
Performance Comparison of Python Translators

for a Multi-threaded CPU-bound Application

Andrés Milla1 and Enzo Rucci2

1Facultad de Informática, Universidad Nacional de La Plata, La
Plata, Buenos Aires, Argentina,

andressmilla@gmail.com
2III-LIDI, Facultad de Informática, Universidad Nacional de La

Plata - CIC, La Plata, Buenos Aires, Argentina,
erucci@lidi.info.unlp.edu.ar

May 23, 2022

This version of the contribution has been accepted for

publication, after peer review (when applicable) but is not the

Version of Record and does not reflect post-acceptance

improvements, or any corrections. The Version of Record is

available online at:

http://dx.doi.org/10.1007/978-3-031-05903-2_2. Use of this

Accepted Version is subject to the publisher’s Accepted

Manuscript terms of use https://www.springernature.com/gp/

open-research/policies/accepted-manuscript-terms

Abstract

Currently, Python is one of the most widely used languages in various
application areas. However, it has limitations when it comes to optimiz-
ing and parallelizing applications due to the nature of its official CPython
interpreter, especially for CPU-bound applications. To solve this prob-
lem, several alternative translators have emerged, each with a different
approach and its own cost-performance ratio. Due to the absence of com-
parative studies, we have carried out a performance comparison of these
translators using N-Body as a case study (a well-known problem with
high computational demand). The results obtained show that CPython
and PyPy presented poor performance due to their limitations when it
comes to parallelizing algorithms; while Numba and Cython achieved sig-
nificantly higher performance, proving to be viable options to speed up
numerical algorithms.

Keywords— Numba, Cython, N-body, CPU-bound, Parallel computing

1

ar
X

iv
:2

20
3.

08
26

3v
2 

 [
cs

.D
C

] 
 2

3 
M

ay
 2

02
2

http://dx.doi.org/10.1007/978-3-031-05903-2_2
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms


1 Introduction

Since it came out in the early 1990s, Python has now become one of the most
popular languages [19]. Still, Python is considered ”slow” compared to compiled lan-
guages like C, C++, and Fortran, especially for CPU-bound applications 1. Among
the causes of its poor performance are its nature as an interpreted language and its
limitations when implementing multi-threaded solutions [15]. In particular, its main
problem is the use of a component called Global Interpreter Lock (GIL) in the offi-
cial CPython interpreter. GIL only allows executing a single thread at a time, which
leads to sequential execution. To overcome this limitation, processes are usually used
instead of threads, but this comes at the cost of higher consumption of resources and
a higher programming cost due to having a distributed address space [10].

Even though there are alternative interpreters to CPython, some of them have the
same problem, as in the case of PyPy [8]. In the opposite sense, some interpreters
do not use GIL at all, such as Jython [4]. Unfortunately, Jython uses a deprecated
version of Python [9, 4], which limits future support for programs and the ability to
take advantage of features provided by later versions of the language. Other trans-
lators allow the programmer to disable this component, as in the case of Numba, a
JIT compiler that translates Python into optimized machine code [6]. Numba uses
a Python feature known as decorators [1], to interfere as little as possible in the pro-
grammer’s code. Finally, Cython is a static compiler that allows transpiling 2 Python
codes to the equivalent C ones, and then compiling it to object code [2]. It also allows
disabling GIL and using C libraries, such as OpenMP [3], which is extremely useful
for developing multi-threaded programs.

When implementing a Python application, a translator must be selected. This
choice is essential since it will not only impact program performance, but also the
time required for development as well as future maintenance costs. To avoid making a
“blind” decision, all relevant evidence should be reviewed. Unfortunately, the available
literature on the subject is not exhaustive.

Even though there are studies that compare translators, they do so by using se-
quential versions [21, 17], which does not allow assessing their parallel processing ca-
pabilities. On the contrary, if they consider parallelism, they do so between languages
and not between Python translators [13, 22, 11, 20].

Based on the above, knowing the advantages and disadvantages of the different
Python language translators is essential, both in sequential and multi-threaded con-
texts. This also applies to the primitives and functions that allow optimizing the code.
Therefore, this article proposes a performance comparison between these, using the
simulation of N computational bodies (N-Body) - a CPU-bound problem that is popu-
lar in the HPC community - as case study. This paper is an extended and thoroughly
revised version of [16]. The work has been extended by providing:

• An optimized implementation in the Cython language that computes N-Body
on multicore architectures, which is available in a public web repository for the
benefit of the academic and industrial communities 3.

• A comparative analysis of the performance of N-Body solutions on a multicore
architecture. This analysis can help Python programmers identify the strengths
and weaknesses of each of them in a given situation.

