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Abstract. The prefix palindromic length pu(n) of an infinite word u is
the minimal number of concatenated palindromes needed to express the
prefix of length n of u. This function is surprisingly difficult to study;
in particular, the conjecture that pu(n) can be bounded only if u is
ultimately periodic is open since 2013. A more recent conjecture concerns
the prefix palindromic length of the period doubling word: it seems that
it is not 2-regular, and if it is true, this would give a rare if not unique
example of a non-regular function of a 2-automatic word.
For some other k-automatic words, however, the prefix palindromic length
is known to be k-regular. Here we add to the list of those words the Sier-
pinski word s and give a complete description of ps(n).

1 Introduction

A palindrome is a word which does not change when read from left to right
and from right to left, like rotator or abbaaaabba. In this paper, we continue
to study decompositions of words over a finite alphabet to a minimal number
of palindromes: for example, for the word w = ababbaabbbaaa, this number
is equal to 4, since we can factorize this word as (aba)(bbaabb)(b)(aaa) or as
(aba)(bb)(aabbbaa)(a), but cannot manage with less than four palindromes. So,
we can write that the palindromic length of w, denoted as PL(w), is equal to 4.

In 2013, Puzynina, Zamboni and the second author [8] conjectured that if the
palindromic length of factors of an infinite word u is bounded, then the word u

is ultimately periodic. This conjecture remains open despite a partial solution in
the initial paper [8] and later particular results [3,6,12]. Saarela [13] proved that
the conjecture is equivalent to the same statement about prefixes, not all factors,
of u. His result makes reasonable to consider the prefix palindromic length pu(n),
which is also denoted as PPLu(n) in previous papers. This function of an infinite
word u and of n ≥ 0, equal to the palindromic length of the prefix of length n
of u is thus conjectured to be unbounded for every word which is not ultimately
periodic.

A natural exercise on every new function of an infinite word is to compute or
to estimate it for classical examples like the Thue-Morse word and the Fibonacci
word. The first of these problems appears to be not too complicated: the prefix
palindromic length of the Thue-Morse word, which is 2-automatic, appears to be
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2-regular, and its first differences are described as a fixed point of a 4-uniform
morphism [5]. At the same time, the question on the Fibonacci word has not
been solved, moreover, it seems that its prefix palindromic length is even not
Fibonacci-regular [7].

Since these first exercises, a progress has been made in computing the pre-
fix palindromic length of some more known words, including the Rudin-Shapiro
word, the paperfolding word [7] and the Zimin word [10]. Moreover, it has been
proved that for every k-automatic word containing a finite number of distinct
palindromes, the prefix palindromic length is k-regular [7]. But the most in-
triguing are the results of computational experiments suggesting that for ex-
ample, for the period-doubling word, which is the fixed point of the morphism
a → ab, b → aa, the prefix palindromic length is not a 2-regular sequence [7].
At the moment, this is the second challenging conjecture on the prefix palin-
dromic length, since normally, all reasonable functions of k-automatic words are
k-regular.

Unable to solve any of the big conjectures, we continue collecting examples
when the prefix palindromic length is predictably regular. Here we prove it for the
Sierpinski word, the 3-automatic fixed point of the morphism ϕ : a → aba, b →
bbb. The fact that its prefix palindromic length is unbounded was proved already
in the initial paper [8]. The first morphic description of that function was con-
jectured in the Master thesis of Enzo Laborde [9], but here we find a simpler
one, which yet requires several pages of proofs. We have also checked the results
with the Walnut software [11].

A possible continuation of this research is to find a larger class of k-automatic
words with k-regular prefix palindromic length. It could help to extract proper-
ties of automatic words which prevent the function to be regular.

The result can also be generalized to all morphisms of the form a→ abn−2a, b→
bn for n ≥ 3, even though we do not include this result to this text.

2 Definitions, notation, known results

From now on, s = s[1]s[2] · · · s[n] · · · denotes the Sierpinski word, or the Cantor
word

ababbbababbbbbbbbbababbbabab27 · · · ,

defined as the fixed point starting with a of the morphism

ϕ :

{

a→ aba,

b→ bbb.

