Skip to main content

Environmental Boundaries and Road Regularity in Virtual Reality: Examining Their Effects on Navigation Performance and Spatial Cognition

  • Conference paper
  • First Online:
Human Aspects of IT for the Aged Population. Design, Interaction and Technology Acceptance (HCII 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13330))

Included in the following conference series:

  • 1452 Accesses

Abstract

This study investigated how environmental boundaries and road regularity influence people navigating through Virtual Reality (VR) and constructing cognitive maps. Thirty-six younger adults participated in the VR experiment, where they navigated in two different roads (a regular road and an irregular road) on three types of environmental boundaries (no boundary, square boundary, and trapezoidal boundary) to learn virtual environments and locate a reward. The results of the experiment showed that environmental boundaries and participants’ spatial ability had significant influences on cognitive map construction. In regular road environments, participants constructed worse cognitive maps when navigating in the trapezoidal boundary than in the square boundary. In addition, the better spatial ability the participants had, the better cognitive map they constructed. These results give insights into researches on how older adults use spatial geometric cues including environmental boundaries and road regularity when navigating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhandari, J., MacNeilage, P., Folmer, E.: Teleportation without spatial disorientation using optical flow cues. Presented at the, Toronto, Ontario, Canada (2018). https://doi.org/10.20380/gi2018.22

  2. Forte, J.L.B., Vela, F.L.G., RodrĂ­guez, P.P.: User experience problems in immersive virtual environments. Presented at the, Donostia Gipuzkoa Spain June 25 (2019). https://doi.org/10.1145/3335595.3336288

  3. Sayyad, E., Sra, M., Hollerer, T.: Walking and teleportation in wide-area virtual reality experiences. Presented at the , Recife/Porto de Galinhas November (2020). https://doi.org/10.1109/ISMAR50242.2020.00088

  4. Wallet, G., Sauzéon, H., Pala, P.A., Larrue, F., Zheng, X., N’Kaoua, B.: Virtual/real transfer of spatial knowledge: benefit from visual fidelity provided in a virtual environment and impact of active navigation. Cyberpsychol. Behav. Soc. Netw. 14, 417–423 (2011). https://doi.org/10.1089/cyber.2009.0187

    Article  Google Scholar 

  5. Richardson, A.E., Powers, M.E., Bousquet, L.G.: Video game experience predicts virtual, but not real navigation performance. Comput. Hum. Behav. 27, 552–560 (2011). https://doi.org/10.1016/j.chb.2010.10.003

    Article  Google Scholar 

  6. Richardson, A.E., Montello, D.R., Hegarty, M.: Spatial knowledge acquisition from maps and from navigation in real and virtual environments. Mem. Cognit. 27, 741–750 (1999). https://doi.org/10.3758/BF03211566

    Article  Google Scholar 

  7. Waller, D., Hunt, E., Knapp, D.: The transfer of spatial knowledge in virtual environment training. Presence: Teleoperators Virtual Environ. 7(2), 129-143 (1998). https://doi.org/10.1162/105474698565631

  8. Taube, J.S., Valerio, S., Yoder, R.M.: Is navigation in virtual reality with fMRI really navigation? J. Cogn. Neurosci. 25, 1008–1019 (2013). https://doi.org/10.1162/jocn_a_00386

    Article  Google Scholar 

  9. Ekstrom, A.D.: Why vision is important to how we navigate: human spatial navigation and vision. Hippocampus 25, 731–735 (2015). https://doi.org/10.1002/hipo.22449

    Article  Google Scholar 

  10. Ekstrom, A.D., Spiers, H.J., Bohbot, V.D., Rosenbaum, R.S.: Human Spatial Navigation. Princeton University Press (2018)

    Google Scholar 

  11. Lorenz, M., Busch, M., Rentzos, L., Tscheligi, M., Klimant, P., Frohlich, P.: I’m There! The influence of virtual reality and mixed reality environments combined with two different navigation methods on presence. Presented at the , Arles, Camargue, Provence, France 2015–3 (2015). https://doi.org/10.1109/VR.2015.7223376

  12. Clemente, M., Rodríguez, A., Rey, B., Alcañiz, M.: Assessment of the influence of navigation control and screen size on the sense of presence in virtual reality using EEG. Expert Syst. Appl. 41, 1584–1592 (2014). https://doi.org/10.1016/j.eswa.2013.08.055