The remaining sections of this article are organized as follows: in Section 2, the
general background and other works that are related to this research are presented.

1Programs that perform a large number of calculations using the CPU exhaustively.
2Process performed by a special class of compiler, which consists in producing source code

in one language based on source code in a different language.
3https://github.com/Pastorsin/python-hpc-study/

2

https://github.com/Pastorsin/python-hpc-study/


Next, in Section 3, the implementations used are described, and in Section 4, the ex-
perimental work carried out is detailed and the results obtained are analyzed. Finally,
in Section 5, our conclusions and possible lines of future work are presented.

2 Background

2.1 Numba

Numba is a JIT compiler that allows translating Python code into optimized ma-
chine code using LLVM 4. According to its documentation, Numba-based algorithms
can approach the speeds of those of compiled languages like C, C++, and Fortran [6],
without having to rewrite its code thanks to an annotation-based approach called
decorators [1].

2.1.1 JIT compilation

1 size_t valuesSize =
2 databaseLen * sizeof(double);
3 double* valuesGpu;
4

5 CUDA_SAFE_CALL(
6 cudaMalloc(
7 &valuesGpu, valuesSize
8 )
9 );

Figure 1: Compilation in nopy-
thon mode.

The library offers two compilation modes: (1)
object mode, which allows compiling code that
makes use of objects; (2) nopython mode, which
allows Numba to generate code without using the
CPython API. To indicate these modes, the @jit

and @njit decorators are used (see Fig. 1), re-
spectively [6].

By default, each function is compiled at the
time it is called, and it is kept in cache for future
calls. However, the inclusion of the signature pa-
rameter will cause the function to be compiled at
declaration time. In addition, this will also make
it possible to indicate the types of data that the
function will use and control the organization of data [6] in memory (see Fig. 2).

2.1.2 Multi-threading

Numba allows enabling an automatic parallelization system by setting the parame-
ter parallel=True, as well as indicating an explicit parallelization through the prange

function (see Fig. 3), which distributes the iterations between the threads in a similar
way to the OpenMP parallel for directive. It also supports reductions, and it is
responsible for identifying the variables as private to each thread if they are within
the scope of the parallel zone. Unfortunately, Numba does not yet support primitives
that allow controlling thread synchronization, such as semaphores or locks [6].

2.1.3 Vectorization

Numba delegates code auto-vectorization and SIMD instructions generation to
LLVM, but it allows the programmer to control certain parameters that could affect
the task at hand, such as numerical precision using the fastmath=True argument. It
also allows using Intel SVML if it is available in the system [6].

2.1.4 Integration with NumPy

It should be noted that Numba supports a large number of NumPy functions, which
allows the programmer to control the memory organization of arrays and perform
operations on them [7, 6].

4The LLVM Compiler Infrastructure, https://llvm.org/

3

https://llvm.org/


1 size_t valuesSize =
2 databaseLen * sizeof(double);
3 double* valuesGpu;
4

5 CUDA_SAFE_CALL((
6 valuesGpu = (double *)sycl::malloc_device(
7 valuesSize, dpct::get_default_queue()),
8 0));

Figure 2: Compilation in
nopython mode with the
dpct::device_info properties;

dpct::dev_mgr::instance()

.get_device(card)

.get_device_info(properties);

int threads;

int blocks;

if (false) {

threads = THREADS_SM1;

blocks = BLOCKS_SM1;

} else {

threads = THREADS_SM2;

blocks = BLOCKS_SM2;

}

argument

1 solveShort<<<blocks, threads>>>(...);

Figure 3: Compilation in nopython

mode with the

...

__syncthreads();

... ar-
gument

2.2 Cython

Cython is a static compiler for Python created with the goal of writing C code
taking advantage of the simple and clean syntax of Python [2]. In other words, Cython
is a Python superset that allows interacting with C functions, types, and libraries.

2.2.1 Compilation

As shown in Fig. 4 the Cython programming flow is very different from what the
Python programmer is used to.

Figure 4: Programming flow in Cython.

The main difference is that the file that will contain the source code has the
extension .pyx unlike Python, where this extension .py. Then, this file can be compiled
using a setup.py file, where compilation flags are provided to output: (1) a file with
.c, extension that corresponds to the code transpiled from Cython to C, and (2) a
binary file with the extension .so, that corresponds to the compilation of the C file
described previously. The latter will allow importing the compiled module into any
Python script.

4



2.2.2 Data types

Cython allows declaring variables using C data types from the cdef statement (see
Fig. 5). While this is optional, it is recommended in the documentation to optimize
program execution, since it avoids the inference of CPython types at runtime. In
addition, Cython allows defining the memory organization for the arrays just like
Numba [2].

2.2.3 Multi-threading

Cython provides support for using OpenMP through the cython.parallel. This
module contains the prange, function, which allows parallelizing loops using OpenMP’s
parallel for constructor. In turn, this function allows disabling GIL and defining
the OpenMP scheduling through the nogil and schedule arguments, respectively.

It should be noted that all assignments declared within prange blocks are transpiled
as lastprivate, while reductions are only identified if an in-situ operator is used.
For example, the standard addition operation (x = x + y) will not be identified as a
reduction, but the in-situ addition operation (x += y), will (see Fig. 6).

2.2.4 Vectorization

Cython delegates vectorization to the C compiler being used. Even though there
are workarounds to force vectorization, it is not natively supported by Cython.

2.2.5 Integration with NumPy

Unfortunately, NumPy’s vector operations are not supported by Cython. However,
as mentioned above, NumPy can be used to control array memory organization.

1 ...
2 item_ct1.barrier();
3

4 //DPCT recommends adding the following parameter.
5 /*item_ct1.barrier(
6 sycl::access::fence_space::local_space
7 );*/
8 ...

Figure 5: Declared variables with C
data types in Cython.

1 class SubScalarRev {
2 public:
3 __device__ int operator()(...) {
4 ...
5 }
6 };
7

8 class SubVector {
9 public:

10 __device__ int operator()(...) {
11 ...
12 }
13 };
14

15 template <class Sub>
16 __global__ static void solveLong(
17 ..., Sub sub) {
18 sub(...);
19 }
20

21

22 solveLong<<<blocks, threads>>>(
23 ..., SubScalarRev()
24 );
25

26 solveLong<<<blocks, threads>>>(
27 ..., SubVector());

Figure 6: Reduction using Cython’s
prange block.

5



2.3 The Gravitational N-body Simulation

This problem consists in simulating the evolution of a system composed of N
bodies during a time-lapse. Each body presents an initial state, given by its speed and
position. The motion of the system is simulated through discrete instants of time. In
each of them, every body experiences an acceleration that arises from the gravitational
attraction of the rest, which affects its state.

1 class SubScalarRev {
2 public:
3 int operator()(...) {
4 ...
5 }
6 };
7

8 class SubVector {
9 public:

10 int operator()(...) {
11 ...
12 }
13 };
14

15 template <class Sub>
16 static void solveLong(..., Sub sub) {
17 sub(...);
18 }
19

20 cgh.parallel_for(
21 sycl::nd_range<3>
22 (sycl::range<3>(1, 1, blocks) *
23 sycl::range<3>(1, 1, threads),
24 sycl::range<3>(1, 1, threads)),
25 [=](sycl::nd_item<3> item_ct1) {
26 solveLong(..., SubScalarRev());
27 });
28 });
29

30 cgh.parallel_for(
31 sycl::nd_range<3>
32 (sycl::range<3>(1, 1, blocks) *
33 sycl::range<3>(1, 1, threads),
34 sycl::range<3>(1, 1, threads)),
35 [=](sycl::nd_item<3> item_ct1) {
36 solveLong(..., SubVector());
37 });
38 });

Figure 7: Pseudo-code of the N-Body algorithm

The simulation is performed in 3 spatial dimensions and the gravitational attrac-
tion between two bodies Ci and Cj is computed according to Newtonian mechanics.
Further information can be found at [18].

The pseudo-code of the direct solution is shown in Fig. 7. This problem presents
two data dependencies that can be noted in the pseudo-code. First, one body cannot
move until the rest have finished calculating their interactions. Second, they cannot
advance either to the next step until the others have completed the current step.

3 N-Body Implementations

In this section, the different implementations proposed are described.

6



1 texture<char> colTexture;
2

3 int colSize = colsGpu * sizeof(char);
4 char *colGpu;
5 cudaMalloc(&colGpu, colSize);
6 cudaMemcpy(colGpu, colCpu,
7 colSize, TO_GPU);
8 cudaBindTexture(NULL, colTexture,
9 colGpu, colSize);

10

11 char v = tex1Dfetch(colTexture, 10);

Figure 8: CPython implementation with broadcasting.

3.1 CPython Implementation

3.1.1 Naive implementation.

Initially, a ”pure” Python implementation (called naive) was developed following
the pseudocode shown in Fig. 7, which will serve as a reference to assess the improve-
ments introduced later. It should be noted that this implementation uses Python lists
as the data structure to store the state of the bodies.

