Safety Invariant Verification that Meets
Engineers’ Expectations

Alexei Iliasov!, Linas Laibinis?, Dominic Taylor?,
Ilya Lopatkin!, Alexander Romanovsky!*

! The Formal Route Ltd., UK
2 Institute of Computer Science, Vilnius University, Lithuania
3 Systra Scott Lister, UK
4 Newcastle University, UK

Abstract. This industrial experience report discusses the problems we
have been facing while using our formal verification technology, called
SafeCap, in a substantial number of live signalling projects in the UK
mainline rail, and the solutions we are now developing to counter these.
Symbolic execution and safety invariant verification are well-understood
subjects and yet their application to real life high assurance systems re-
quires going a few steps beyond the conventional practice. In engineering
practice it is not sufficient to simply know that a safety property fails:
one needs to know why and hence where and what exactly fails; it is
also crucial to positively demonstrate no safety failure is missing. In this
industrial report we show how to derive a list of all potential errors by
transforming safety invariant predicate using information from symbolic
state transition system. The identified possible errors are verified by an
automated symbolic prover, while a report generator presents findings in
an engineer-friendly format to guide subsequent rework steps.

1 Introduction

There is a growing number of railway signalling companies that use verification
techniques based on formal proofs for demonstrating and assuring system safety.
The automated technologies, including AtelierBEl, Ovado/ RodirEl, Proverﬂ and
GNAT Adaﬂ formally verify that a system satisfies a collection of identified
safety properties. These tools report violations found during verification to the
signalling engineers, who use that information to guide the rework process.

One of the earliest forms of computer-based interlocking was the Solid State
Interlocking (SSI) [I], developed in the UK in the 1980s through an agreement
between British Rail and two signalling supply companies, Westinghouse and
GEC General Signal. SSI is the predominant technology used for computer-
based interlockings on UK mainline railways. It also has applications overseas,
including in India, Australia, New Zealand, France and Belgium.

! https://www.clearsy.com/en/tools/atelier-b/
2 https:/ /ovado.net/

3 https://www.prover.com/

* https://www.adacore.com /gnatpro



In the last two years we have been applying a modern verification technology
called SafeCap as part of a number of industrial signalling projects to verify the
safety of SSI designs. Safety verification of 30 mainline interlockings, developed
by different suppliers and design offices, has been successfully conducted for our
industrial partners [4].

SafeCap was originally developed as an open toolkit for modelling railway
capacity and verifying railway network safety in a number of public projects led
by Newcastle University [2]. In the last 5 years the tool has been fully redesigned
to deliver scalable and fully-automated verification of industrial interlockings
[3], [4]. The resulting toolset has been proven in commercial applications to the
verification of signalling projects that use SSI, and successor technologies. The
two distinguishing features of SSI SafeCap are a fully automated verification
and complete hiding of formalisation details. As a result, engineers receive the
diagnostics reports describing the found safety problems in terms familiar to
them, i.e., by explicitly referring to the applicable railway layouts (schemas) and
SSI data.

Our approach to proving safety of signalling data is based on expressing
signalling principles as a collection of predicates constituting safety invariants,
translating the source data (the schema and the SSI data) into a formal model —
a state transition system, and then generating and discharging proof obligations
to establish that every system transition maintains the safety invariant. At the
basic level, the output is a list of names of violated signalling safety principles.
This is clearly inadequate and hence we provided further detail about identified
violations in two ways:

— a particular transition leading to a failed proof obligation is used to define
the source code location of a potential error;

— the state of an undischarged proof obligation is used to report the probable
cause of proof failure and thus indicate the actual cause of an error in the
source data.

The second way was an heuristic and was not guaranteed to succeed in pro-
ducing a useful commentary. In particular, it did not attempt to list all errors in
a sense that an error is understood by engineers as a specific mistake in source
data. Such a rift between the tool output and engineers’ expectations could not
be bridged without changing the very approach to verification of safety invari-
ants.

Initial industrial projects highlighted the deficiencies of the conventional
safety invariant verification procedure, most critically that a single verification
pass cannot produce the list of all possible errors due to masking of unreported
errors by reported ones.

In order to rectify this, we replaced the proof state analysis heuristics with
a safety invariant transformation procedure that produces a collection of safety
invariant satisfaction proof obligations tailored to a specific symbolic state tran-
sitions. The procedure was designed in such a manner that every constructed
proof obligation aligns exactly with a potential engineering error in source data.



Thus, with the same technique, we give a formal definition of an engineering
error and a method to produce all their instances for a given system.

2 Reporting Safety Invariant Violations

2.1 Establishing System Correctness

The central question in the verification of signalling correctness is what consti-
tutes a safe signalling design. Certain basic principles are universally accepted,
for instance, the absence of train collisions and derailment. However, it is almost
hopeless to verify the absence of such hazards in the strictest possible sense.
Moreover, interlockings, by themselves, provide only a modicum of protection
against driver errors through the provision of overlaps and control of signal as-
pects. Interlockings also do little to protect against equipment failures, but are
themselves designed to be resilient to such failures.

For these reasons, correctness is established not against the basic principles
but rather against the lower level signalling principles derived from foundational
safety principles and designed to enforce railway operation with an acceptable
level of risk and failures. Such principles are carefully designed by domain experts
but can vary between regions and do change over time.

2.2 A Running Example

In the following we shall use a simple, but real-life case, of a signalling safety
principle to illustrate our approach. The principle states that

For every set route, it holds that all sub routes of the route that are within
the interlocking control area are locked.

In other words, when setting a route, all the sub routes of the route path
must be commanded locked or detected locked. In the mathematical notation
we employ, which is a combination of first order logic and set theory, the rule
can be formally expressed as the following safety invariant:

route_subrouteset[route_s \ route_s'p] N SubRoute.izl C subroute.| (1)

where route_subrouteset is a constant defined by a signalling plan document (a
formalised data set describing a geographical interlocking area), stating which
sub routes comprise the path of a route; SubRoute.izlis a signalling plan constant
defining current interlocking sub routes; route_s and route_s'p are the current
and a previous states of a model variable recording route locking status (that is,
r € route_s implies that route r is currently locked).



2.3 Symbolic Verification of Signalling Safety Principles

For the purposes of verification, each signalling principle is rendered as an induc-
tive safety invariant — a system property that must hold when a system boots up
and must be maintained (or, equivalently, reestablished) after any state update.
Verification is then understood as the problem of checking that any safety in-
variant is respected by every state update. Technically this is done be generating
conjectures of the form " if an invariant holds in a previous state and an certain
state update happens, is it true that the invariant holds for the new state?”.
Formally, a conjecture (also called a proof obligation (PQO)) is represented as a
logical sequent consisting of a number of hypotheses (H) and a goal (G), denoted
as H+F G.

In general, a schematic proof obligation for the preservation of a safety in-
variant (for a state transition j € J) takes the following form:

M(c) A A(e,v) A I(c, v,v) A Pj(c,v) A Qj(c,v,v") = I(c,v,v") (2)

where M (c) and A(c,v) are constants and constraints from the formalised
signalling plan, defined over the constants ¢ and model state (variables) v, a
state transition is characterised by a pre-condition predicate P;(c,v) and a post-
condition Q,(c, v,v’) relating a next state v’ to the current state v and constants
¢, J represents the set of all such state transitions, and I(c,v,v") stands for the
invariant property to be preserved.

The number of such proof conjectures is m * n, where m is the number of
safety invariant predicates (67 defined so far) and n is the number of possible
state updates (for the industrial projects we have carried out this value varies
between 4000 and 140000 with a mean 17641). This is a small number when
contrasted against the number of potentially reachable states (more than 22090).

When a prover fails to discharge (i.e., to complete automated proof of) a
proof obligation derived from a safety invariant, we know that a safety invariant
is violated. Clearly this alone is not sufficient since a typical interlocking data
has thousands of lines of code. However, a failed proof obligation itself can be
traced, via the associated state transition, to the data source code and, more
precisely, to one or more control flow threads of the verified data. This gives us
an initial error localisation in terms of available signalling data.

Such localisation alone is still not enough since one error can, and typically
does, manifest itself in many failed proof obligations. Therefore, ascertaining the
actual cause of each failed proof obligation is extremely laborious; in cases of
hundreds or thousands of failed proof obligations it becomes simply impractica-
ble.

Previously we processed every failed proof obligation at the report generation
stage to identify its likely cause. This is much harder than simply looking at an
open goal, i.e., a current proving conjecture that the prover failed to discharge.
First, there can be a number of open goals. Second, an open goal could be stated,
due to certain internal rewritings and simplifications, in terms that are of no
relationship (i.e., having no common free identifiers) to the original transition
and safety invariant predicate.



One technique that we employed to overcome this shortcoming was automatic
backtracking of a failed sub goal to the state most suitable to reporting. Such a
state had a goal matching certain predefined expression templates; backtracking
combined pruning (that is, reversion) of proof steps with its own set of rewrite
rules; as with this proving, there is no guarantee of arriving at a satisfactory
result. However, in our applications it was consistently successful.

Knowing the cause of failed proof obligations allowed us to collate identical
errors and produce usable reports. The compression factor here was quite signif-
icant: there could be between 10 to 50 failed proof obligations for every reported
violation.

2.4 Running Example, Continued

The formal definition of our running example safety principle, as given in , is
a typical set-theoretic statement of a safety predicate; however, any arising failed
goals are difficult to backtrack and analyse. Expression route_subrouteset[route_s\
route_s'p] relates routes being set to their sub routes, therefore, when the proof
fails, all we can hope to know is that one or more of the routes being set is not
locking of one or more sub routes. However, we can rewrite the property into an
equivalent predicate form:

Vr € Route
r € route_s \ route_s'p
=
Vsr € SubRoute
sr € route_subrouteset[{r}] U SubRoute.ixl
=
sr € subroute_|

In the rewritten proof obligation, the expression route_s\ route_s'p collapses to
a constant set of routes being set in a current transition. This allows the prover
to eliminate the outer quantifier and introduce a new free identifier with the
constraint r = Ry Vr= Ry V .... The proof then proceeds by analysing cases of
disjunction. This, in turn, allows the prover to collapse route_subrouteset[{r}] to a
constant set, and to continue in the same manner. Although, as discussed before,
useful identifiers like r describing proof context might be translated to other
names or filtered out in actual proofs, the backtracking process can normally
recover the proof state.

3 Positive Demonstration of the Absence of Violations

Decoding the proof state to infer an error has proven to be insufficient for finding
all its causes and all the circumstances of its occurrence. It is possible for a failed
proof obligation to reveal one error and, at the same, time mask the presence
of another. Logically, nothing wrong happens here: analysis of a violated safety
invariant, involving the backtracking process, reveals one likely cause of the



violation. Yet reporting all such causes associated with specific SSI source data
errors is one of the principal requirements for an automated safety verification
process.

In our example, if some route were missing the locking of two sub routes
on its path, a failed proof obligation would point to only one of them. This is
related to the fact that the prover is designed to identify a stuck goal as early as
possible. Moreover, it is prohibitively expensive to try and explore every open
(undischarged) sub-goal.

The simplest solution would be to fix all the identified problems and re-run
the verification process, which would reveal previously masked errors. Unfor-
tunately, this is not a practicable scenario for various reasons: 1) changes to
signalling data change can takes months and conducting multiple re-verification
cycles might be impossible due to delivery constraints; 2) generic signalling prin-
ciples can, at times and subject to risk assessment, be deliberately violated to
meet site-specific operational needs; 3) we cannot rule out the presence of false
positives, partly to the complexity and constant evolution of real-life signalling
data, and partly due to automated theorem proving potentially being undecid-
able for our modelling logic. A false positive can turn from being a benign issue
to a critical one when it masks another error.

To rule out the masking of one error by another, we now approach safety in-
variant verification from a slightly different perspective. Instead of a verification
process as such, we focus initially on the enumeration of all potential non-trivial
errors. This is achieved by altering the method of proof obligation generation,
aiming to obtain a dedicated proof obligation for each non-trivial potential error.
In the following sections we define the meaning of a non-trivial potential error
via a process that constructs bespoke proof obligations for each state transition.

3.1 Synthesising Focused Safety Invariant

Most of the attributes of SST objects have two states (e.g., a route is set or unset,
a sub route is locked or free and so on). In line with the set theory underpinning
our formalisation, such attributes are modelled as set membership tests for an
object in the model variable corresponding to the attribute. For instance, the fact
that some sub route UAA-AB is locked is expressed as UAA-AB € subroute_|;
the same sub route being free is, conversely, UAA-AB ¢ subroute_l.

In our formalisation, a state transition is represented as a pair of predicates
Pre(c,v) and Post(c,v,v’). In a general case, that is all we can say. However,
in the case of a state transition derived from signalling data, the restrictions of
the SSI language allows us to make stronger assumptions. First, since SSI is a
deterministic imperative language, state post conditions are limited to conjuncts
of equalities of the form v = v U F; \ Ea, where E; and Es are constant sets
of the values to be added or removed. Second, the predicate language of SSI is
also quite limited and, as a result, its translation yields a precondition that is a
conjunct of just few forms of clauses:

— membership clause v € S, v ¢ S or v C S;



— equality clause f(v) =c,v=c,v#c, ...;
— disjunctive clauses, quantifiers and implications.