Here s[i] ∈ {a, b} for all i ≥ 1. Clearly, for every k, the Sierpinski word starts

with the palindrome ϕk(a) = ϕk−1(a)b3
k−1

ϕk−1(a). A factor s[i]s[i + 1] · · · s[j]
can also be denoted as s[i..j]. The mirror image of a finite word u is denoted by
ũ; so, u is a palindrome if u = ũ.
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In what follows, PL(u) denotes the palindromic length of a finite word u,
that is, the minimal number of palindromes such that u is their concatena-
tion. The prefix palindromic length of s is denoted by ps(n) or p(n) for short:
p(n) =PL(s[1..n]). A decomposition of a word u to palindromes is optimal if the
number of palindromes in it is minimal possible, that is, equal to PL(u).

The position n in a word is the position between its symbols numbered n and
n+ 1; it should not be confused with the symbol number n.

One of important general results on palindromic length is the following in-
equality, which we refer below as Saarela’s inequality [13, Lemma 6]: for all words
u, v we have

|PL(u)− PL(v)| ≤ PL(uv).

This result is especially useful when one of words u, v or uv is a palindrome and
thus its palindromic length is equal to 1. If u is a prefix of a given infinite word
u of length n, and v is its next letter, it also immediately implies that

|pu(n+ 1)− pu(n)| ≤ 1,

meaning that the first differences of the prefix palindromic length of a word can
be equal only to −1, 0, or 1.

As the name suggests, an infinite word u is called k-automatic if there exists
a deterministic finite automaton A such that every symbol u[n] of u can be
obtained as the output of A with the base-k representation of n as the input [1].
We will also need and use an equivalent definition of the same notion: a word u

is k-automatic if and only if there exists a k-uniform morphism ϕ : Σ∗ → Σ∗

and a 1-uniform morphism (or coding) c : Σ∗ → ∆∗ such that u = c(ϕ∞(a))
for a symbol a ∈ Σ. So, for example, the Sierpinski word is 3-automatic since
its morphism ϕ is 3-uniform, and the coding c can be chosen as the trivial one,
sending a to a and b to b.

A generalization of the notion of a k-automatic word to sequences on Z is
the notion of k-regular sequence: formally speaking, a Z-valued sequence is k-
regular if the Z-module generated by its k-kernel is finitely generated. Discussions
and equivalent definitions of k-regular sequences can be found in Chapter 16 of
Allouche and Shallit’s monograph [1]; what we really need in this paper is the
following lemma proven in [7] for the case when p is the prefix palindromic length
of an infinite word but true for every sequence with bounded first differences due
to exactly the same arguments.

Lemma 2.1. A Z-valued sequence r(n) with bounded first differences dr(n) =
r(n+ 1)− r(n) is k-regular if and only if the sequence dr is k-automatic.

Since the main object we study in this paper is a 3-automatic word, we need
some addition notation concerning ternary representations.

Let X ⊂ {0,1,2}∗ be the language of ternary expansions of non-negative
integers without leading zeros. The fact that x ∈ X is the ternary expansion of
n will be denoted as [x]3 = n and (n)3 = x. By a convention, we put (0)3 = ε,
so, the ternary representation of 0 is the empty string. In means that every non-
empty representation starts with 1 or 2, so, X = {ε} ∪ {1,2}{0,1,2}∗. Note
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that we write symbols of ternary strings in boldface to distinguish concatenated
strings from multiplied numbers.

When we consider ternary expansions with leading zeros, we mention that
they are just strings over {0,1,2}∗, not always from X .

For every function f(n), we also use the notation f(x), where x is a ternary
expansion of n. Also, let x be a ternary expansion of n, where 2 · 3k−1 ≤ n ≤ 3k;
then we denote the ternary expansion of 3k − n without leading zeros by x.

For all k, we clearly have 10
k
= ε. For x = 1x′, where x′ /∈ 0∗, the function

x is not defined, for any other x ∈ X we have 2x = x.

3 Auxiliary functions qj(n)

To study the prefix palindromic length p(n) of the Sierpinski word, we first define
for every j ≥ 0 an auxiliary function

qj(n) = PL(bjs[1..n]).

Clearly, p(n) = q0(n), but for what follows, we need to study these functions for
all j.

Proposition 3.1. The functions qj can be found as follows:

– q0(0) = 0; for j > 0, we have qj(0) = 1;
– q0(1) = 1; for j > 0, we have qj(1) = 2;
– for 3k ≤ n ≤ 2 ·3k, we have qj(n) = 1 if n = 3k + j and qj(n) = 2 otherwise;

– for 2 · 3k ≤ n ≤ 3k+1 and j ≤ 3k, we have

qj(n) = 1 +min(q3k−j(n− 2 · 3k), qj(3
k+1 − n)),

– at last, for 2 · 3k ≤ n ≤ 3k+1 and j > 3k, we have

qj(n) = min
m≤3k

qm(n) + 1.