3.1.2 NumPy integration

The use of NumPy arrays can speed up computation time since its core is imple-
mented and optimized in C language. Therefore, it was decided to use these arrays
as a data structure, further exploring the possible benefits of using the broadcasting
function (operations between vectors provided by NumPy). Fig. 8 presents the code
of the CPython implementation with broadcasting.

3.2 Numba Implementation

3.2.1 Naive implementation

The implementation described in Section 3.1.1, which uses the operations between
vectors provided by NumPy (broadcasting), was selected as the initial implementation.

3.2.2 Numba integration

The first Numba version was obtained by adding a decorator to the naive im-
plementation (see lines 1-10 in Figure 9a). The code was instructed to be compiled
with relaxed precision using the fastmath, parameter, with NumPy’s division model
to avoid the divide-by-zero check (line 9) [6] and with Intel SVML, which is inferred
by Numba because it is available in the system.

3.2.3 Multi-threading

To introduce parallelism at the thread level, the prange statement was used. To do
this, the loop that iterates over the bodies (line 5 in Figure 8) first had to be split into
two parts. The first loop is responsible for computing Newton’s law of gravitational
attraction and Verlet’s integration, while the second one updates body position.

3.2.4 Arrays with simple data types

NumPy’s vector operations were replaced by numeric operations, and two-dimensional
structures were replaced by one-dimensional ones to help Numba auto-vectorize the
code (see Fig. 9).

7



1 // Migración DPCT

2 //dpct::image_wrapper<char, 1> colTexture;

3
4 dpct::image_wrapper<sycl::char4, 1> colTexture;

5
6 int colSize = colsGpu * sizeof(char);

7 char* colGpu;

8
9 colGpu = (char *)sycl::malloc_device(

10 colSize, dpct::get_default_queue());

11
12 dpct::get_default_queue()

13 .memcpy(colGpu, colCpu, colSize).wait();

14
15 colTexture.attach(colGpu, colSize);

16
17 // DIV 4 y MOD 3

18 char v = colTexture.read(10 >> 2)[10 & 3];

(a) Function that calculates body positions.

1 texture<int, 2,
2 cudaReadModeElementType> seqsTexture;
3

4 cudaArray *sequencesGpu;
5 cudaChannelFormatDesc channel =
6 seqsTexture.channelDesc;
7 cudaMallocArray(&sequencesGpu,
8 &channel, sequencesCols, sequencesRows);
9 cudaMemcpyToArray(sequencesGpu, 0, 0,

10 sequences, sequencesSize, TO_GPU);
11 cudaBindTextureToArray(
12 seqsTexture, sequencesGpu);

(b) Function that updates body positions.

Figure 9: Numba implementation without broadcasting

3.2.5 Mathematical operations

The following alternatives for the calculation of the denominator of Newton’s uni-
versal law of attraction are proposed: (1) calculating the positive power and then
dividing; and (2) multiplying by the multiplicative inverse after calculating the posi-
tive power. Additionally, the following power functions are tested: (1) pow function in
Python’s math module; and (2) power function provided by NumPy.

3.2.6 Vectorization

As noted in Section 2.1, Numba delegates auto-vectorization to LLVM. Even so,
flags avx512f, avx512dq, avx512cd, avx512bw, avx512vl were defined to favor the
use of this particular class of instructions.

3.2.7 Data locality

To improve data locality, a version that iterates the bodies in blocks was imple-
mented, similar to [12]. To do this, the loop on line 19 in Figure 9a will iterate over
blocks of bodies, while in two other inner loops, Newton’s gravitational attraction
force and Verlet’s integration will be calculated, respectively.

3.2.8 Threading layer

Thread API changes were made through the threading layers that Numba uses to
translate parallel regions. To do this, different options were tested: default, workqueue,
omp (OpenMP) and threading. For the first three, the source code did not have to be
modified, since Numba is responsible for translating the prange block to the selected
API. However, this was not the case with threading – thread distribution had to be
coded together with the specification of the parameter nogil=True to disable GIL. It
should be noted that the tbb option was not used because it was not available in the
support server.

3.3 Cython Implementation

3.3.1 Naive implementation.

As initial implementation (naive), the one described in Section 3.1.1 was used.
This implementation uses various NumPy arrays as data structures, which allows
more flexible management of memory, particularly concerning organization and data
types.

8



1 static int *seqsGpu;

2
3 seqsGpu = (int *)sycl::malloc_device(

4 sequencesCols * sequencesRows * sizeof(int),

5 dpct::get_default_queue());

6
7 dpct::get_default_queue()

8 .memcpy(seqsGpu, sequences, sequencesCols *

9 sequencesRows * sizeof(int))

10 .wait();

Figure 10: Parallel Cython implementation.

