
Distributed Differentially Private
Ranking Aggregation

Baobao Song1[0000−0001−5630−5661], Qiujun Lan2[0000−0001−7523−9487], Yang
Li3[0000−0002−1147−280X], and Gang Li4[0000−0003−1583−641X]

1 Hunan University, Changsha 410082, China bbsong@tulip.academy
2 Hunan University, Changsha 410082, China lanqiujun@hnu.edu.cn
3 The Australian National University, Canberra, ACT, 2600, Australia

kelvin.li@anu.edu.au
4 Deakin University, Geelong, VIC 3216, Australia gang.li@deakin.edu.au

Abstract. Ranking aggregation is commonly adopted in cooperative
decision-making to assist in combining multiple rankings into a single
representative. To protect the actual ranking of each individual, some
privacy-preserving strategies, such as differential privacy, are often used.
This, however, does not consider the scenario where the curator, who col-
lects all rankings from individuals, is untrustworthy. This paper proposed
a mechanism to solve the above situation using the distribute differential
privacy framework. The proposed mechanism collects locally differen-
tial private rankings from individuals, then randomly permutes pairwise
rankings using a shuffle model to further amplify the privacy protection.
The final representative is produced by hierarchical rank aggregation.
The mechanism was theoretically analysed and experimentally compared
against existing methods, and demonstrated competitive results in both
the output accuracy and privacy protection.

Keywords: Ranking Aggregation, Distributed Differential Privacy, HRA Algo-
rithm, Shuffle Model

1 Introduction

Cooperative decision-making [14] is pervasive in business management, because
of its superiority in providing information from different aspects for better
decision-making. As an essential step in cooperative decision-making, aggregation
combines all individual preferences into a representative output. In daily life,
individuals often rank all available alternatives to reveal the preference relation
of multiple alternatives, hence ranking aggregation has become essential for
society, and many researchers focus on its two requirements, which are hard
to satisfy simultaneously: privacy and utility. Preference data in ranking has
sensitive information, and the leaking of it may make individuals susceptible to
coercion. Utility represents whether the aggregation result stands for the majority
preference. Consequently, the ability to effectively aggregate private ranking into

ar
X

iv
:2

20
2.

03
38

8v
1

 [
cs

.C
R

]
 7

 F
eb

 2
02

2

2 Baobao Song, Qiujun Lan, Yang Li, and Gang Li

a representative result is important in ranking aggregation. In the past few years,
substantial research efforts have been devoted to ranking aggregation.

Traditional anonymizing methods such as anonymization hardly solves the
problem. For example, Hugo Awards 2015 incident [8] shows that the anonymized
preferences could result in the re-identification of individuals because the adver-
sary who has background knowledge are able to launch a linkage attack. According
to the weakness of the traditional anonymizing method, many researchers draw
attention to differential privacy (DP) [5].

DP is an effective method to provide a rigorous privacy guarantee, and it can
defend against various attacks, no matter how much background knowledge the
adversary has. As a lightweight methodology to protect privacy, many current
works address the ranking aggregation problems with DP. Shang et al. [16]
designed a privacy-preserving rank aggregation algorithm, and whatever the
ranking rules, the algorithm adds noise on votes and returns the histogram of
rankings. Based on Quicksort [10], Hay et al. [9] proposed three differentially
private rank aggregation algorithms includes P-SORT, a pairwise comparison
method about private ranking aggregation. The benefit of using DP to protect
individual sensitive information is that the adversary is unlikely to obtain sensitive
information by observing the releasing results. In the meantime, the results
have high availability. Nevertheless, DP is not without limitations: in real-world
applications, the curator may collude with the adversary to leak some information
before perturbing.

Local differential privacy (LDP) [7] alleviates this issue through adding noise
locally and uploading noisy data to the untrusted curator. Yan et al. [18] proposed
LDP-KwikSort algorithm, and they use the number of queries K to trade-off
between utility and privacy. Besides privacy and utility, Wang et al. [17] studied
another property, soundness, and then proposed the weighted sampling mechanism
and the additive mechanism to improve the ranking utility. Unfortunately, LDP
needs a large amount of data to achieve an acceptable utility. Moreover, existing
approaches that use pairwise comparison information to rank [9, 18] share a
common limitation: they introduce additional errors by pivot random selection.
In conclusion, two obstacles need to be overcome simultaneously. Firstly, the
ranking algorithm needs to output an aggregation result with utility as high as
possible. Secondly, in order to protect individuals’ sensitive data, the untrusted
curator should not receive the original raw preferences.