By looking at a post condition, it is possible to deduce, via simple pattern
matching, sets of objects that are being added or removed from the corresponding
set variables (i.e., constant sets Ey and E3). That is, from the predicate of a post
condition, we can unambiguously infer which sub routes are locked or freed and
S0 on.

We shall describe various model variables of interest as indexed set Z;. For
instance, Zy could describe the model variable subroute_|, Z; — track_o, and so on.
The description of a variable is different from the variable itself — it imprecisely
characterises a variable state in the context of a given state transition.

Focusing on the post condition part of the variable description, we refer to
the added and removed sets of of Z; as Z;" and Z; . There is a simple relationship
between Z; and its variable counterpart v;:

Identifier 7; stands for the previous variable state. For the moment, we only
know that it must satisfy the safety invariant. In our running example, for post
condition subroute_I' = subroute I' U {UAA-AB} \ {UAA-BA}, we have Z;7 =
{UAA-AB} and Z; = {UAA-BA}.

Next let us consider a precondition of a state transition. The situation is
less certain here as we can rely only on the first two clause forms (presented
above) to deduce the current state variable description, leaving some clauses not
analysed.

Consider the first (membership) clause case. For every model variable, one
can once again build two sets: values tested to be in a set variable and values
tested not to be in a set variable. These define Z; via added, 7; , and, removed,
Z, , sets. Again, we can relate these two sets to the previous state of a model
variable:

=2 UZ, \Z; (4)

Where z; is a previous (unknown) variable state. Putting and together
we have the following;:

vi=2,U(Z; UZI\Z7)\(Z; Uz \ Z])

Intuitively, 7; U Z' \ Z; is a set of objects that are known to be added

(locked or set), while Z, U Z; \ Z; is the known set of removed (unlocked,
freed) objects.

3.2 Computing Potential Errors

Model variable descriptions inferred for a state transition allow us to transform
a safety invariant predicate into a program, computing the set of generally more



numerous but individually simpler proof obligations. This is due to the fact
that most invariant statements are written in a predicate form with quantifiers
to facilitate reporting (via introduction of bound variables that may provide
error context) and such quantifiers can be eliminated, in the vast majority of
cases, using the information contained in the description of model variables. The
end result is a proof obligation without quantifiers, where bound variables are
instantiated to specific constants.

Every such derived proof obligation is a test for a presence of an error; a
unique name generated for a proof obligation is the name of a corresponding
potential error.

The balance at play here is the granularity of errors. At one extreme we can
take an original safety invariant and declare a violation of this invariant to be
one error. Another, more desirable, extreme, is to deduce a unique combination
of schema entities that may give rise to an error, and reflecting this combination
in the name of an error.

We require the technique to be sound — it is fine to list errors that cannot
possibly arise (and, we hope, will be filtered out by the prover), however it is
not acceptable to omit errors that can potentially arise.

As a starting point, the name of an error is a combination of safety invariant
predicate (referenced either in proxy by its given name or directly as a predicate)
and state transition (we provide a unique name for each state transition). For
instance, invl/transition5 or, with predicate, I,,(c,7,v)/transition5.

When we drill down into what can go wrong for a specific transition with
respect to a given invariant, we might discover that the original coarse-grained
error name is refined into a number of more specific errors:
invi/transitionb/a/b/.../goal. Here a and b are some schema objects. An-
other addition here is a goal predicate — for invl/transition5/a/b to reference
an error distinct from, say, invl/transition5/a/c, each error needs its own
distinct proof obligation. To summarise, an error name is a combination of:

— invariant;

— transition;

— identifying schema entities;
verification goal.

There are two obvious restrictions on the set of error names for a given pair
of invariant and state transition. In the worst case scenario, we have a one-to-
one mapping between safety invariant predicate and an error name, that is, one
potential error for every case of safety principle encoded in a predicate. The
opposite extreme is combining names of all schema elements (that is, Cartesian
product of sets of routes, tracks and so on) to name individual errors.

Let us consider again the example invariant of sub route locking on route
setting:

Vr € Route
r € route_s \ route_s'p



Predicate r € route_s \ routes'p filters out routes not commanded in the
current state transition. Let some Z,, correspond to model variable route_s, then
Zz‘f and Z, correspond to sets of routes being set and unset respectively. We
can now reformulate the invariant, for the particular state transition and without
any loss of precision, as

VpeZi\Z, =...

Crucially, set Z;‘ \ Z, is known exactly from the description of route.s,
which allows us to soundly replace the external quantification with iteration.
We shall employ a distinct syntax to define programs that compute focused
proof obligations; for instance, the fragment above can be translated into the
following imperative notation:

WITH p FROM Z \ Z, GOAL (Vsr € SubRoute. .. )

here p is iterated over a set of values (derived from a given transition) and for
each value of p, the programs constructs a dedicated proof obligation, as defined
by the GOAL clause. The derived error names then would take form, for instance:
invil/<transition name>/R123/<goal>.

The improvement over the base case is that any found violation can be readily
attributed to some route p; even without analysing the proof state.

We can continue in the same manner focusing on the inner universal quan-
tifier. This would deliver an extra level of refinement (granularity) reflected in
error name at the price of producing one proof obligation per every sub route of
a route.

WITH p FROM Z} \ Z;
WITH sr FROM route_subrouteset[{r}] U SubRoute.ixl
GOAL sr € subroute_|

The key here is that set route_subrouteset[{r}] U SubRoute.izl is known at
this point (as the p value was already computed) so we can once again render
quantification as an iteration over a new, smaller goal.

We apply this program to achieve two goals: to compute the list of all possible
errors, and to compute proof obligations for all such errors. By iterating over all
combinations of state transitions and invariant predicates, we obtain the overall
list of errors and their proof obligations.

There is one further potential refinement of the described procedure: we can
use the variable description to deduce the cases where there is a definite error
even before attempting a proof. This saves us from relying on the prover to fail
to prove such cases or can be used to cross check the prover itself.

4 Discussion and Conclusion

The process outlined in the paper extends the safety invariant technique to pro-
duce error names and proof obligations at a finer level of granularity; previously,



a failed proof obligation could indicate one or more errors; with the new approach
a failed proof obligation is exactly one error.

On one extreme, it can filter out all proof obligations for a given invariant. On
another, it can inflate their number by orders of magnitude. On the balance, the
conducted experiments and initial application in the life signalling projects show
a significant but manageable (about ten fold) increase of the number of proof
obligations. These proof obligations are individually much simply and hence the
overall proof time increase is generally between 2 and 5 times. It is an acceptable
price to pay for an increased assurance in the verification process.

The one to one mapping between ”engineering” errors (deficiencies in source
data) and failed proof obligations permits a fairly straightforward implementa-
tion of a tracking of historic improvements in data.

The process upon an already industrially successful application of formal
methods; we routinely verify interlocking with hundreds of routes where control
logic defines several thousand variables (Boolean, integer and categorical). We
have seen cases of 24 deep nestings of conditional operators and blocks of codes
with nearly 200 conditional statements.

The verification process is completely automatic: due to the sheer scale of a
system under verification it is impracticable to require manual intervention at
any stage of the process. Needless to say, such systems cannot be verified to any
level of assurance via simulation or state space exploration techniques.

With the new approach the number of proof obligations is much higher: a
typical interlocking verification results in between 20K and 100K proof obliga-
tions (derived from about 60 safety invariant predicates); this is after application
of all the known reduction technique to symbolic state transition system. The
proof takes longer, however, it is comfortably under 2-4 minutes for most com-
plex projects, for the majority of the projects it takes less than 10 seconds.

We expect this effort to contribute to a substantial improvement of the Safe-
Cap diagnostics reports, ensuring that the tool is fit for purpose and the eventual
safety certification of our verification process as an alternative to manual check-
ing.

References

1. D H Stratton. Solid State Interlocking. First edition, IRSE Booklet, 28. Institution
of Railway Signal Engineers (IRSE). 20 pages. 1988.

2. A. Tliasov, I. Lopatkin, and A. Romanovsky. The SafeCap Platform for Modelling
Railway Safety and Capacity. In Proceedings of SAFECOMP - Computer Safety,
Reliability and Security. LNCS 8135, Springer, pages 130-137, 2013.

3. Alexei Iliasov, Dominic Taylor, Linas Laibinis, and Alexander Romanovsky. Formal
Verification of Signalling Programs with SafeCap. In Proceedings of 37th Interna-
tional Conference, SAFECOMP 2018, Vdsterds, Sweden, September 19-21. LNCS
110938, Springer, pages 91-106, 2018.

4. Alexei Iliasov, Dominic Taylor, Linas Laibinis, and Alexander B. Romanovsky. For-
mal verification of railway interlocking and its safety case. In Proceedings of Safety-
Critical Systems Symposium (SSS 2022), February 8-10, 2022. Safety-Critical Sys-
tems Club, UK, 2022.



	Safety Invariant Verification that Meets Engineers' Expectations