    Article  Google Scholar 

  13. Brade, J., Lorenz, M., Busch, M., Hammer, N., Tscheligi, M., Klimant, P.: Being there again – presence in real and virtual environments and its relation to usability and user experience using a mobile navigation task. Int. J. Hum Comput Stud. 101, 76–87 (2017). https://doi.org/10.1016/j.ijhcs.2017.01.004

    Article  Google Scholar 

  14. Cliburn, D., Winlock, T., Rilea, S., Van Donsel, M.: Dynamic landmark placement as a navigation aid in virtual worlds. Presented at the , Newport Beach, California (2007). https://doi.org/10.1145/1315184.1315225

  15. Ruddle, R.A.: The effect of trails on first-time and subsequent navigation in a virtual environment. Presented at the , Bonn, Germany (2005). https://doi.org/10.1109/VR.2005.1492761

  16. Chrastil, E.R., Warren, W.H.: Active and passive spatial learning in human navigation: acquisition of survey knowledge. J. Exp. Psychol. Learn. Mem. Cogn. 39, 1520–1537 (2013). https://doi.org/10.1037/a0032382

    Article  Google Scholar 

  17. Fabroyir, H., Teng, W.-C.: Navigation in virtual environments using head-mounted displays: Allocentric vs. egocentric behaviors. Comput. Human Behav. 80, 331-343 (2018). https://doi.org/10.1016/j.chb.2017.11.033

  18. Walkowiak, S., Foulsham, T., Eardley, A.F.: Individual differences and personality correlates of navigational performance in the virtual route learning task. Comput. Hum. Behav. 45, 402–410 (2015). https://doi.org/10.1016/j.chb.2014.12.041

    Article  Google Scholar 

  19. Moser, E.I., Moser, M.-B., McNaughton, B.L.: Spatial representation in the hippocampal formation: a history. Nat. Neurosci. 20, 1448–1464 (2017). https://doi.org/10.1038/nn.4653

    Article  Google Scholar 

  20. Hardcastle, K., Ganguli, S., Giocomo, L.M.: Environmental boundaries as an error correction mechanism for grid cells. Neuron 86, 827–839 (2015). https://doi.org/10.1016/j.neuron.2015.03.039

    Article  Google Scholar 

  21. Krupic, J., Bauza, M., Burton, S., Barry, C., O’Keefe, J.: Grid cell symmetry is shaped by environmental geometry. Nature 518, 232–235 (2015). https://doi.org/10.1038/nature14153

    Article  Google Scholar 

  22. Krupic, J., Bauza, M., Burton, S., O’Keefe, J.: Local transformations of the hippocampal cognitive map. Science 359, 1143–1146 (2018). https://doi.org/10.1126/science.aao4960

    Article  Google Scholar 

  23. Keinath, A.T., Epstein, R.A., Balasubramanian, V.: Environmental deformations dynamically shift the grid cell spatial metric. eLife. 7, e38169 (2018). https://doi.org/10.7554/eLife.38169

  24. Hinman, J.R., Chapman, G.W., Hasselmo, M.E.: Neuronal representation of environmental boundaries in egocentric coordinates. Nat Commun. 10, 2772 (2019). https://doi.org/10.1038/s41467-019-10722-y

    Article  Google Scholar 

  25. Bellmund, J.L.S., de Cothi, W., Ruiter, T.A., Nau, M., Barry, C., Doeller, C.F.: Deforming the metric of cognitive maps distorts memory. Nat Hum Behav. 4, 177–188 (2020). https://doi.org/10.1038/s41562-019-0767-3

    Article  Google Scholar 

  26. Graham, P., Cheng, K.: Ants use the panoramic skyline as a visual cue during navigation. Curr. Biol. 19, R935–R937 (2009). https://doi.org/10.1016/j.cub.2009.08.015

    Article  Google Scholar 

  27. Lee, S.A., et al.: Electrophysiological signatures of spatial boundaries in the human subiculum. J. Neurosci. 38, 3265–3272 (2018). https://doi.org/10.1523/JNEUROSCI.3216-17.2018

    Article  Google Scholar 

  28. Kelly, J.W., McNamara, T.P., Bodenheimer, B., Carr, T.H., Rieser, J.J.: The shape of human navigation: How environmental geometry is used in maintenance of spatial orientation. Cognition 109, 281–286 (2008). https://doi.org/10.1016/j.cognition.2008.09.001

    Article  Google Scholar 

  29. Cheng, K., Newcombe, N.S.: Is there a geometric module for spatial orientation? squaring theory and evidence. Psychon. Bull. Rev. 12, 1–23 (2005). https://doi.org/10.3758/BF03196346

    Article  Google Scholar 

  30. Hartley, T., Trinkler, I., Burgess, N.: Geometric determinants of human spatial memory. Cognition 94, 39–75 (2004). https://doi.org/10.1016/j.cognition.2003.12.001

    Article  Google Scholar 

  31. O’Keefe, J., Burgess, N.: Geometric determinants of the place fields of hippocampal neurons. Nature 381(6581), 425–428 (1996). https://doi.org/10.1038/381425a0

    Article  Google Scholar 

  32. Sjölinder, M., Höök, K., Nilsson, L.-G., Andersson, G.: Age differences and the acquisition of spatial knowledge in a three-dimensional environment: evaluating the use of an overview map as a navigation aid. Int. J. Hum Comput Stud. 63, 537–564 (2005). https://doi.org/10.1016/j.ijhcs.2005.04.024

    Article  Google Scholar 

  33. Siegel, A.W., White, S.H.: The development of spatial representations of large-scale environments. In: Advances in Child Development and Behavior, pp. 9–55. Elsevier (1975)

    Google Scholar 

  34. Dalton, R.C.: The secret is to follow your nose: route path selection and angularity. Environ. Behav. 35, 107–131 (2003). https://doi.org/10.1177/0013916502238867

    Article  Google Scholar 

  35. Zacharias, J.: Pedestrian behavior and perception in urban walking environments. J. Plan. Lit. 16, 3–18 (2001). https://doi.org/10.1177/08854120122093249

    Article  Google Scholar 

  36. Sadalla, E.K., Montello, D.R.: Remembering changes in direction. Environ. Behav. 21, 346–363 (1989). https://doi.org/10.1177/0013916589213006

    Article  Google Scholar 

  37. D’Acci, L.: Aesthetical cognitive perceptions of urban street form. Pedestrian preferences towards straight or curvy route shapes. J. Urban Des. 24(6), 896–912 (2019). https://doi.org/10.1080/13574809.2018.1554994

    Article  Google Scholar 

  38. Liu, B., Dong, W., Zhan, Z., Wang, S., Meng, L.: Differences in the gaze behaviours of pedestrians navigating between regular and irregular road patterns. ISPRS Int. J. Geo Inf. 9, 45 (2020). https://doi.org/10.3390/ijgi9010045

    Article  Google Scholar 

  39. Moffat, S.D., Zonderman, A.B., Resnick, S.M.: Age differences in spatial memory in a virtual environment navigation task. Neurobiol. Aging 22, 787–796 (2001). https://doi.org/10.1016/S0197-4580(01)00251-2

    Article  Google Scholar 

  40. Moffat, S.D., Resnick, S.M.: Effects of age on virtual environment place navigation and allocentric cognitive mapping. Behav. Neurosci. 116, 851–859 (2002). https://doi.org/10.1037//0735-7044.116.5.851

    Article  Google Scholar 

  41. Ekstrom, R.B., French, J.W., Harman, H.H.: Kit of factor-referenced cognitive tests. Presented at the (1976)

    Google Scholar 

  42. Lee, S.A., Spelke, E.S.: Two systems of spatial representation underlying navigation. Exp. Brain Res. 206, 179–188 (2010). https://doi.org/10.1007/s00221-010-2349-5

    Article  Google Scholar 

  43. Sturz, B.R., Forloines, M.R., Bodily, K.D.: Enclosure size and the use of local and global geometric cues for reorientation. Psychon. Bull. Rev. 19, 270–276 (2012). https://doi.org/10.3758/s13423-011-0195-5

    Article  Google Scholar 

  44. Miller, N.: Modeling the effects of enclosure size on geometry learning. Behav. Proc. 80, 306–313 (2009). https://doi.org/10.1016/j.beproc.2008.12.011

    Article  Google Scholar 

  45. Anacta, V.J.A., Schwering, A., Li, R., Muenzer, S.: Orientation information in wayfinding instructions: evidences from human verbal and visual instructions. GeoJournal 82(3), 567–583 (2016). https://doi.org/10.1007/s10708-016-9703-5

    Article  Google Scholar 

  46. Goodman, J., Gray, P., Khammampad, K., Brewster, S.: Using landmarks to support older people in navigation. In: Brewster, S., Dunlop, M. (eds.) Mobile HCI 2004. LNCS, vol. 3160, pp. 38–48. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28637-0_4

    Chapter  Google Scholar 

  47. Goodman-Deane, J., Brewster, S., Gray, P.: How can we best use landmarks to support older people in navigation? Behav. Inf. Technol. (2005). https://doi.org/10.1080/01449290512331319021

    Article  Google Scholar 

  48. Stangl, M., Achtzehn, J., Huber, K., Dietrich, C., Tempelmann, C., Wolbers, T.: Compromised grid-cell-like representations in old age as a key mechanism to explain age-related navigational deficits. Curr. Biol. 28, 1108-1115.e6 (2018). https://doi.org/10.1016/j.cub.2018.02.038

    Article  Google Scholar 

  49. Lithfous, S., Dufour, A., Després, O.: Spatial navigation in normal aging and the prodromal stage of Alzheimer’s disease: insights from imaging and behavioral studies. Ageing Res. Rev. 12, 201–213 (2013). https://doi.org/10.1016/j.arr.2012.04.007

    Article  Google Scholar 

  50. Moffat, S.D., Elkins, W., Resnick, S.M.: Age differences in the neural systems supporting human allocentric spatial navigation. Neurobiol. Aging 27, 965–972 (2006). https://doi.org/10.1016/j.neurobiolaging.2005.05.011

    Article  Google Scholar 

  51. Yassa, M.A., Mattfeld, A.T., Stark, S.M., Stark, C.E.L.: Age-related memory deficits linked to circuit-specific disruptions in the hippocampus. Proc. Natl. Acad. Sci. U.S.A. 108, 8873–8878 (2011). https://doi.org/10.1073/pnas.1101567108

    Article  Google Scholar 

  52. Konishi, K., Etchamendy, N., Roy, S., Marighetto, A., Rajah, N., Bohbot, V.D.: Decreased functional magnetic resonance imaging activity in the hippocampus in favor of the caudate nucleus in older adults tested in a virtual navigation task. Hippocampus 23, 1005–1014 (2013). https://doi.org/10.1002/hipo.22181

    Article  Google Scholar 

  53. Bécu, M., et al.: Age-related preference for geometric spatial cues during real-world navigation. Nat Hum Behav. 4, 88–99 (2020). https://doi.org/10.1038/s41562-019-0718-z

    Article  Google Scholar 

  54. Kimura, K., Moussavi, Z.: Do older and young adults learn to integrate geometry while navigating in an environment of a serious game? J Exp Neurosci. 16, 263310552098886 (2021). https://doi.org/10.1177/2633105520988861

    Article  Google Scholar 

  55. Iaria, G., Palermo, L., Committeri, G., Barton, J.J.S.: Age differences in the formation and use of cognitive maps. Behav. Brain Res. 196, 187–191 (2009). https://doi.org/10.1016/j.bbr.2008.08.040

    Article  Google Scholar 

  56. Picucci, L., Caffo, A.O., Bosco, A.: Age and sex differences in a virtual version of the reorientation task. Cogn. Process. 10, 272–275 (2009). https://doi.org/10.1007/s10339-009-0321-8

    Article  Google Scholar 

  57. Schuck, N.W., Doeller, C.F., Polk, T.A., Lindenberger, U., Li, S.-C.: Human aging alters the neural computation and representation of space. Neuroimage 117, 141–150 (2015). https://doi.org/10.1016/j.neuroimage.2015.05.031

    Article  Google Scholar 

  58. Ishikawa, T., Fujiwara, H., Imai, O., Okabe, A.: Wayfinding with a GPS-based mobile navigation system: a comparison with maps and direct experience. J. Environ. Psychol. 28, 74–82 (2008). https://doi.org/10.1016/j.jenvp.2007.09.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, L., Zuo, Y., Zhou, J. (2022). Environmental Boundaries and Road Regularity in Virtual Reality: Examining Their Effects on Navigation Performance and Spatial Cognition. In: Gao, Q., Zhou, J. (eds) Human Aspects of IT for the Aged Population. Design, Interaction and Technology Acceptance. HCII 2022. Lecture Notes in Computer Science, vol 13330. Springer, Cham. https://doi.org/10.1007/978-3-031-05581-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05581-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05580-5

  • Online ISBN: 978-3-031-05581-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics