t∈h−1(u)

Fq ·wt
q
G(t) = ∑

t∈h−1(u)

Gt = h(G)u

for every u ∈ T∆ . The construction of Theorem 4 is applicable because ⊥ is clearly a

sink nonterminal in G′′ and G′′ is an eq-restricted positive classic WTGc. ⊓⊔

Let us illustrate the construction on a simple example.

Example 5 Consider the WTA G =
(
{q,q′},Σ ,F,P,wt

)
over the semiring N of non-

negative integers with Σ = {α(0),φ (1),γ(1),ε(1)}, Fq = 0, Fq′ = 1, and the set of pro-

ductions and their weights given by

p1 = α→1 q p2 = γ(q)→2 q p3 = ε(q)→1 q and p4 = φ(q)→1 q′ .

Weighted Tree Automata with Constraints 19

Then supp(G) =
{

φ(t) | t ∈ TΣ\{φ}

}
and Gt = 2|posγ (t)| for every t ∈ supp(G). Con-

sider the ranked alphabet ∆ = {α(0),γ(1),σ (2)} and the homomorphism h induced by

hα = α , hγ = hε = γ(x1), and hφ = σ
(
γ(x1),x1

)
. Consequently,

supp
(
h(G)

)
=
{

σ
(
γn+1(α),γn(α)

)
| n ∈N

}

and h(G)t = ∑n
k=0

(
n
k

)
2k = 3n for every t = σ

(
γn+1(α),γn(α)

)
∈ supp

(
h(G)

)
. A

WTGc for h(G) is constructed as follows. First, we let

G′′ =
(
{q,q′,⊥},∆ ∪∆ ×P,F ′′,P′′,wt′′

)

with F ′′
q′
= 1, F ′′q = F ′′⊥ = 0 and the productions and their weights are given by

〈α, p1〉 →1 q 〈γ, p2〉(q)→2 q 〈γ, p3〉(q)→1 q 〈σ , p4〉
(
γ(q),⊥

) 11=2
−→1 q′

and δ (⊥, . . . ,⊥)→1 ⊥ for all δ ∈ ∆ ∪ ∆ × P. Next we remove the second com-

ponent of the symbols of ∆ × P and add the weights of all productions that yield

the same production once the second components are removed. In our example,

this applies to the production γ(q)→ q, which is the result of the two productions

〈γ, p2〉(q)→2 q and 〈γ, p3〉(q)→1 q, so its weight is 2+1= 3. Overall, we obtain the

WTGc G′ =
(
{q,q′,⊥},∆ ,F ′′,P′,wt′

)
with the following productions for all δ ∈ ∆ :

α →1 q γ(q)→3 q σ
(
γ(q),⊥

) 11=2
−→1 q′ δ (⊥, . . . ,⊥)→1 ⊥ . ⊓⊔

Trees generated by a WTGc must satisfy certain equality constraints on their

subtrees. Therefore, if we naively swap subtrees of generated trees, then we might

violate such an equality constraint and obtain a tree that is no longer generated by the

WTGc. Luckily, the particular kind of WTGc constructed in Theorem 5, namely eq-

restricted positive classic WTGc, allows us to refine the subtree substitution such that

it takes into consideration the equality constraints in force. The following definition

is the natural adaptation of [15, Definition 5.1] for (Boolean) tree automata with

constraints.

Definition 6 Let G = (Q,Σ ,F,P,wt) be an eq-restricted, positive, and classic WTGc

with sink nonterminal ⊥. Moreover, let q,q′ ∈ Q, t, t ′ ∈ TΣ , and d ∈ D
q
G(t) as well

as d′ ∈D
q′

G(t
′) such that q 6=⊥ 6= q′ and d = d(p,ε) with the final utilized production

p = c[q1, . . . ,qk]
E, /0
−→ q ∈ P. For every i ∈ [k] let wi = posxi

(c) and di be the unique

derivation for ti = t|posxi
(c) incorporated in d. Finally, for every tree u ∈ TΣ let d⊥u be

the unique derivation for u to⊥. For every w∈ pos(t), for which the derivation for t|w
incorporated in d yields q′ we recursively define the derivation substitution dJd′Kw

of d′ into d at w and the resulting tree tJt ′Kd
w as follows. If w = ε , then dJd′Kε = d′

and tJt ′Kd
ε = t ′. Otherwise w = w jw for some j ∈ [k] and we have

dJd′Kw = d′1 · · ·d
′
k(p,ε) and tJt ′Kd

w = c[t ′1, . . . , t
′
k] ,

where for each i ∈ [k] we have

– if i = j (i.e., wi is a prefix of w), then d′i = wi(diJd′Kw) and t ′i = tiJt
′K

d′i
w ,

20 A. Maletti and T. Nász

t =

f

g

a a

f

a g

a a

t ′ =

g

a a

Fig. 2 Input trees t and t ′ from Example 6.

– if qi = ⊥ and wi ∈ [w j]≡E
(i.e., it is a position that is equality restricted to w j),

then d′i = wid
⊥
u and t ′i = u with u = t jJt

′K
d′j
w , and

– otherwise d′i = widi and t ′i = ti (i.e., derivation and tree remain unchanged).

It is straightforward to verify that dJd′Kw is a complete left-most derivation of G

for tJt ′Kd
w to q. ⊓⊔

Example 6 We consider the WTGc G =
(
{q,⊥},Σ ,F,P,wt

)
with input ranked al-

phabet Σ = {a(0),g(2), f (2)}, final weights Fq = 1 and F⊥ = 0 as well as productions

pa = a→1 q pg = g(q,⊥)
1=2
−→1 q and p f = f

(
q, f (q,⊥)

) 1=22
−→1 q

besides the sink nonterminal productions p⊥σ = σ(⊥, . . . ,⊥)→1 ⊥ for all σ ∈ Σ .

As before, for every u ∈ TΣ we let d⊥u ∈ D⊥G(u) be the unique derivation of G for u

to⊥, which utilizes only the nonterminal⊥. According to Definition 6 we choose the

states q = q′ and the trees t and t ′ and derivations d and d′ as given in Figure 2 and

below.

d = (pa,11)(p⊥a ,12)(pg,1)(pa,21)(p⊥a ,221)(p⊥a ,222)(p⊥g ,22)(p f ,ε)

d′ = (pa,1)(p⊥a ,2)(pg,ε)

We select that position w = 11 and observe that that the derivation for t|11 is (pa,ε),
which yields q = q′. We compute dJd′Kw as follows

dJd′K11 =
(

1(d′1Jd′K1)
)(

21(pa,ε)
)(

22d⊥u

)
(p f ,ε)

=

(
1
(

1d′
)(

2d⊥g(a,a)

)
(pg,ε)

)
(pa,21)(22d⊥u)(p f ,ε)

= (pa,111)(p⊥a ,112)(pg,11)(12d⊥g(a,a))(pg,1)(pa,21)(22d⊥u)(p f ,ε) ,

where d′1 = (pa,1)(p⊥a ,2)(pg,ε) and u = g
(
g(a,a),g(a,a)

)
. We note that w = 11 is

explicitly equality constrained to position 12 in d via the constraint 1= 2 at position 1

and implicitly equality constrained to positions 221 and 222 via the constraint 1 = 22

at the root ε . Thus, we obtain dJd′K11 by substituting d′ into d at position 11 as well

as substituting d⊥
t′

into d at positions 12, 221, and 222. The obtained tree tJt ′Kd
w is

displayed in Figure 3. ⊓⊔

Weighted Tree Automata with Constraints 21

tJt ′Kd
11 =

f

g

g

a a

g

a a

f

a g

g

a a

g

a a

Fig. 3 Obtained pumped tree tJt ′Kd
11 from Example 6.

As our example illustrates, the tree tJt ′Kd
w is obtained from t by (i) identifying

the set of all positions of t that are explicitly or implicitly equality constrained to w

by the productions in the derivation d and (ii) substituting t ′ into t at every such

position. If w′ ∈ pos(t) is parallel to all positions constrained to w, like position 21 in

Example 6, then tJt ′Kw|w′ = t|w′ . Note that t|21 is equal to the replaced subtree t|11,

but we only replace constrained subtrees and not all equal subtrees.

This substitution allows us to prove a pumping lemma for eq-restricted, positive,

and classic WTGc, which can generate all (nondeleting and nonerasing) homomor-

phic images of regular weighted tree languages by Theorem 5. To this end, we need

some final notions. Let G=(Q,Σ ,F,P,wt) be a WTGc. Moreover, let p= ℓ
E,D
−→ q∈P

be a production. We define the height ht(p) of p by ht(p) = ht(ℓ) (i.e., the height of

its left-hand side). Moreover, we let

ht(P) = max
{

ht(p) | p ∈ P
}

and ht(G) = (|Q|+ 1) ·ht(P) .

Lemma 4 Let G = (Q,Σ ,F,P,wt) be an eq-restricted, positive, and classic WTGc

with sink nonterminal ⊥. There exists n ∈ N such that for every tree t0 ∈ TΣ , nonter-

minal q ∈ Q \ {⊥}, and derivation d ∈ D
q
G(t0) such that ht(t0) > n and wtG(d) 6= 0

there are infinitely many trees t1, t2, . . . and derivations d1,d2, . . . such that di ∈D
q
G(ti)

and wtG(di) 6= 0 for all i ∈ N.

Proof Without loss of generality, suppose that for every c[q1, . . . ,qk]
E, /0
−→ q′ ∈ P

with q′ 6=⊥ and k 6= 0 there exists i∈ [k] such that qi 6=⊥. This can easily be achieved

by introducing a copy ⊤ of nonterminal ⊥ and replacing one instance of ⊥ by ⊤ in

offending productions. Similarly, we can assume without loss of generality that the

construction in the proof of Lemma 3 has been applied to G. If this is the case, then we

can select n= ht(G). Let t0 ∈ TΣ be such that ht(t0)> n. Let Q′=Q\{⊥}, d ∈D
q
G(t0)

be a derivation with wtG(d) 6= 0, and select a position w ∈ pos(t0) of maximal length

such that d incorporates a derivation for t0|w to some q′ ∈ Q′. Then

|w| ≥ ht(t0)− ht(P)≥ ht(G)− ht(P) = |Q| ·ht(P) ,

which yields that at least |Q| proper prefixes w′ of w exist such that d incorporates a

derivation for t0|w′ to some q′ ∈ Q′. Hence there exist prefixes w′,w′′ of w such that

d incorporates a derivation d′ for t ′ = t0|w′ to q′ ∈ Q′ as well as a derivation for t0|w′′
to the same nonterminal q′. Then dJd′Kw′′ is a derivation of G for t1 = tJt ′Kd

w′′
to q

22 A. Maletti and T. Nász

with ht(t1)> ht(t0). Since we achieve the same state q, the annotation of the proof of

Lemma 3 guarantees that wtG(d1) 6= 0. Iterating this substitution yields the desired

trees t1, t2, . . . and derivations d1,d2, ⊓⊔

A WTGc generating a (nondeleting and nonerasing) homomorphic image of a

regular weighted tree language, if constructed as described in Theorem 5, will never

have overlapping constraints since constraints always point to leaves of the left-hand

sides of productions as required by classic WTGc. It is intuitive that this limitation to

the operating range of constraints leads to an actual restriction in the expressive power

of WTGc, but we will only prove it for eq-restricted, positive, and classic WTGc.

Proposition 2 Let S be a zero-sum free semiring. The class of positive constraint-

regular weighted tree languages is strictly more expressive than the class of weighted

tree languages generated by eq-restricted, positive, and classic WTGc.

Proof Let us consider the positive WTGc G =
(
{q,q′},Σ ,F,P,wt

)
with input ranked

alphabet Σ = { f (2), f (2),g(2),a(0)}, final weights Fq = 1 and Fq′ = 0, and the follow-

ing productions, of which each has weight 1.

a→1 q′ g(q′,q′)→1 q f (q,q)
12=21
−→ 1 q f (q,q)

12=21
−→ 1 q

The first two productions are only used on leaves and on subtrees of the form g(a,a).
Every other position w (i.e., neither leaf nor position with two leaves as children) is

labeled either f or f and additionally every derivation enforces the constraint 12= 21,

so the subtrees t|w12 and t|w21 of the input tree t need to be equal for a complete

derivation of G to exist.

For the sake of a contradiction, suppose that an eq-restricted, positive, and classic

WTGc G′ = (Q′,Σ ,F ′,P′,wt′) exists that is equivalent to G. We recursively define

the trees tn ∈ TΣ and t ′n ∈ TΣ for every n ∈ N with n≥ 1 by

t0 = a t1 = g(t0, t0) tn+1 = f (tn, tn)

t ′0 = a t ′1 = g(t ′0, t0) t ′n+1 = f (t ′n, tn)

Clearly, tn and t ′n are both complete binary trees of height n. Naturally, the leaves are

labeled a, and the penultimate level in both trees is always labeled g. In tn the remain-

ing levels are universally labeled f , whereas in t ′n the left-most spine on those levels

is labeled f . We illustrate an example tree t ′n in Figure 4. Obviously G(tn) = 1 as

well as G(t ′n) = 1 for every n ∈ N with n ≥ 1. Furthermore we note that the deriva-

tions of G only enforce equality constraints on positions of the form w12 or w21,

but since pos f (t
′
n) ⊆ {1}

∗, the positions, in which the labels in tn and t ′n differ, are

not affected by any equality constraint. This can be used to verify that G(t ′n) = 1 for

each n≥ 1.

In the following, let n = 3ht(G′) + 2. Since G′ is equivalent to G, we need to

have G′(t ′n) = 1 as well, which requires a complete derivation of G′ for t ′n to some final

nonterminal q0 ∈ Q′. Let d ∈D
q0

G′
(t ′n) be such a derivation. Moreover, let d = d(p,ε)

Weighted Tree Automata with Constraints 23

12=21

in G

f

f

f

f

f

... ...

f

... ...

f

f

... ...

f

... ...

f

f

f

... ...

f

... ...

f

f

... ...

f

... ...

. . .

Fig. 4 A snippet of the tree t ′n and the productions used by G′.

for some production p = c[q1, . . . ,qk]
E, /0
−→ q0 ∈ P′. Since the input tree t ′n contains

positions {
1i = 11 · · ·1︸ ︷︷ ︸

i times

| 0≤ i≤ n
}
⊆ pos(t ′n) ,

there must exist j ∈ N such that c(1 j) = x1; i.e., position 1 j is labeled x1 in c. Ob-

viously, j ≤ ht(G′), so the height of the subtree t ′′ = t ′n|1 j , which is still a complete

binary tree, is at least 2ht(G′)+ 2. We can thus apply Lemma 4 to the tree t ′′ in such

a way that it modifies its second direct subtree (starting from 1 j ∈ pos(t ′n), we de-

scend to 1 j2; from there, we either find a subderivation to some nonterminal different

from ⊥, or all subtrees below 1 j2 are copies of subtrees below 1 j1, and in that case,

we apply the pumping to an equality constrained subtree below 1 j1, which then also

modifies the corresponding subtree below 1 j2). Let u be the such obtained pumped

tree, which according to zero-sum freeness and Lemma 4 is also in the support of G′;

i.e., u ∈ supp(G′). Let d′ be the derivation constructed in Lemma 4 corresponding

to u. We have u(1 j−1) = f , so the position 1 j−1 is labeled f . Since G and G′ are

equivalent, there must be a derivation of G for u as well, which enforces the equality

constraint u|1 j−112 = u|1 j−121. By construction we have t ′n|1 j−112 6= u|1 j−112. Since the

positions 1 j−112 and 1 j−121 have no common suffix, this equality can only be guar-

anteed by G′ if 1 j−112 and 1 j−121 are themselves (explicitly or implicitly) equality

constrained in d′. The potentially several constraints that achieve this must of course

be located at prefixes of 1 j−112 and 1 j−121, and since the production used in d′ at

the root is still p and stretches all the way to 1 j, this can only be achieved if d′ en-

forces 1 j−11 = 1 j−12 via p at the root as well as 1 = 2 at 1 j−11 or at 1 j−12. However,

this is a contradiction as u(1 j−11) = f 6= f = u(1 j−12), so we cannot have an explicit

or implicit equality constraint between 1 j−112 and 1 j−121, so u|1 j−121 = t ′n|1 j−121, but

contradicts that G has a complete derivation for u. ⊓⊔

Although for zero-sum free semirings, the support of a regular weighted tree lan-

guage is again regular, in general, the converse is not true, so we cannot apply the

decision procedure of [15] to the support of a homomorphic image in order to de-

cide its regularity. Instead, we hope to extend the unweighted argument in a way that

tracks the weights sufficiently close. For this, we prepare two decidability results,

which rely mostly on the corresponding results in the unweighted case. To this end,

we need to relate our WTGc constructed in Theorem 5 to the classic TGc used in [15].

24 A. Maletti and T. Nász

At this point we mention that their classic TGc additionally require that equality con-

strained positions have the same nonterminal label. Compared to our eq-restriction

this change is entirely immaterial in the unweighted case.

Theorem 6 Let S be a zero-sum free semiring. Moreover, let G = (Q,Σ ,F,P,wt) be

a WTA and h ∈ T
TΣ

∆ be a nondeleting and nonerasing tree homomorphism. Finally,

let G′ = h(G). Emptiness and finiteness of supp(G′) are decidable.

Proof We apply the construction in the proof of Lemma 3 to the eq-restricted, posi-

tive, and classic WTGc G′ = (Q′,Σ ,F ′,P′,wt′) constructing according to Theorem 5.

In this manner we ensure that all derivations have non-zero weight. Due to zero-sum

freeness, we can now simply drop the weights and obtain a eq-restricted, positive, and

classic TGc G′′ = (Q′′,Σ ,F ′′,P′′) generating supp(G′). Emptiness and finiteness are

decidable for the tree language supp(G′) generated by G′′ according to [15, Corollar-

ies 5.11 & 5.20]. ⊓⊔

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Bogaert, B., Tison, S.: Equality and disequality constraints on direct subterms in tree automata. In:

Proc. 9th Ann. Symp. Theoretical Aspects of Computer Science. LNCS, vol. 577, pp. 161–171.

Springer (1992)

2. Borchardt, B.: The Theory of Recognizable Tree Series. Ph.D. thesis, Technische Universität Dresden

(2005)

3. Bozapalidis, S., Rahonis, G.: On the closure of recognizable tree series under tree homomorphisms.

J. Autom. Lang. Comb. 10(2–3), 185–202 (2005)

4. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., Tommasi,

M.: Tree automata — Techniques and applications (2007)

5. Comon, H., Jacquemard, F.: Ground reducibility and automata with disequality constraints. In: Proc.

11th Ann. Symp. Theoretical Aspects of Computer Science. LNCS, vol. 775, pp. 151–162. Springer

(1994)

6. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with n distinct prime

factors. Amer. J. Math. 35(4), 413–422 (1913)

7. Doner, J.: Tree acceptors and some of their applications. J. Comput. System Sci. 4(5), 406–451 (1970)

8. Drewes, F.: Grammatical picture generation: A tree-based approach. Springer (2006)

9. Droste, M., Heusel, D.: The supports of weighted unranked tree automata. Funda. Inform. 136(1–2),

37–58 (2015)

10. Ésik, Z., Kuich, W.: Formal tree series. J. Autom. Lang. Comb. 8(2), 219–285 (2003)

11. Fülöp, Z., Maletti, A., Vogler, H.: Preservation of recognizability for synchronous tree substitution

grammars. In: Proc. Workshop Applications of Tree Automata in Natural Language Processing. pp. 1–

9. ACL (2010)

12. Fülöp, Z., Maletti, A., Vogler, H.: Weighted extended tree transducers. Fundam. Inform. 111(2), 163–

202 (2011)

13. Fülöp, Z., Vogler, H.: Weighted tree automata and tree transducers. In: Handbook of Weighted Au-

tomata, chap. 9, pp. 313–403. Springer (2009)

14. Gécseg, F., Steinby, M.: Tree automata. Tech. Rep. 1509.06233, arXiv (2015)

15. Godoy, G., Giménez, O.: The HOM problem is decidable. J. ACM 60(4), 1–44 (2013)

16. Golan, J.S.: Semirings and their Applications. Kluwer Academic, Dordrecht (1999)

Weighted Tree Automata with Constraints 25

17. Hebisch, U., Weinert, H.J.: Semirings — Algebraic Theory and Applications in Computer Science.

World Scientific (1998)

18. Jurafsky, D., Martin, J.H.: Speech and language processing. Prentice Hall, 2nd edn. (2008)

19. Kirsten, D.: The support of a recognizable series over a zero-sum free, commutative semiring is rec-

ognizable. Acta Cybernet. 20(2), 211–221 (2011)

20. Mongy-Steen, J.: Transformation de noyaux reconnaissables d’arbres. Forêts RATEG. Ph.D. thesis,

Université de Lille (1981)

21. Perrin, D.: Recent results on automata and infinite words. In: Proc. 11th Int. Symp. Mathematical

Foundations of Computer Science. LNCS, vol. 176, pp. 134–148. Springer (1984)

22. Salomaa, A., Soittola, M.: Automata-theoretic aspects of formal power series. Springer (1978)

23. Schützenberger, M.P.: On the definition of a family of automata. Inform. and Control 4(2–3), 245–270

(1961)

24. Thatcher, J.W.: Characterizing derivation trees of context-free grammars through a generalization of

finite automata theory. J. Comput. Syst. Sci. 1(4), 317–322 (1967)

25. Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an application to a decision

problem of second-order logic. Math. Systems Theory 2(1), 57–81 (1968)

26. Tison, S.: Tree automata, (dis-)equality constraints and term rewriting: What’s new? In: Proc. 22nd

Int. Conf. Rewriting Techniques and Applications. LIPIcs, vol. 10, pp. 1–2. Schloss Dagstuhl —

Leibniz-Zentrum für Informatik (2011)

27. Wang, H.: On characters of semirings. Houston J. Math. 23(3), 391–405 (1997)

28. Wilhelm, R., Seidl, H., Hack, S.: Compiler Design. Springer (2013)

29. Maletti, A., Nász, A.-T.: Weighted Tree Automata with Constraints. In: International Conference on

Developments in Language Theory, pp. 226–238. Springer (2022)