With the increased awareness of privacy protection, many researchers are
interested in distributed differential privacy (DDP) [15] to amplify the privacy.
DDP builds on LDP but further protects privacy using an intermediate node.
This may mitigate the problem of poor utility in LDP. Besides, recently advances
in ranking aggregation such as the algorithm HRA [4], which takes advantage of
pairwise comparisons to aggregate ranking, and provides one way to eliminate
the errors of random selecting pivot. However, as this algorithm applies Borda
count [2] and pairwise comparison method, it costs too much privacy budget if it
is directly combined with DP, and results in very poor performance.

Distributed Differentially Private Ranking Aggregation 3

In this paper, we propose an novel algorithm DDP-Helnaksort to meet the
requirements of privacy and utility in ranking aggregation. The contributions of
this algorithm are two-fold:

– DDP-Helnaksort employs a new ranking aggregation that avoids random
pivot selection as in quicksort-based LDP methods. Moreover, Borda count

in HRA was replaced by a new method that scores the alternatives to reduce
the noise effect caused by small privacy budget. Experiments show that it
performs better than some pairwise comparison-based DP rank aggregations.

– We firstly adopt DDP to deal with the ranking aggregation problem. This was
achieved by combining LDP with a shuffle model [1] that randomly permutes
the preferences in order to amplify privacy before submitting rankings to
the untrusted curator. This provides a stronger DP guarantee, which can be
measured by calculating the amplification bound.

The rest of this paper is organized as follows. Section 2 provides the preliminary
of ranking aggregation, differential privacy and shuffle model. Section 3 presents
the DDP-Helnaksort algorithm and gives the privacy guarantee. ?? reports the
comparison results with baseline algorithms and analyzes the effect of adjusting
parameters. Final conclusions and future directions are shown in section 5.

2 Preliminaries

2.1 Ranking aggregation

Conception and Measurement In a ranking scenario, an agent u is asked
to rank a set A = {a1, a2, ..., am} of alternatives and to provide the order of
preferences, denoted by pu = [x1, x2, ..., xm], where xi is the ranking index of
ai, and xi = 1 means that agent u’s favourite alternative is ai. A curator then
collects the order from each agent and uses a ranking aggregation algorithm to
output a representative ranking R based on {pu}. In this paper, ai � aj means
that ai is preferred than aj .

Ranking aggregation aims to find the most representative ranking R∗. Ken-
meny optimal aggregation (KOA) [6] is used to find R∗ by minimising the average
Kendall Tau distance K. Kendall tau distance [11] measures the distance between
two rankings by counting the number of inconsistent pairs among all pairs of
alternatives: K(R, pu) = 1

(m2)

∑
i 6=j,i,j∈[m] κij(R, pu), κij(R, pu) is 1 when the

pair ai and aj is ordered differently in rankings R and pu, otherwise it is 0. The
average Kendall tau distance is then computed over the rankings {pu} from all
agents: K(R, pu) = 1

n

∑
u∈[n]K(R, pu).

Hierarchical Ranking Aggregation Hierarchical ranking aggregation

(HRA) [4] algorithm can consolidate all agents’ rankings into a total order. It is
a recursive process like Quicksort, but does not rank alternatives based on the
random pivot selections as in Quicksort, which is likely to reduce the utility of
a private ranking besides the impact of additive noise such as in DP.

4 Baobao Song, Qiujun Lan, Yang Li, and Gang Li

Given m ranking alternatives, the HRA algorithm first computes an m by m
pairwise comparison matrix (PCM) M , where each entry M(i, j) = 1

n

∑n
u=1 l

u
ij is

a comparison score for (ai, aj) over all n rankings. luij = 1 and 0 when ai � aj and
aj � ai respectively and 0.5 otherwise. Then, the algorithm computes an m by m
pairwise preference relation (PPR) matrix D. Each entry D(i, j) = 1 or 0 when
M(i, j) is greater or smaller than M(i, j) respectively, and 0.5 for equality. Third,
every alternative is allocated to a different level according to its score L(i) that
is the row sum of D(i, j). As multiple alternatives can be allocated at the same
level, they are further compared and allocated into sublevels using a sub-PCM
that only includes the rankings of the corresponding alternatives,. If alternatives
have the same score in sublevel, Borda count is used to select a winner. Finally,
the algorithm finishes when each level contains only one alternative.

2.2 Differential privacy

Differential privacy (DP) [5] is a privacy protection model that adds calibrated
noise to query outputs to ensure an adversary having negligible chance of guessing
the sensitive information in a database. Formally, DP can be defined as:

Definition 1. (ε, δ)-Differential Privacy. A random algorithm M provides
(ε, δ)-differential privacy if for any two datasets D and D′ that differ in at
most a single record, and for all outputs A ∈ Range(O): Pr[M(D) ∈ O)] ≤
eεPr[M(D′) ∈ O)] + δ.

The parameter ε is defined as the privacy budget, which controls the privacy
guarantee level of the mechanism. Another parameter δ is responsible for the
probability that ε does not hold. DP assumes that there is a trusted curator, but
in reality, the adversary has possibility to collect information from the curator.
Hence, the local differential privacy (LDP) [7] has been utilized. In LDP model,
each agent uses an algorithm M to perturb data locally and then upload the
noisy one to the untrusted curator. The definition of LDP is as follows:

Definition 2. (ε, δ)-Local Differential Privacy. A local algorithm M pro-
vides (ε, δ)-local differential privacy if for any two value x and x′, and for every
output y: Pr[M(x = y)] ≤ eεPr[M(x′ = y)] + δ.

Although LDP solves the problem that the curator may disclose information, it
requires a huge amount of data to achieve a satisfactory utility [1]. Based on LDP,
distributed differential privacy (DDP) [15] can improve the data utility. In DDP,
every agent adds noise locally, and uploads the data to a trusted intermediate
node to protect privacy further, finally sends the results to the curator. On the
one hand, we do not need to worry about the privacy leakage from the curator in
DDP. On the other hand, it has a higher utility than LDP. In this paper, we apply
DDP model to aggregate ranking. And we use Gaussian mechanism [7] to perturb
preferences. An application of Gaussian mechanism satisfies (ε, δ)-DP, if variables

drawn from the Gaussian distribution with µ = 0 and σ =
∆gf
√

2 log(1.25
δ)

ε , where
∆gf is the global sensitivity of the function f .

Distributed Differentially Private Ranking Aggregation 5

2.3 Shuffle model

Shuffle model can be used in intermediate nodes to realise DDP, and the protocol
P was proposed in [1]. The protocol has three components: a randomizer R, a
shuffler S and an analyzer A. First, R applies LDP to perturb data to get (ε, δ)
protection. Then, S chooses a random permutation π to shuffle the data, and
cut the connection between the outputs and their sources. Finally, A analyses
the data and gets the query result. The shuffle step can amplify the privacy, and
the following theorem [3] quantifies the amplification bound of shuffling:

Theorem 1. If every agent sends a message to the shuffle model, and the
randomizer R satisfies (ε + lnn, δ)-local differential privacy, then the proto-
col P = (R,S,A) satisfies both (ε, δ)-differential privacy and (ε + lnn, δ)-local
differential privacy, where ε′ is smaller than ε, and n is the number of agents.

3 Ranking Aggregation Algorithm Under DDP

In this section, we propose an algorithm DDP-Helnaksort to solve the private
ranking aggregation problem. It can be formalised as follows: given m alternatives
to be ranked by n agents, a curator need to present a final ranking that represents
most agents’ preferences. In addition, each agent u’s ranking pu must not reveal
to the curator his true preferences over the alternatives.

The DDP-Helnaksort algorithm consists of three steps, as shown in fig. 1.
These steps are discussed respectively in section 3.1, section 3.2 and section 3.3.
The first step (¬-¯) is ranking preference collection, in which each agent, before
submitting the answers to the curator, adds the Gaussian noise to the rank of
each pair (ai, aj) that being queried. The second step (°-±) is a shuffling process,
which collects the ranking of (ai, aj) from the corresponding agents that answered
the query, in order to further reduce the risk of privacy breach. The third step
(²) aggregates to generate a final ranking of all m alternatives.

3.1 Ranking Preference Collection

The first step collects K private pairwise rankings from each agent, where K is
an input parameter. A larger K leads to a more accurate aggregated ranking,
because each pair (ai, aj) will be answered by more agents. The drawback is the
partition of the privacy budget into a tiny piece for each query, which results in
adding large noise that diminishes the utility. A smaller K can guarantee the
utility, but the curator may end up with a less representative final ranking. We
explore the optimal K in section 4.2. The ranking preference collection step is
shown in Algorithm algorithm 1. lij ← pu represents the preference in agent u’s
ranking of a randomly selected pair (ai, aj). This algorithm uses the Gaussian
mechanism for noise addition (other mechanisms can be used too).

6 Baobao Song, Qiujun Lan, Yang Li, and Gang Li

Fig. 1: Overview of DDP-Helnaksort

Algorithm 1 Ranking Preference Collection

Input: Agent u’s ranking pu, K queries, privacy parameter ε and δ
Output: Private pairwise preferences Q
1: Qu = ∅
2: for k ∈ [K] do
3: lij ← pu

4: l̃ij = lij +Gau(
K∆f
√

2 ln 1.25
δ

ε)

5: if l̃ij > 0.5 then

6: l̃ij = 1
7: else
8: l̃ij = 0
9: end if

10: Qu = Qu ∪ {l̃ij}
11: end for

Distributed Differentially Private Ranking Aggregation 7

3.2 Shuffling

Shuffling before aggregation can amplify privacy without affecting the output
utility. In DDP-Helnaksort, each pair (ai, aj)’s answers from the corresponding
agents are collected and randomly permuted at an intermediate node, so that
when the private rankings are submitted, the curator is unable to guess the source
of an answer with a non-negligible probability. The shuffle model finally provides
a protection of DP with a smaller ε, which is further discussed in section 3.4.

3.3 Ranking Aggregation

Once all the private rankings are submitted, the DDP-Helnaksort algorithm goes
into the final stage, ranking aggregation. This step is based on the HRA algorithm,
but with a different fallback to sort equal alternatives in sublevels in order to
reduce the noise effect. The algorithm is shown in algorithm 2. M is the number
of alternatives in the unsorted sublevel, and Caiaj is the number of agents who
voted ai � aj . The method uses pairwise preference to calculate a score for aj

Caj =
∑
j∈[M]

(Cajai − Caiaj), (1)

hence avoids splitting some privacy budgets as in Borda count.
This RA(ranking aggregation) algorithm mainly adopts a separate-layer rank-

ing thought to generate the aggregation ranking, which uses the information
about Caiaj and Cajai . The calculations of PCM and PPR matrix happen at
Line 6-8 and Line 9, respectively. After that, we can count the scores of every
alternative in M (Line 10-12). And if the scores are same in two rounds, we
calculate the Caj , and then put the highest one in a high level and others at a
low level to do the next round (Line 13-16). The algorithm iterates until M = 1

in each level, and finally the aggregated ranking R̃ is generated (Line 17-20).

3.4 Privacy Guarantee

Theorem 2. DDP-Helnaksort satisfies (ε, δ)-local differential privacy and (ε−
ln n

(m2)
, δ)-differential privacy when K = 1.

Proof. In the ranking preference collection phase, Gaussian mechanism is used
to add noise into every agent’s answers. Because are K rounds, εk = ε

K in each
round. In Gaussian mechanism, we set

δ =
∆gf

√
2 ln 1.25

δ

εk
=
K∆gf

√
2 ln 1.25

δ

ε
(2)

And DDP-Helnaksort executes the post-processing procedure after applying
Gaussian mechanism, hence it satisfies (ε, δ) − LDP . Besides, K = 1 means
that every agent answers once and uploads a single message (latter experiments
confirm the algorithm utility is the highest when K = 1). In the shuffling phase,

8 Baobao Song, Qiujun Lan, Yang Li, and Gang Li

Algorithm 2 RA

Input: Agents pairwise aggregation Caiaj and Cajai
Output: Aggregate ranking R̃
1: M=number of alternatives needed to rank
2: L = [0] ∗M
3: if M = 1 then
4: return
5: end if
6: for each i, j ∈ [m] do

7: Calculate PCM(i, j) =
Caiaj

Caiaj+Cajai

8: end for
9: Calculate PPR according to PCM

10: for j, i ∈ [M] do
11: Calculate alternatives’ level score L(j)+ = PPR(i, j)
12: end for
13: if L(1) = L(2) = ... = L(M) then
14: put the Caj winner into a high-ranking level and others into a low level
15: end if
16: for l = 1 to the number of different levels do
17: ranking of l-th level=RA (input ranking about the alternatives in l-th level)
18: end for
19: Rank the alternatives according to their levels to get aggregate ranking R̃

there are
(
m
2

)
pairs of alternatives, so the number of same pair and the size of

set S in shuffle model is
n′ =

n(
m
2

) (3)

Therefore, by using theorem 1, the algorithm DDP-Helnaksort satisfies (ε −
ln n

(m2)
, δ)-DP when K = 1.

4 Experiments

In this section, we evaluate the performance of DDP-Helnaksort, and compare
it with benchmark methods on both real and synthetic datasets. All algorithms
were implemented in Python and executed 300 times to get the result.

4.1 Experiment Settings

Datasets The experiments were conducted on synthetic datasets and a real-
world dataset TurkDots [13]. By using R package PerMallows 1.13, we obtained
four synthetic datasets with n ∈ {100, 1000, 2500, 5000}, θ = 0.25, and m = 15
from Mallows model [12]. The dispersion parameter θ represents the distance
between the generated ranking and ground truth ranking. The generated ranking
is closer to the ground truth ranking when θ is larger. TurkDots is from Amazon
Mechanical Turk, and it contains m = 4 alternatives rankings.

Distributed Differentially Private Ranking Aggregation 9

Baseline Algorithms

– LDP-Kwiksort [18]. It has K rounds’ interactions between every agent and
the untrusted curator. In each round, the curator random selects paired
alternatives to ask agents preference and receives noisy answers from agents
(queries to an agent are not the same), then uses the Kwiksort algorithm to
get the aggregate ranking. Its utility is the highest when K = 1.

– LDP-Quicksort. Compared with LDP-Kwiksort, it only differs in when a new
pivot random chosen in Quicksort, the curator will query the preference
between the pivot and other alternatives. This setting is only to collect
preference used in Quicksort, and avoid the waste of privacy budget for other
pairs. K in this algorithm represents the times of the agent’s answers. Finally,
when the Quicksort algorithm is finished, the curator gets an aggregated
ranking.

Utility Metric - Average Kendall tau distance We use the average Kendall
tau distance to measure the accuracy of the aggregated ranking. The larger the
average Kendall tau distance, the worse the algorithm performance. We normalise
this distance by m(m− 1)/2 because we can directly compare it with different
number of alternatives. Hence, the average Kendall tau distance can be calculated
as K(R,Ru) = 2

nm(m−1)

∑
u∈N K(R,Ru).

4.2 Performance of DDP-Helnaksort

Comparison between DDP-Helnaksort and Baseline algorithms We ran
three algorithms LDP-Quicksort, LDP-Kwiksort, DDP-Helnaksort with Gaus-
sian noise. Here ε is the parameter in LDP. We set K ∈ {1,m,max} to observe
the performance of different algorithms in different K, and m is the number of
alternatives. When K = max, the maximum value of K in LDP-Kwiksort and
DDP-Helnaksort is

(
m
2

)
, but in LDP-Quicksort, the value is according to the cho-

sen pivot, and it is (m−1) logm in general. We did the experiment on TurkDots
with n = 100. With ε = 1, δ = 10−4 in local differential privacy, the average
Kendall tau distance of LDP-Quicksort, LDP-Kwiksort and DDP-Helnaksort

are shown in fig. 2.
The results in fig. 2 proves our algorithm outperforms others across different

K. When we add the same scale of noise to these algorithms, the average Kendall
tau distance of DDP-Helnaksort is the shortest. The cause is when adding same
scale of noise, DDP-Helnaksort uses more pairwise alternatives’ information (the
comparison information provided by pairwise comparisons) to rank, which leads
to a more accuracy result. Besides, it keeps away from the error of pivot random
selection, which can not be avoided by the other algorithms.

Impact of Query Amount to every agent Different number of the queries
has different ranking aggregation results. More information can be obtained when
increasing the number of queries, but at the same time, the privacy budget of

10 Baobao Song, Qiujun Lan, Yang Li, and Gang Li

Fig. 2: Comparison of algorithms according to average Kendall tau distance on
TurkDots across different K

each round becomes smaller, and the larger noise is added to every answer. In
order to get the best performance with the best K, we ran DDP-Helnaksort on
dataset TurkDots and the synthetic dataset with 100 agents. We set δ = 10−4,
ε ∈ {0.5, 1} (this ε is the parameter of DP, also means that it is the amplification
result of local randomizer, and ε in following experiment is the same) as well as
varying the number of queries K to observe the performance of DDP-Helnaksort.
The results are shown in fig. 3.

(a) (b)

Fig. 3: Performance of DDP-Helnaksort: Average Kendall tau distance on Turk-
Dots (a) and a synthetic dataset (b) across different K when δ = 10−4, ε ∈ {0.5, 1}

It is apparent that as the decreasing ofK, the performance of DDP-Helnaksort
is better. The average Kendall tau distance reaches the minimum when K = 1.
This experiment result is the same as [18], which reveals the best performance is
achieved when K = ε

2 . The reason of this phenomenon is large K leads to a small
ε in each round, and large scale of noise has a great impact on results. Although
some information about agents’ preferences is lost when K is small, a small noise
is added to each answer, and the impact is smaller than large noise with more
information. The result also implies if we want to further improve performance of
the algorithm, we can do some works about handling ε such as implementation
of personalised differential privacy which can release some needless privacy.

Distributed Differentially Private Ranking Aggregation 11

Ablation Study: Impact of shuffle model and privacy budget As seen
in section 3.4, shuffle model turns LDP to DDP and amplifies the privacy. When
every agent gives his noisy answers, a shuffling mechanism used before aggregation
can offer another protection. After using the shuffle model, the algorithm satisfies
DP with a smaller ε than before. In order to demonstrate the privacy amplification
of shuffling, we compared the algorithm with and without shuffle model in a same
ε. Besides, ε reflects the level of privacy protection of every agent. We varied ε to
observe the changes in average Kendall tau distance. We set k = 1, and other
experimental setup is unchanged.

(a) (b)

Fig. 4: Comparison of DDP-Helnaksort with and without shuffle model according
to average Kendall tau distance on TurkDots (a) and a synthetic dataset (b)
across different ε when K = 1 and n = 100

We can conclude from fig. 4 that adding the shuffle step results in a better
utility. The reason is that shuffling is equivalent to adding another noise on data.
Consequently, when we compared the algorithm with and without shuffling at
a certain ε, the second one has a large ε locally, so it perturbs less on data and
performs better. In fig. 4, the distance average increases more in TurkDots than
the synthetic dataset from with shuffling to without shuffling, and this mainly
relates to different number of alternatives m. The synthetic dataset has more
alternatives than TurkDots, thus the synthetic dataset has more alternative
pairs and it has fewer collected preferences about a certain pair. Therefore,
the shuffle model offers a smaller amplification on the synthetic dataset. This
phenomenon is consistent with the theorem 2 that the amplification bound
is proportional to the amount of data about a certain pair. Moreover, when
decreasing the privacy budget, the average Kendall tau distance increases due
to large scale of noise, which make the final aggregation ranking further to the
representative ranking. Furthermore, in DDP, we can choose alternative methods,
such as some cryptography tools, to amplify the privacy.

12 Baobao Song, Qiujun Lan, Yang Li, and Gang Li

5 Conclusions

In order to improve the utility of private ranking aggregation, we proposed a new
algorithm DDP-Helnaksort, which avoids the issue of random pivot selection
which appears in other private ranking algorithm using the pairwise method. We
designed a new method to give alternatives’ score according to preference in pairs,
which can save some privacy budget and lead to a higher utility. Experimental
results indicate that our algorithm achieves a better performance. Besides, We’re
first applying the DDP mechanism shuffle model to amplify the privacy. Theoret-
ical analysis of amplification bound of shuffle model and experimental results all
confirm that the shuffle model is valid.

In the future, we will further improve the ranking utility, such as using some
cryptography tools. Besides, this algorithm can be further optimised if it could
apply personalised DP, which can release some redundant privacy budget to
achieve a higher utility.

References

1. Bittau, A., Erlingsson, Ú., Maniatis, P., Mironov, I., Raghunathan, A., Lie, D.,
Rudominer, M., Kode, U., Tinnes, J., Seefeld, B.: Prochlo: Strong privacy for
analytics in the crowd. In: Proceedings of the 26th Symposium on Operating
Systems Principles. pp. 441–459 (2017)

2. Black, D., et al.: The theory of committees and elections (1958)
3. Cheu, A., Smith, A., Ullman, J., Zeber, D., Zhilyaev, M.: Distributed differential

privacy via shuffling. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 375–403. Springer (2019)

4. Ding, J., Han, D., Dezert, J., Yang, Y.: A new hierarchical ranking aggregation
method. Information Sciences 453, 168–185 (2018)

5. Dwork, C.: Differential privacy. In: International Colloquium on Automata, Lan-
guages, and Programming. pp. 1–12. Springer (2006)

6. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for
the web. In: Proceedings of the 10th international conference on World Wide Web.
pp. 613–622 (2001)

7. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy.
Found. Trends Theor. Comput. Sci. 9(3-4), 211–407 (2014)

8. Eppstein, D.: Instability vs anonymization in e pluribus hugo. https://11011110.
github.io/blog/2015/09/09/instability-vs-anonymization.html (2015)

9. Hay, M., Elagina, L., Miklau, G.: Differentially private rank aggregation. In: Pro-
ceedings of the 2017 SIAM International Conference on Data Mining. pp. 669–677.
SIAM (2017)

10. Hoare, C.A.: Quicksort. The Computer Journal 5(1), 10–16 (1962)
11. Kendall, M.G.: Rank correlation methods. (1948)
12. Mallows, C.L.: Non-null ranking models. i. Biometrika 44(1/2), 114–130 (1957)
13. Mao, A., Procaccia, A., Chen, Y.: Better human computation through principled

voting. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 27
(2013)

14. Meinhardt, H.I.: Cooperative decision making in common pool situations, vol. 517.
Springer Science & Business Media (2012)

https://11011110.github.io/blog/2015/09/09/instability-vs-anonymization.html
https://11011110.github.io/blog/2015/09/09/instability-vs-anonymization.html

Distributed Differentially Private Ranking Aggregation 13

15. Narayan, A.: Distributed differential privacy and applications. University of Penn-
sylvania (2015)

16. Shang, S., Wang, T., Cuff, P., Kulkarni, S.: The application of differential privacy
for rank aggregation: Privacy and accuracy. In: 17th International Conference on
Information Fusion (FUSION). pp. 1–7. IEEE (2014)

17. Wang, S., Du, J., Yang, W., Diao, X., Liu, Z., Nie, Y., Huang, L., Xu, H.: Aggregating
votes with local differential privacy: Usefulness, soundness vs. indistinguishability.
arXiv preprint arXiv:1908.04920 (2019)

18. Yan, Z., Li, G., Liu, J.: Private rank aggregation under local differential privacy.
International Journal of Intelligent Systems 35(10), 1492–1519 (2020)

	Distributed Differentially Private Ranking Aggregation