Proof. The first three cases are obvious. To observe the last case, it is suffi-
cient to see that s[1..n] does not contain bj , so, every decomposition of bjs[1..n]
starts with a palindrome bj−m for some m and continues by a decomposition of
bms[1..n]; we may choose m to be the most convenient.

It remains to consider 2 · 3k ≤ n ≤ 3k+1 and j ≤ 3k. Here we know that

s[1..n] = ϕk(a)b3
k

w for a prefix w of ϕk(a); so, w = s[1..n− 2 · 3k].
Type 1. Let us consider the best of decompositions P1 · · ·Pl = bjs[1..n]

such that there is a boundary between palindromes at a position contained in

s[3k..2 · 3k + 1] = ab3
k

a. If these boundaries are several, consider the first of
them, denoted m, so that the prefix cut here is u = bjϕk(a)bm. If m > j,
then PL(u) = 2, and among the decompositions of u to two palindromes, we
may choose u = (bjϕk(a)bj)(bm−j), so, first position m will be replaced by j.
Now suppose that m < j; then we also have PL(u) = 2. Suppose that every
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decomposition of bjs[1..n] starting with the palindrome bjϕk(a)bj is worse and

contains r > l palindromes. It means that PL(b3
k−jw) = r − 1 ≥ l, whereas

PL(b3
k−mw) = l − 2. But this is impossible by the Saarela’s inequality, since

the first of these words is the suffix of the second preceeded by one palindrome
bj−m.

So, anyway, we may take j = m, and see that l = 1+PL(b3
k−jw) = 1 +

q3k−j(n− 2 · 3k).
Type 2.Now consider the shortest among palindromic decompositionsQ1 · · ·Ql′ =

bjs[1..n] such that the word s[3k..2 · 3k + 1] = ab3
k

a is contained in one palin-
drome. Since inside there is the largest power of b in the considered word, this
palindrome is the central part of someQi = s[m1+1..m2], wherem1 = 3k+1−m2.
Let us show that among such shortest decompositions, we can choose one with
m2 = n.

Suppose we cannot do it. Choose anotherm2 < n and denote u = s[m2+1..n].
Since the considered decomposition is the best of its type, we have

l′ = qj(m1) + 1 + PL(u) = PL(bjvũ) + 1 + PL(u),

where s[1..m1] = vũ (it ends with ũ since s[1..3k+1] is a palindrome, and v is a
new notation for the remaining prefix).

We have conjectured that any decomposition with the last palindrome ũb3
k

u
is not optimal, meaning that

l′ = PL(bjvũ) + 1 + PL(u) < PL(bjv) + 1,

that is,
PL(bjvũ) < PL(bjv)− PL(u).

But since PL(u) = PL(ũ), this contradicts to Saarela’s inequality. So, we may
choose m2 = n. Consequently, i = l′, m1 = 3k+1 − n, and Q1 · · ·Ql′−1 is the
optimal decomposition of bjs[1..m1] = bjs[1..3k+1−n], so, l′ = 1+ qj(3

k+1 −n).
It remains to notice that the optimal decomposition is either of type 1, or

of the complementing type 2: qj(n) = min(l, l′) = min(1 + q3k−j(n− 2 · 3k), 1 +
qj(3

k+1 − n)). �

Proposition 3.2. For every k ≥ 0, j ≥ 0 and every n ≤ 3k we have

|qj(n)− qj(3
k − n)| ≤ 1.

Proof. It is sufficient to see that qj(3
k − n) =PL(bjs[1..3k − n]) =PL(s[n +

1..3k]bj), since the last two words are mirror images one of the other. Since
qj(n) =PL(bjs[1..n]) and bjs[1..n]s[n + 1..3k]bj = bjs[1..3k]bj is a palindrome,
the inequality is a particular case of Saarela’s one. �.

4 Function q and its first differences

In this section, we study another auxiliary function q(n) = min
j
qj(n).
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Proposition 4.1. For every n ∈ N the following equalities hold:

q(n) =











0, if n = 0;

1, if n = 1 or 3k ≤ n ≤ 2 · 3k;

min(1 + q(n− 2 · 3k), 1 + q(3k+1 − n)), if 2 · 3k < n ≤ 3k+1,

(1)

meaning also for q as the function of X that











q(ε) = 0;

q(1y) = 1 for all y ∈ {0,1,2}∗;

q(2y) = 1 +min(q(y), q(2y)) for all y ∈ {0,1,2}∗.

(2)

Proof. First of all, note that q(2 · 3k−1) = q(20k−1) = 1 = 1 + q(0) for all
k > 0, so, both (1) and (2) are true for such values. In all other cases, the two
statements are equivalent, so, it is sufficient to prove (1). In fact, it immediately
follows from Proposition 3.1 when we take the minimum for all j. �

Here is a list of basic properties of the function q.

Proposition 4.2. For every k ≥ 0 and every n ≤ 3k, we have |q(n) − q(3k −
n)| ≤ 1.

Proof. Follows directly from the definition of q(n) = minj qj(n) and Proposition
3.2. Indeed, suppose that q(n) ≥ q(3k − n) and j is such that q(3k − n) =
qj(3

k − n). Clearly, q(n) ≤ qj(n). So, q(n)− q(3k − n) ≤ qj(n)− qj(3
k − n) ≤ 1.

The case of q(n) ≤ q(3k − n) is symmetric. �

Corollary 4.3. For every n such that 2 ·3k < n ≤ 3k+1, we have |q(n−2 ·3k)−
q(3k+1 − n)| ≤ 1.

Proof. Follows immediately from the previous proposition and the fact that if
n′ = n− 2 · 3k, then 3k+1 − n = 3k − n′. �

The next several properties of q(x), x ∈ X , follow from (2) and are proved
by the same type of induction.

Lemma 4.4. For every x ∈ X ∩ {0,2}∗, we have q(x1) = q(x2).

Proof. We proceed by induction on the length of x. For x = ε, we have q(1) =
q(2) = 1, so the base of induction holds. Now consider x = 2y where y ∈
{0,2}∗ (so that y may contain leading zeros). We have q(x1) = q(2y1) = 1 +
min(q(y1), q(2y1)) and q(x2) = q(2y2) = 1 + min(q(y2), q(2y2)). But q(y1) =
q(y2) by the induction hypothesis; moreover, by the same hypothesis, q(2y1) =
q(2y2) since 2y1 = z2 and 2y2 = z1 for the same z ∈ X , where z is shorter
than x. �

Lemma 4.5. For all x ∈ X, we have q(x0) = q(x).
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Proof. If x = ε, there is nothing to prove. If x = 1y, then q(x0) = q(x) = 1.
Now for x = 2y, we proceed by induction on the length of x. The base is given
by previous cases and x = 2 giving q(20) = q(6) = q(2) = q(2) = 1. For the
induction step, consider x = 2y, where the statement is proven for y (which
may start with leading zeros). It is sufficient to combine the last case of (2)
with the induction hypothesis and the fact that x0 = x0, so that q(y) = q(y0),
q(x) = q(x0) = q(x0). �

Lemma 4.6. For every x ∈ X ∩ {0, 2}∗ and for every w ∈ {0,1,2}∗, we have

q(x1w) = q(x1).

Proof. As above, we start from x = ε giving q(1w) = q(1) = 1 and proceed by
induction on the length of x: take x = 2y and suppose that the lemma is true
for all strings shorter than x. As above, it is sufficient to compare q(y1) with
q(y1w), which are equal by the induction hypothesis, and q(x1) with q(x1w).
For the latter comparison, we have to consider two cases: if w ∈ {0}∗, then the
equality holds due to the previous lemma. If w contains a non-zero symbol, then
denote x1 as t2 (indeed, its last symbol is equal to 2). Then x1w = t1w′ for some
w′; but we know by from Lemma 4.4 that q(t2) = q(t1) and from the induction
hypothesis that q(t1) = q(t1w′). So, q(x1) = q(x1w) and thus q(x1w) = q(x1).
�

Summarizing Lemmas 4.4 and 4.6, we observe the following

Corollary 4.7. For every x ∈ X such that x = y1z, where y ∈ {0,2}∗, we have

q(x) = q(y2).

So, we can concentrate on ternary representations from {0,2}∗. and, due to
Lemma 4.5 even on those of them that end with 2.

For such a representation, that is, for a finite word on the alphabet {0,2},
let us call a small group a sequence of 2s separated from other such sequences
by one or several 0s. In its turn, a large group is a word beginning and ending
with 2 that does not contain two consecutive 0s and is separated from other
such groups by at least two consecutive 0s. A large group is dense if it contains
two consecutive 2s and sparse otherwise.

Example 4.8. The word 22202000022000202002 contains six small groups and
four large groups (22202,22,202,2). The first two of these large groups are
dense and the last two are sparse.

Theorem 4.9. For every x ∈ X ∩ {0,2}∗2,

1. q(x) = q(x) if and only if the first large group of x is sparse, that is, if and

only if 20k−1 ≤ [x]3 ≤ (20)k/2; otherwise q(x) = q(x) + 1;
2. the value of q(x) is equal to the number of small groups plus the number of

dense large groups in x.

Continuing the example above, we see that q(22202000022000202002) =
6 + 2 = 8. Moreover, 22202000022000202002 = 20222200222020221, due
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to Lemma 4.4, q(20222200222020221) = q(20222200222020222), and the
latter representation contains 5 small groups and two large groups, both of them
dense, so that q(20222200222020222) = q(20222200222020221) = 7. It is
predicted by the first part of the theorem since the first large group of the initial
representation is dense.

Proof of the theorem. As above, we proceed by induction on the length
of x, but this time we have to consider several cases and prove both parts of the
theorem together.

For the base of induction, consider x = 20i, i ≥ 0. Clearly, x = 10i, x
contains one small group and no dense large groups, and q(x) = q(x) = 1, so,
both statements hold.

Now for the induction step consider x = 20ix′, where x′ starts with 2, and
suppose that the theorem is proven for all strings shorter than x.

Case i = 0: suppose that x = 22y, y ∈ {0,2}∗. Then q(x) = 1+min(q(2y), q(x));
but x = 2y, and so q(x) = 1 +min(q(2y), q(2y)).

Subcase “dense”. If 2y starts with a dense large group, then so does x,
and the number of small and dense large groups in x is the same as in 2y.
Also, by the induction hypothesis, q(2y) = q(2y) + 1 = q(x) + 1, and thus
q(x) = q(2y) = q(x) + 1. Both statements hold for x.

Subcase “sparse”. If 2y starts with a sparse large group, then it becomes
dense in x; the number of small groups stays the same. So, we should prove that
q(x) = q(x)+ 1 for the first statement of the theorem and that q(x) = q(2y)+ 1
for the second one. Indeed, by the induction hypothesis, q(2y) = q(2y) = q(x),
so (2) gives no choice for q(x).

Case i = 1: suppose that x = 202y, y ∈ {0,2}∗. For the second part of the
statement, we should prove that q(x) = q(2y) + 1, since the number of small
groups has increased and the number of dense large groups has not. For the
first part of the statement, we should prove that q(x) and q(x) are in the same
relation as q(2y) and q(2y). In any case, q(x) = 1 +min(q(2y), q(x)).

Subcase “dense”. Suppose that 2y starts with a dense large group, that
is, 2y = (20)j22z for some j ≥ 0 and z ∈ {0,2}∗.

Subsubcase “z ∈ 0∗”. Suppose first that z = 0l for some l; then 2y =
(20)j10l and x = (20)j+110l. By the induction hypothesis, q(x) = j+2, q(2y) =
j+2 and q(2y) = j+1; then, due to (2), q(x) = j+3 and both statements hold.

Subsubcase “z /∈ 0∗, j = 0”. In this case, x = 202y = 202m · · · , m ≥ 2,
and x = 20m2y. By the induction hypothesis, q(x) = q(2y)+1, since x contains
just one more small group in the beginning; also, 2y starts with a dense large
group and thus q(2y) = q(2y) + 1. So, q(x) = q(2y) and q(x) has to be equal to
any of them plus one. Both statements hold.

Subsubcase “z /∈ 0∗, j > 0”. The proof repeats the previous case but with
x = 202y.

Subcase “sparse”. Suppose that 2y (and x) start with a sparse large group,
that is, 2y = 2, or 2y = 20 (these two cases are easy to consider separately), or
2y = (20)j0z and thus x = (20)j+10z for some j ≥ 1 and z ∈ {0,2}∗. As above,
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we have to consider separately the cases when z belongs or not to 0∗, but in both
cases, we have x = 202y. So, q(x) = 1+q(2y) by the induction hypothesis, since
just one small group is added. Also by the induction hypothesis, q(2y) = q(2y),
since 2y starts with a sparse large group. Combining these equalities with (2),
we see that q(x) = q(2y) + 1 = q(x), which was to be proved.

Case i ≥ 2. Here x = 20i2y for some y ∈ {0,2}∗, with i ≥ 2. The large
first group of x is sparse (and small), so, for this case, we should prove that
q(x) = q(x) and q(x) = q(2y) + 1; the second fact follows from the first and (2).

Subcase “sparse”. Suppose that 2y starts with a sparse large group and
in particular, y is either empty or starts with 0.

Subsubcase y = 0j, j ≥ 0. In this case, x = 20i20j , so, x = 2i10j , and
q(x) = 2 by the induction hypothesis; at the same time, q(20j) = 1, so, (2) gives
q(x) = 2 = q(x), which was to be proved.

Subsubcase y /∈ 0∗. In this case, since the starting group is sparse, y starts
with 0, and thus x = 2i02y. In particular, q(x) > q(2y), since x contains at least
one more small group 2i at the beginning. At the same time, by the induction
hypothesis, q(2y) = q(2y), so, q(x) = 1 +min(q(x), q(2y)) = q(x), which was to
be proved.

Subcase “dense”. Suppose that 2y starts with a dense large group.
Subsubcase y ∈ 2+0∗. In this case, x = 20i2j0l with some j ≥ 2. So,

x = 2i0j−110l and thus, since i ≥ 2, q(x) = 3 by the induction hypothesis. Due
to (2), q(x) = 1 +min(q(x), q(2j0l)); since q(2j0l) = 2, the statement holds.

Subsubcase y /∈ 2+0∗. In this case, 2y contains at least two small groups;
if the first of them is 2j , j > 0, then x = 2i0j2y. If j = 1, then 22 is situated
somewhere later in the first large group of 2y, and so 2y starts with a sparse
group. In this case, q(x) = q(2y) + 1 since the prefix 2i of x adds both a small
group and a dense large group. The same is true if j > 1, since in this case, 2i

is itself a new dense large group in x.
At the same time, by the induction hypothesis, q(2y) = q(2y) + 1 since the

first group is dense. So, q(x) = q(2y)+1, and it remains to use (2) to prove both
statements in this last case. �

The first part of the theorem above will be used later for the results on the
prefix palindromic length. As for the second part, it gives a formula for the
function q and in particular allows to find its first differences dq(n) = q(n+1)−
q(n). The following corollary of the theorem is straightforward.

Corollary 4.10. For every n ≥ 0 with (n)3 = x we have

dq(n) =



















0, if x contains 1; otherwise

1, if x ends by 0 directly preceeded by 0 or a sparse large group;

−1, if x ends by 2 which is a part of a dense large group;

0, in all other cases.
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As it follows from this formula, the sequence dq(n) is automatic and here is the
corresponding automaton.

Here and below, when considering first differences, we sometimes prefer to
write - instead of −1, + instead of 1, and 0 in typewriter font.

D|+

S|0

S′|0

D|-

0
1

2

0,1,2

0

1
2

0

1

2

The choice of state names of this automaton will be clear from further con-
structions.

In its turn, this automaton is equivalent to the following morphic construction
for the sequence dq.

Theorem 4.11. The sequence dq is the 3-automatic word over the alphabet

{-, 0, +} given as follows:

dq = γ(δ∞(D)),

where the morphism δ : {D,S, S′, D}∗ → {D,S, S′, D}∗ is defined by



















δ(D) = DSS′,

δ(S) = SSS,

δ(S′) = DSD,

δ(D) = S′SD,

and the coding γ : {D,S, S′, D}∗ → {-, 0, +}∗ is given by γ(D) =+, γ(S) =
γ(S′) =0, γ(D) =-.

5 Difference between p(n) and q(n)

Now, after a study of the auxiliary function q, we return to the initial goal: the
prefix palindromic length p(n) of the Sierpinski word.

Proposition 5.1. For every n ≥ 0, the following holds.

p(n) =



















0, if n = 0;

1, if n = 1;

2, if 3k < n ≤ 2 · 3k;

min(2 + q(n− 2 · 3k), 1 + p(3k+1 − n)), if 2 · 3k < n ≤ 3k+1.
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Equivalently, this formula can be written as



















p(ε) = 0;

p(10k) = 1 for all k;

p(1y) = 2 for all y ∈ {0,1,2}∗\0∗;

p(2y) = 1 +min(1 + q(y), p(2y)) for all y ∈ {0,1,2}∗.

(3)

Proof. It is not difficult to see that the two statements are equivalent and that
the first three lines hold. To prove the last equality note that p(n) = q0(n) where
q0(n) = min(1 + q3k(n − 2 · 3k), 1 − q0(3

k+1 − n)) from Proposition 3.1. From
the last case of the same proposition, q3k(n − 2 · 3k) = 1 + q(n − 2 · 3k), so the
equality follows. �

Proposition 5.2. For every n ≥ 0 such that 2 · 3k ≤ n ≤ 3k+1, the equality

p(n) = q(n) holds if and only if p(3k+1 − n) = q(3k+1 − n) < q(n). Otherwise

p(n) = q(n) + 1.

Proof. For the edge values, we easily check that q(2 · 3k) = 1 < 2 = p(2 · 3k),
and q(3k+1− 2 · 3k) = q(2 · 3k), so that the condition does not hold; on the other
hand, q(3k+1) = p(3k+1) = 1, and the condition holds. For other values, from
the previous results, we have

q(n) = min(1 + q(n− 2 · 3k), 1 + q(3k+1 − n)),

p(n) = min(2 + q(n− 2 · 3k), 1 + p(3k+1 − n)).

So, if p(3k+1−n) > q(3k+1−n), then the values compared for p(n) are just greater
than the respective values compared for q(n), and thus p(n) > q(n). Moreover,
suppose that p(3k+1 − n) = q(3k+1 − n). If q(3k+1 − n) = q(n), it immediately
means that q(n) = 1+q(n−2 ·3k) and p(n) = 1+q(3k+1−n) = 2+q(n−2 ·3k) >
q(n). On the other hand, if q(3k+1 − n) < q(n), then q(n) = 1 + q(3k+1 − n) ≤
1 + q(n − 2 · 3k), so, 1 + q(3k+1 − n) = 1 + p(3k+1 − n) < 2 + q(n− 2 · 3k) and
thus p(n) = 1 + q(3k+1 − n) = q(n). The equivalence is established. �

The following statement is a direct corollary of the previous proposition and
the first part of Theorem 4.9.

Proposition 5.3. For every x ∈ X, we have p(x) = q(x) if and only if x ∈ 10∗

or x starts with 2, p(x) = q(x) and [x]3 > (20)|x|/2.

Now the following statement can be proven by a straightforward induction.

Proposition 5.4. Let S ⊂ X be the set of ternary decompositions x such that

p(x) = q(x). Then

S = {ε} ∪ {10∗} ∪ {(22+00+)∗.22+.{0∗ ∪ 0+10∗}.

In other words, p(n) = q(n) if and only if n = 0, n = 3k for some k, or the
ternary decomposition of n consists of blocks of at least two 2s and at least two
0s, possibly followed by one 0 or at least one 0 before 10l for some l.
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Proof of the Proposition 5.4. Denote by Sk the set of decompositions
from S corresponding to numbers not exceeding 3k and by Dk the difference
Sk\Sk−1. Clearly, Then S0 = {ε,1}, D1 = {10}, D2 = {22,100}. Now, let
us proceed by induction on k starting with this base. Due to Proposition 5.2
for every k we should look for elements of Dk+1 among numbers of the form
3k+1 −m, (m)3 ∈ Sk. By the induction hypothesis, the elements of Dk are 10k

and some decompositions of length k starting with 22. They correspond to the
numbers m from 2 · 3k−1 + 2 · 3k−2 to 3k. So, if (m)3 ∈ Dk, then 3k+1 −m ≤
3k+1 − 2 · 3k − 2 · 3k−1 < 2 · 3k, and due to Proposition 5.2, 3k+1 −m /∈ S. So,

Dk+1 = {3k+1 −m|(m)3 ∈ Sk−1}.

It remains to check by a simple case study (whether (m)3 contains 1 or not) that
subtracting from 3k+1 numbers whose ternary decompositions are in Sk−1 gives
exactly numbers with decompositions from S, as described in the assertion, of
length k + 1, plus 3k+1. �

Note also that the above expression for Dk+1 implies that

|Dk+1| = |Sk+1| − |Sk| = |Sk−1|,

and thus we can easily prove that every |Sk| is a Fibonacci number: |Sk| = Fk+3

(if we start with F0 = 0, F1 = F2 = 1).

The above proposition characterizes the function t(n) = p(n)− q(n) which is
equal to 0 if (n)3 ∈ S and to 1 otherwise. It also allows to find precisely its first
differences dt(n) = t(n+ 1)− t(n):

Corollary 5.5. The first differences of the function t(n) are

dt(n) =



















0, if (n)3 ∈ S does not contain 1 and ends with 00 or 22;

1, if (n)3 ∈ S contains 1 or ends with 220;

−1, if (n)3 ∈ (22+00+)∗.{2 ∪ 2+12∗};

0, in all other cases.

Here the first case corresponds to t(n) = t(n + 1) = 0 and the last case to

t(n) = t(n+ 1) = 1.

The corresponding automaton for dt(n) is depicted below.



Prefix palindromic length of the Sierpinski word 13

C|-

A|0 A|0

B|+ B|-

C|+

S|0

0

1

2

2

1

0

2

1

0

0

1

2

0

1,2

2

0,1

0,1,2

This automaton is equivalent to the following morphic construction for the
sequence dt.

Theorem 5.6. The sequence dt is the 3-automatic word over the alphabet {-, 0, +}
given as follows:

dt = ξ(ν∞(A)),

where the morphism ν : {A,B,C,A,B,C, S}∗ → {A,B,C,A,B,C, S}∗ is de-

fined by














































ν(A) = ABC,

ν(B) = BSS,

ν(C) = ABS,

ν(A) = CBA,

ν(B) = SSB,

ν(C) = SBA,

ν(S) = SSS,

and the coding ξ : {A,B,C,A,B,C, S}∗ → {-, 0, +}∗ is given by ξ(A) = ξ(A) =
ξ(S) =0, ξ(B) = ξ(C) =+, ξ(B) = ξ(C) =-.

6 First differences of p(n)

By the definition of t(n), the first differences of the function p(n) are

dp(n) = dq(n) + dt(n).
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The functions dq(n) and dt(n) are completely described in Theorems 4.11 and
5.6 and by respective automata. It remains just to combine them, and one of

the natural ways to do it is to define a new morphism ψ =
(

δ
ν

)

just as a di-

rect product of δ and ν on the direct product of alphabets. We start with both

starting symbols and get ψ
(

A
D

)

=
(

A
D

)(

B
S

)

(

C
S′

)

; here the upper line is δ and

the lower is ν. Then we define ψ on all the pairs of symbols that appeared,
and continue this process while they continue to appear. We observe that only

ten pairs appear in the fixed point of ψ starting with
(

A
D

)

: the alphabet is

A =

{

(

A
D

)

,

(

A

D

)

,
(

B
S

)

,
(

B
S

)

,
(

C
S′

)

,

(

C
S′

)

,
(

S
D

)

,
(

S

D

)

,
(

S
S

)

,
(

S
S′

)

}

. Since we in-

vestigate the sum of the two first difference functions, each of these double let-

ters is coded by c
(

X
Y

)

= γ(X) + ξ(Y ), where we recall that the symbols −, 0,+

are in fact numbers −1, 0, 1. So, for example, we have c
(

A
D

)

= 0+ 1 = 1.

It remains to simplify the notation: the first six symbols of A can be denoted
by just their upper letters, and the last four, starting with S, are defined by
their lower letters. All this gives the following

Theorem 6.1. The sequence dp of first differences of the prefix palindromic

length of the Sierpinski word is the 3-automatic word over the alphabet {-, 0, +}
defined as

dp = c(ψ∞(A)),

where the morphism ψ : B∗ → B∗, where B = {A,B,C,D,A,B,C,D, S, S′}, is
defined by















































































ψ(A) = ABC,

ψ(B) = BSS,

ψ(C) = ABD,

ψ(D) = DSS′,

ψ(A) = CBA,

ψ(B) = SSB,

ψ(C) = DBA,

ψ(D) = S′SD,

ψ(S) = SSS,

ψ(S′) = DSD,

and the coding c : B∗ → {-, 0, +}∗ is given by c(A) = c(B) = c(C) = c(D) = +,

c(A) = c(B) = c(C) = c(D) = −, c(S) = c(S′) = 0.

The corresponding DFAO is depicted below.
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C|-

A|+ A|-

B|+ B|-

C|+

S|0

S′|0

D|+ D|-

0

1
2

2

1

0

2

1

0

0

1

2

0

1,2

2

0,1

0,1,2

0

1 2

0

1

20

1

2

We have proved that the first differences of the function ps(n) are 3-automatic
and thus the function itself is 3-regular.
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7. A. E. Frid, E. Laborde, J. Peltomäki, On prefix palindromic length of automatic
words, Theoret. Comput. Sci. 891 (2021), 13–23.

8. A. E. Frid, S. Puzynina, L. Zamboni. On palindromic factorization of words. Adv.

Appl. Math. 50 (2013), 737–748.

9. E. Laborde, Sur la longueur palindromique du préfixe de suites k-automatiques,
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