3.3.2 Cython integration

No changes were made to the code of the naive implementation (see Section 3.3.1),
but it was compiled using Cython. To do so, the extension of the code was simply
changed from .py to .pyx.

3.3.3 Explicit typing

As shown in Figure 10 the data types provided by Cython were explicitly defined
to reduce interaction with the CPython API. Initially, to reduce unnecessary checks
at runtime, the following compiler directives are provided (lines 1-4) [2]:

• boundcheck (line 1) avoids index error verifications on arrays.

• wraparound (line 2) prevents arrays from being indexed relative to the end. For
example, in Python, if A is an array with statement A[-1], its last element can
be obtained.

• nonecheck (line 3) avoids verifications due to variables that can potentially take
the value None.

• cdivision (line 4) performs the division through C avoiding CPython’s API.
CPython.

On line 5, a hybrid function type is indicated through the cpdef statement, which
allows the function to be imported from other applications developed in Python. Then,
on lines 6-10, the Cython data types that will later be transpiled to C data types are
specified. In particular, arrays are specified with the double[::1], data type, which
ensures that the arguments received are NumPy arrays contiguous in memory [2].
Finally, on lines 12-16, the data types corresponding to local variables are declared
using the cdef statement.

3.3.4 Multi-threading

This version introduces thread-level parallelism through the prange statement pro-
vided by Cython. To do this, range statements were replaced by prange statements. In
particular, the instruction was to use the static policy as schedule to evenly distribute
the workload among the threads considering computation regularity. Additionally,
GIL was disabled through the nogil argument to allow these to be executed in parallel
(see Fig. 10).

Finally, it should be noted that the prange tatement is transpiled into an OpenMP
parallel for [2]. Therefore, it has an implicit barrier that allows threads to be
synchronized to comply with the data dependencies described in Figure 7.

3.3.5 Mathematical operations

A decision was made to evaluate the same alternatives for calculating the denom-
inator for Newton’s universal law of attraction as those described in Section 3.2. In

9



particular, no changes were made to the power functions to avoid interaction with
CPython’s API.

3.3.6 Vectorization

As mentioned in Section 2.2, Cython delegates auto-vectorization to the C com-
piler. However, the flags -xCORE-AVX512, -qopt-zmm-usage=high, -march=native

were provided to favor the use of AVX-512 instructions.

3.3.7 Data locality

To better take advantage of cache, a variant that iterates the bodies in blocks was
implemented, similar to the one described in Section 3.2. In this version, the loop
on line 21 in Figure 10 is split into two other inner loops. The first one calculates
Newton’s gravitational attraction force, while the second one calculates displacement
using the velocity verlet integration method.

4 Experimental Results

4.1 Experimental Design

All tests were carried out on a Dell Poweredge server equipped with 2×Intel Xeon
Platinum 8276’s with 28 cores (2 hw threads per core) and 256 GB of RAM. The
operating system was Ubuntu 20.04.2 LTS, and the translators and libraries used were
Python v3.8.10, PyPy v7.3.1, NumPy v1.20.1, Numba v0.52.0, Cython v0.29.22 and
ICC v19.1.0.166.

For implementation evaluation, different workloads (N = {256, 512, 1024, 2048,
4096, 8192, 16384, 32768, 65536, 131072, 262144,524288}) and number of threads (T
= {1,56,112}) were used. The number of simulation steps remained fixed (I =100).
Each proposed optimization was applied and evaluated incrementally based on the
initial version 5. To evaluate performance, the GFLOPS (billion FLOPS) metric is

used, with equation GFLOPS = 20×N2×I
t×109

, where N is the number of bodies, I is the
number of steps, t is execution time (in seconds) and factor 20 represents the number
of floating-point operations required by each interaction 6.

4.2 CPython Performance

Fig. 11 shows the performance obtained with the naive version with NumPy when
varying N . As it can be seen, the incorporation of NumPy arrays without using
broadcasting worsened the performance by 2.9× on average. Because values are stored
directly in NumPy arrays and must be converted to Python objects when accessed,
unnecessary conversions are carried out using this algorithm. In contrast, this does
not happen in the naive version because values are already saved directly as Python
objects.

This issue was solved by adding broadcasting ; that is, by performing vector opera-
tions between NumPy arrays. This avoids unnecessary conversions because operations
are carried out internally in the NumPy core [7]. As it can be seen, performance
improved by 10× on average with respect to the naive version.

Finally, Fig. 12 shows the performance of CPython compared to PyPy. As it can
be seen, CPython’s performance tends to improve as size increases, whereas PyPy’s 7

5Each previous version is labeled as Reference in all graphics.
6A widely accepted convention in the literature for this problem.
7The implementation executed with PyPy was the naive version since the other versions

use NumPy arrays and PyPy is unable to optimize them.

10



performance remains constant.

Figure 11: CPython – Performance obtained with the different versions for
various values of N.

Figure 12: PyPy – Performance obtained for various values of N.

11



4.3 Numba Performance

Fig. 13 shows the performance when activating the compilation options and ap-
plying multi-threading with various values of N. Even though the Numba compilation
options (njit+fastmath+svml) have practically no effect on the performance of this
version, there is a significant improvement when using threads to compute the prob-
lem. In particular, an average improvement of 33× and 38× for 56 and 112 threads,
respectively, can be noted.

Fig. 14 shows the significant improvement obtained when using arrays with simple
data types instead of compound ones (an average of 41× in the case of 112 threads).
Even though the second one simplifies coding, it also involves organizing the data
in the form of an array of structures, which imposes limitations on the use of the
SIMD capabilities of the processor [14]. Additionally, it can also be noted that using
hyper-threading results in an improvement of approximately 78% in this case.

There are practically no changes in performance if the mathematical calculations
and power functions used are different from those described in Section 3.2 (see Fig. 15).
This is because no matter which option is used, the resulting machine code is always
the same. Something similar happens when explicitly specifying the use of AVX-512
instructions. As mentioned in Section 2.1, Numba attempts to auto-vectorize the
code via LLVM. Looking at the machine code, it was observed that the generated
instructions already made use of these extensions.

The processing by blocks described in Section 3.2 did not improve the performance
of the solution, as it can be seen in Fig. 16. The performance loss is related to
the fact that this computation reorganization produces failures in LLVM when auto-
vectorizing. Unfortunately, since Numba does not offer primitives to specify the use
of SIMD instructions explicitly, there is no way to fix this.

Fig. 17 shows the performance obtained for precision reduction with various data
types and workloads (N ). It can be seen that the use of the float32 data type (in-
stead of float64) leads to an improvement of up to 2.8× GFLOPS, at the cost of a
reduction in precision. Similarly, relaxed precision produced a significant acceleration
on both data types: float32 (17.2× on average) and float64 (11.4× on average). In
particular, the performance peak is 1524/536 GFLOPS in single/double precision. It
is important to mention that this version achieves an acceleration of 687× compared
to the naive implementation (float64).

Finally, Fig. 18 shows that, when using 112 threads, OpenMP and the default
threading layer provided by Numba outperform the others by an average of 9.3%. In
turn, it can be seen that the use of threading is below all tested threading layers.
This is due to the overhead generated by the use of Python objects to synchronize the
threads, which does not occur in the other threading layers because synchronization
is carried out on its own API.

12



Figure 13: Numba – Performance obtained for compiling and multi-threading
options for various values of N.

Figure 14: Numba – Performance obtained with the different versions for various
values of N.

Figure 15: Numba – Performance obtained using different mathematical calcu-
lations, power functions and AVX512 instructions for various values of N.

13



Figure 16: Numba – Performance obtained when processing in blocks for various
values of N.

Figure 17: Numba – Performance obtained for precision reduction for various
data types and values of N.

Figure 18: Numba – Performance obtained with the different threading layers
in Numba for various values of T and a fixed value of N = 524288.

14



4.4 Cython Performance

Fig. 19 shows that the Cython integration (without specifying the data types for
the variables) did not produce a significant improvement concerning the naive version,
since the resulting code is using CPython’s API. On the other hand, defining the
variables with Cython data types reduces this interaction and, therefore, performance
improves remarkably (547.7× on average).

As shown in Fig. 20, specifying the use of AVX-512 instructions achieved an im-
provement of 1.7× on average. In particular, the performance obtained with the
-march=native flag was slightly higher (1.4 GFLOPS on average) than that obtained
with the -xCORE-AVX512 -qopt-zmm-usage=high flag.

Both multi-threading and mathematical optimizations led to positive results. On
the one hand, Fig. 21 shows that the multi-threaded solution with 56 and 112 threads
achieved a remarkable improvement of 21.1× and 34.6× on average, respectively. On
the other hand, Fig. 22 shows the performance obtained when applying the mathe-
matical operations described in Section 3.3. As it can be seen, using a direct division
degraded the performance by 41%; while calculating the multiplicative inverse by pos-
itive power did not result in any significant improvements.

Block processing significantly worsened solution performance for all tested block
sizes (see Fig. 23). This is because the compiler identifies false dependencies in the
code and does not generate the corresponding SIMD instructions. Unfortunately, this
cannot be fixed, as Cython does not provide a way to tell the compiler that it is safe
to vectorize operations.

Finally, Fig. 24 shows that precision reduction had practically no effect on the
performance obtained. However, using float as data type improved performance no-
ticeably (1362 GFLOPS on average) at the cost of less representation in the final
result.

Figure 19: Cython – Performance obtained with and without explicit typing for
various values of N.

15



Figure 20: Cython – Performance obtained with the different compilation op-
tions for various values of N.

Figure 21: Cython – Performance obtained with the multi-threaded solution for
various values of N.

Figure 22: Cython – Performance obtained with the mathematical calculations
for various values of N.

16



Figure 23: Cython – Performance obtained when processing in blocks for various
values of N.

Figure 24: Performance obtained for precision reduction for various data types
and values of N.

17



4.5 Performance Comparison

First of all, it should be noted that the versions with CPython and PyPy were not
included in the final comparison due to their low performance (0.5 GFLOPS on aver-
age). Fig. 25 shows a comparison between the optimized implementations of Numba
and Cython for various workloads and data types. As it can be seen, when using dou-
ble precision, Cython was slightly faster than Numba by an average of 16.7 GFLOPS;
while in single precision, Numba was superior by an average of 73 GFLOPS. These
values represent improvements of 3% and 5%, respectively. In turn, it is important to
mention that both final versions of Numba and Cython achieved an average accelera-
tion of 1018× and 1050× respectively, compared to the best CPython implementation
(float64).

Figure 25: Performance comparison between the final versions of Numba and
Cython for various data types and values of N.

5 Conclusions and Future Work

In this work, a performance comparison has been made between CPython, PyPy,
Numba, and Cython. In particular, N-Body -a parallelizable problem with high com-
putational demand and considered to be CPU-bound- was chosen as a case study. To
this end, different algorithms were produced for each translator, starting from a base
version and applying incremental optimizations until reaching the final version. In
this sense, the benefits of using multi-threading, block processing, broadcasting, differ-
ent mathematical calculations and power functions, vectorization, explicit typing, and
different thread APIs were explored.

Considering the results obtained, it can be said that there were no significant
differences between the performance of Numba and Cython. However, both translators
significantly improved CPython’s performance. This was not the case with PyPy,
since it failed to improve the performance of CPython+NumPy due to its inability to
parallelize, associated with GIL. Therefore, it can be stated that in contexts similar
to those of this study, both Numba and Cython can be powerful tools to accelerate
CPU-bound applications developed in Python. The choice between one or the other
will be largely determined by the approach that the development team finds most
convenient, considering the characteristics of each one.

As future work, it would be interesting to extend on the following directions:

• Replicating the study carried out considering: (1) other case studies that are
computationally intensive but whose characteristics are different from those of
N-Body ; (2) other multicore architectures different from the one used in this
work.

18



• Considering that programming effort is an increasingly relevant issue [5], com-
paring the solutions developed from this perspective.

• Given that other technologies allow parallelism to be implemented at the process
level in Python, comparing these considering not only their performance but also
programming cost.

References

[1] 7. Decorators — Python Tips 0.1 documentation, https://book.pythontips.

com/en/latest/decorators.html

[2] Cython: C-Extensions for Python, https://cython.org/

[3] Home - OpenMP, https://www.openmp.org/

[4] Home | Jython, https://www.jython.org/

[5] Microsoft’s new research lab studies developer productivity and
well-being | VentureBeat, https://venturebeat.com/2021/05/25/

microsofts-new-research-lab-studies-developer-productivity-and-well-being/

[6] Numba documentation — Numba 0.53.1-py3.7-linux-x86 64.egg documentation,
https://numba.readthedocs.io/en/stable/index.html

[7] NumPy, https://numpy.org/

[8] PyPy, https://www.pypy.org/

[9] Sunsetting Python 2 | Python.org, https://www.python.org/doc/

sunset-python-2/

[10] What Is the Python Global Interpreter Lock (GIL)? – Real Python, https://

realpython.com/python-gil/

[11] Cai, X., Langtangen, H.P., Moe, H.: On the Performance of the Python Pro-
gramming Language for Serial and Parallel Scientific Computations. Scientific
Programming 13(1), 31–56 (2005). https://doi.org/10.1155/2005/619804

[12] Costanzo, M., Rucci, E., Naiouf, M., Giusti, A.D.: Performance vs Program-
ming Effort between Rust and C on Multicore Architectures: Case Study in
N-Body. In: 2021 XLVII Latin American Computer Conference (CLEI) (2021).
https://doi.org/10.1109/CLEI53233.2021.9640225

[13] Gmys, J., Carneiro, T., Melab, N., Talbi, E.G., Tuyttens, D.: A comparative
study of high-productivity high-performance programming languages for parallel
metaheuristics. Swarm and Evolutionary Computation 57, 100720 (Sep 2020).
https://doi.org/10.1016/j.swevo.2020.100720

[14] Intel Corp.: How to manipulate data structure to optimize memory use on 32-bit
intel® architecture (2018), https://tinyurl.com/26h62f76

[15] Marowka, A.: Python accelerators for high-performance comput-
ing. The Journal of Supercomputing 74(4), 1449–1460 (Apr 2018).
https://doi.org/10.1007/s11227-017-2213-5

[16] Milla, A., Rucci, E.: Acelerando Código Cient́ıfico en Python usando Numba.
XXVII Congreso Argentino de Ciencias de la Computación (CACIC 2021) p. 12
(Oct 2021), http://sedici.unlp.edu.ar/handle/10915/126012

[17] Roghult, A.: Benchmarking Python Interpreters: Measuring Performance of
CPython, Cython, Jython and PyPy. Master’s thesis, School of Computer Science
and Communication, Royal Institute of Technology, Sweden (2016)

19

https://book.pythontips.com/en/latest/decorators.html
https://book.pythontips.com/en/latest/decorators.html
https://cython.org/
https://www.openmp.org/
https://www.jython.org/
https://venturebeat.com/2021/05/25/microsofts-new-research-lab-studies-developer-productivity-and-well-being/
https://venturebeat.com/2021/05/25/microsofts-new-research-lab-studies-developer-productivity-and-well-being/
https://numba.readthedocs.io/en/stable/index.html
https://numpy.org/
https://www.pypy.org/
https://www.python.org/doc/sunset-python-2/
https://www.python.org/doc/sunset-python-2/
https://realpython.com/python-gil/
https://realpython.com/python-gil/
https://tinyurl.com/26h62f76
http://sedici.unlp.edu.ar/handle/10915/126012


[18] Rucci, E., Moreno, E., Pousa, A., Chichizola, F.: Optimization of the n-body
simulation on intel’s architectures based on avx-512 instruction set. In: Computer
Science – CACIC 2019. pp. 37–52. Springer International Publishing (2020)

[19] TIOBE Software BV: TIOBE Index for November 2021 (11 2021), https://www.
tiobe.com/tiobe-index/

[20] Varsha, M., Yashashree, S., Ramdas, D.K., Alex, S.A.: A Review of Existing
Approaches to Increase the Computational Speed of the Python Language. Inter-
national Journal of Research in Engineering, Science and Management (2019)

[21] Wilbers, I., Langtangen, H.P., Odegard, A.: Using cython to speed up numerical
python programs. In: Proceedings of MekIT. pp. 495–512 (2009)

[22] Wilkens, F.: Evaluation of performance and productivity metrics of potential
programming languages in the HPC environment. Bachelor’s thesis, Faculty of
Mathematics, Informatics und Natural Sciences, University of Hamburg, Ger-
many (2015)

20

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/

	1 Introduction
	2 Background
	2.1 Numba
	2.1.1 JIT compilation
	2.1.2 Multi-threading
	2.1.3 Vectorization
	2.1.4 Integration with NumPy

	2.2 Cython
	2.2.1 Compilation
	2.2.2 Data types
	2.2.3 Multi-threading
	2.2.4 Vectorization
	2.2.5 Integration with NumPy

	2.3 The Gravitational N-body Simulation

	3 N-Body Implementations
	3.1 CPython Implementation
	3.1.1 Naive implementation.
	3.1.2 NumPy integration

	3.2 Numba Implementation
	3.2.1 Naive implementation
	3.2.2 Numba integration
	3.2.3 Multi-threading
	3.2.4 Arrays with simple data types
	3.2.5 Mathematical operations
	3.2.6 Vectorization
	3.2.7 Data locality
	3.2.8 Threading layer

	3.3 Cython Implementation
	3.3.1 Naive implementation.
	3.3.2 Cython integration
	3.3.3 Explicit typing
	3.3.4 Multi-threading
	3.3.5 Mathematical operations
	3.3.6 Vectorization
	3.3.7 Data locality


	4 Experimental Results
	4.1 Experimental Design
	4.2 CPython Performance
	4.3 Numba Performance
	4.4 Cython Performance
	4.5 Performance Comparison

	5 Conclusions and Future Work

