Skip to main content

Multi-granularity Evolution Network for Dynamic Link Prediction

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13280))

Included in the following conference series:

Abstract

Dynamic link prediction target to predict future new links in a dynamic network, is widely used in social networks, knowledge graphs, etc. Some existing dynamic methods capture structural characteristics and learn the evolution process from the entire graph, which pays no attention to the association between subgraphs and ignores that graphs under different granularity have different evolve patterns. Although some static methods use multi-granularity subgraphs, they can hardly be applied to dynamic graphs. We propose a novel Temporal K-truss based Recurrent Graph Convolutional Network (TKRGCN) for dynamic link prediction, which learns graph embedding from different granularity subgraphs. Specifically, we employ k-truss decomposition to extract multi-granularity subgraphs which preserve both local and global structure information. Then we design a RNN framework to learn spatio-temporal graph embedding under different granularities. Extensive experiments demonstrate the effectiveness of our proposed TKRGCN and its superiority over some state-of-the-art dynamic link prediction algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://konect.uni-koblenz.de/.

  2. 2.

    http://snap.stanford.edu/.

References

  1. Cai, L., Ji, S.: A multi-scale approach for graph link prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3308–3315 (2020)

    Google Scholar 

  2. Chen, H., Yin, H., Wang, W., Wang, H., Nguyen, Q.V.H., Li, X.: PME: projected metric embedding on heterogeneous networks for link prediction. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1177–1186 (2018)

    Google Scholar 

  3. Dey, R., Salem, F.M.: Gate-variants of gated recurrent unit (GRU) neural networks. In: 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1597–1600. IEEE (2017)

    Google Scholar 

  4. Eppstein, D., Galil, Z., Italiano, G.F.: Dynamic graph algorithms. Algorithms Theor. Comput. Handb. 1, 9-11 (1999)

    Google Scholar 

  5. Goyal, P., Chhetri, S.R., Canedo, A.: dyngraph2vec: capturing network dynamics using dynamic graph representation learning. Knowl.-Based Syst. 187, 104816 (2020)

    Article  Google Scholar 

  6. Goyal, P., Kamra, N., He, X., Liu, Y.: Dyngem: deep embedding method for dynamic graphs. arXiv preprint arXiv:1805.11273 (2018)

  7. He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: Lightgcn: Simplifying and powering graph convolution network for recommendation. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 639–648 (2020)

    Google Scholar 

  8. Huang, X., Lakshmanan, L.V., Xu, J.: Community search over big graphs. Synthesis Lect. Data Manage. 14(6), 1–206 (2019)

    Article  Google Scholar 

  9. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  10. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural networks. arXiv preprint arXiv:1511.05493 (2015)

  11. Liu, J., Xu, C., Yin, C., Wu, W., Song, Y.: K-core based temporal graph convolutional network for dynamic graphs. IEEE Trans. Knowl. Data Eng. (2020)

    Google Scholar 

  12. Liu, M., Gao, H., Ji, S.: Towards deeper graph neural networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 338–348 (2020)

    Google Scholar 

  13. Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., Khudanpur, S.: Recurrent neural network based language model. In: Eleventh Annual Conference of the International Speech Communication Association (2010)

    Google Scholar 

  14. Pareja, A., et al.: Evolvegcn: evolving graph convolutional networks for dynamic graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5363–5370 (2020)

    Google Scholar 

  15. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Networks 20(1), 61–80 (2008)

    Article  Google Scholar 

  16. Seo, Youngjoo, Defferrard, Michaël, Vandergheynst, Pierre, Bresson, Xavier: Structured sequence modeling with graph convolutional recurrent networks. In: Cheng, Long, Leung, Andrew Chi Sing., Ozawa, Seiichi (eds.) ICONIP 2018. LNCS, vol. 11301, pp. 362–373. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04167-0_33

    Chapter  Google Scholar 

  17. Te, G., Hu, W., Zheng, A., Guo, Z.: RGCNN: regularized graph CNN for point cloud segmentation. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 746–754 (2018)

    Google Scholar 

  18. Theocharidis, A., Van Dongen, S., Enright, A.J., Freeman, T.C.: Network visualization and analysis of gene expression data using Biolayout express 3D. Nat. Protoc. 4(10), 1535–1550 (2009)

    Article  Google Scholar 

  19. Trivedi, R., Farajtabar, M., Biswal, P., Zha, H.: Dyrep: learning representations over dynamic graphs. In: International Conference on Learning Representations (2019)

    Google Scholar 

  20. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  21. Wasserman, S., Faust, K., et al.: Social network analysis: Methods and applications (1994)

    Google Scholar 

  22. Zhou, L., Yang, Y., Ren, X., Wu, F., Zhuang, Y.: Dynamic network embedding by modeling triadic closure process. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haihui Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Y., Gu, X., Fan, H., Li, B., Wang, W. (2022). Multi-granularity Evolution Network for Dynamic Link Prediction. In: Gama, J., Li, T., Yu, Y., Chen, E., Zheng, Y., Teng, F. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2022. Lecture Notes in Computer Science(), vol 13280. Springer, Cham. https://doi.org/10.1007/978-3-031-05933-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05933-9_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05932-2

  • Online ISBN: 978-3-031-05933-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics