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General Chairs’ Preface

On behalf of the Organizing Committee, it is our great pleasure to welcome you
to the 26th Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD2022), held in Chengdu, China, during May 16–19, 2022. Starting in 1997,
PAKDD has long established itself as one of the leading international conferences in
data mining and knowledge discovery. PAKDD provides an international forum for
researchers and industry practitioners to share their new ideas, original research results,
and practical development experiences from all Knowledge Discovery and Data Mining
(KDD) related areas. In response to the COVID-19 pandemic and the need for social
distancing, PAKDD 2022 was held as a hybrid conference for both online and onsite
attendees.

Our gratitude goes first and foremost to the researchers, who submitted
their work to PAKDD 2022. We would like to deliver our sincere thanks for
their efforts in research, as well as in preparing high-quality presentations. We
also thank all the collaborators and sponsors for their trust and cooperation. It
is our great honor that three eminent keynote speakers joined the conference:
Jian Pei (Simon Fraser University, Canada), Bernhard Schölkopf (Max Planck
Institute for Intelligent Systems, Germany) and Ji-Rong Wen (Renmin University,
China). They were extremely professional and have high reputations in their respec-
tive areas. We enjoyed their participation and talks, which made the conference one of
the best academic platforms for knowledge discovery and data mining.

We would like to express our sincere gratitude to the contributions of Steering
Committee members, Organizing Committee members, Program Committee members
and anonymous reviewers, led by ProgramCommitteeCo-chairs: JoãoGama (University
of Porto), Tianrui Li (Southwest JiaotongUniversity), andYangYu (NanjingUniversity).
We are also grateful for the hosting organization Southwest Jiaotong University which
is continuously providing institutional and financial support to PAKDD 2022. We
feel beholden to the PAKDD Steering Committees for their constant guidance and
sponsorship of manuscripts.

Finally, our sincere thanks go to all the participants and volunteers. We hope all of
you enjoyed PAKDD 2022.

April 2022 Enhong Chen
Yu Zheng



PC Chairs’ Preface

It is our great pleasure to present at the 26th Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD 2022) as the Program Committee Chairs. PAKDD
is one of the longest established and leading international conferences in the areas of
data mining and knowledge discovery. It provides an international forum for researchers
and industry practitioners to share their new ideas, original research results, and practical
development experiences from all KDD related areas, including data mining, data
warehousing, machine learning, artificial intelligence, databases, statistics, knowledge
engineering, big data technologies and foundations.

This year PAKDD received 627 submissions, among which 69 submissions
were rejected at a preliminarily stage due to the policy violations. There were 320
Program Committee members and 45 Senior Program Committees members involved
in reviewing process. Each submission was reviewed by at least three different
reviewers. Over 67% of those submissions were reviewed by four or more reviewers.
Eventually, 121 submissions were accepted and recommended to be published, resulting
in an acceptance rate of 19.30%. Out of these, 29 submissions were about applications,
4 submissions were related to big data technologies, 46 submissions were on data sci-
ence and 42 submissions were about foundations. We would like to appreciate all PC
members and reviewers, who offered a high-quality program with diligence on PAKDD
2022.

The conference program featured keynote speeches from distinguished researchers
in the community, most influential paper talks, cutting-edge workshops and
comprehensive tutorials.

We wish to sincerely thank all PCmembers and reviewers for their invaluable efforts
in ensuring a timely, fair, and highly effective PAKDD 2022 program.

April 2022 João Gama
Tianrui Li
Yang Yu
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Text2Chart: A Multi-staged Chart
Generator from Natural Language Text

Md. Mahinur Rashid, Hasin Kawsar Jahan, Annysha Huzzat,
Riyasaat Ahmed Rahul, Tamim Bin Zakir, Farhana Meem,
Md. Saddam Hossain Mukta, and Swakkhar Shatabda(B)

Department of Computer Science and Engineering, United International University,
Dhaka, Bangladesh

{mrashid171045,hjahan171054,ahuzzat171034,rrahul171089,tzakir171032,
fmeem171031}@bscse.uiu.ac.bd

{saddam,swakkhar}@cse.uiu.ac.bd

Abstract. Generation of scientific visualization from analytical natural
language text is a challenging task. In this paper, we propose Text2Chart,
a multi-staged chart generator method. Text2Chart takes natural lan-
guage text as input and produces visualization as two-dimensional charts.
Text2Chart approaches the problem in three stages. Firstly, it identifies
the axis elements, known as x and y entities, of a chart from the given
text. Next, it finds a mapping of x-entities with its corresponding y-
entities. Subsequently, it generates a chart type among bar, line, or pie,
which is suitable for the given text. Combination of these three stages
is capable of generating visualization from the given statistical text. We
have also constructed a dataset for this problem. Experiments show that
Text2Chart performs best with BERT based encodings with LSTM mod-
els in the first stage to label x and y entities, Random Forest classifier
in the mapping stage and fastText embedding with LSTM in the chart
type prediction stage. In our experiments, all the stages show satisfac-
tory results and effectiveness considering the formation of charts from
analytical text, achieving a commendable overall performance.

Keywords: Chart generation · Natural Language Processing ·
Information retrieval · Neural network · Automated visualization

1 Introduction

In recent years, advances in Natural Language Processing (NLP) have made huge
progress in extracting information from natural language texts. Among them, a
few example tasks are: document summarization [1], title or caption generation
from texts, generating textual descriptions of charts [2], named entity recogni-
tion [3], etc. There have been several attempts to generate graphs or structural
elements from natural language texts or free texts [4–6]. Scientific charts (bar,
line, pie, etc.) are visualizations that are often used in communication. However,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13281, pp. 3–16, 2022.
https://doi.org/10.1007/978-3-031-05936-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05936-0_1&domain=pdf
https://doi.org/10.1007/978-3-031-05936-0_1


4 Md. M. Rashid et al.

automated generation of charts from natural language text has always been a
challenging task.

There are very few works in the literature addressing the exact problem of sci-
entific chart generation from natural language text [7,8]. In [7], the authors have
presented an infographic generation technique from natural language statements.
However, their method is limited to single entity generation only. Text2Chart
extends it to multiple entity generation and thus can generate more complex
charts. Nevertheless, Generative Pre-trained Transformer 3 (GPT-3)[8] has been
a recent popular phenomenon in the field of deep learning. OpenAI has designed
this third-generation language model that is trained using neural networks. To
the best of our knowledge, there has been an attempt to make a simple chart
building tool using GPT-3. As its implementation is not accessible yet, the field
of information extraction regarding chart creation can still be considered unex-
plored to some extent. Moreover, the dataset used in GPT-3 is a very large one,
and the training is too expensive.

In this paper, we propose Text2Chart, a multi-staged technique that gener-
ates charts from analytical natural language text. Text2Chart works in a combi-
nation of three stages. In the first stage, it recognizes x-axis and y-axis entities
from the input text. In the second stage, it maps x-axis entities with their corre-
sponding y-axis entities, and in the third stage, it predicts the best-suited chart
type for the particular text input. Text2Chart is limited to three types of charts:
bar charts, line charts and pie charts. Tasks in each stage are formulated as
supervised learning problems. We have created our own dataset which is labeled
for all three stages of Text2Chart. We have used a wide range of evaluation met-
rics for all the three stages and different combinations of word embeddings and
classifiers. The experimental results shows that the best results in the first stage
are obtained using BERT embedding and Bidirectional LSTM, achieving an F1-
score of 0.83 for x-entity recognition and 0.97 for y-entity recognition in the test
set. In the mapping stage, Random Forest achieves the best results of 0.917 of
Area under Receiver Operating Characteristic Curve (auROC) in the test set.
In the third stage, the model fastText with LSTM layers performs the best to
predict the suitable chart type. Here, Text2Chart achieves the best results of
auROC 0.64 for pie charts and auROC 0.91 for line charts. The experimental
analysis of each stage and in combination shows the overall effective performance
of Text2Chart for generating charts from given natural language charts.

2 Related Work

Recent developments in the field of NLP is advancing information extraction in
general. One of the first and foremost steps in NLP is the proper vectorization of
the input corpora. One of the breakthroughs in this area is word2vec proposed
in [9]. Word2Vec maps words with similar meaning to adjacent points in a vector
space. The embedding is learnt using a neural network on a continuous bag of
words or skip-gram model. A character-level word embedding is proposed in [10].
Recently, Bidirectional Encoder Representations from Transformers (BERT) is



Text2Chart: A Multi-staged Chart Generator from Natural Language Text 5

proposed in [11]. BERT is trained on a large corpora and enables pre-trained
models to be applicable to transfer learning to a vast area of research. BERT
has been successfully applied to solve problems like Named Entity Recognition
(NER) [3], text summarization [1], etc.

Text based information processing has been a long quest in the field [12].
Kobayashi et al. [12] have presented a NLP based modeling for line charts.
A Hidden Markov Model based chart (bar, line, etc.) recognition method is
proposed in [13]. Graph neural networks have been employed in [4] to generate
logical forms with entities from free text using BERT. In a very recent work [5],
Obeid et al. have used transformer based models for text generation from charts.
For this work, they have also constructed a large dataset extracting charts from
Statista. However, their work focuses on chart summarizing and hence called
‘Chart-to-Text’. In an earlier work [14], authors have proposed a method for
generating ground truth for chart images. Both of the works are limited to bar
charts and line charts only. A Generative Adversarial Network, AttnGAN is
proposed in [15] that can generate images from text descriptions. Balaji et al.
[2] has proposed an automatic chart description generator. CycleGT has been
proposed recently that works in both directions: text to graphs and graphs to
text [6]. Kim et al. [16] has proposed a pipeline to generate an automatic question
answering system based on charts.

Automated visualization has always been a very fascinating area. A survey of
Machine Learning based visualization methods has been presented in [17]. Deep
Eye is proposed in [18] to identify best visualizations from pie chart, bar chart,
line chart and scatter chart for a given data pattern. ‘Text-to-Viz’ is proposed in
[7] that generates excellent infographics from given text. However, their method
is limited to a single entity only. GPT-3 [8] has been a recent phenomenon in the
field which has been reported to generate charts from natural language texts.
However, GPT-3 implementation is not open yet. Moreover, it is trained on an
extremely large corpora and an extremely large transformer based model which
requires huge resources. In the light of the review of the existing methods, we
believe there is a significant research gap to be addressed in this area.

3 Proposed Method

Text2Chart consists of three stages as shown in Fig. 1. It takes a free text as input
containing the analytical information. Then it produces x and y axis entities
followed by a mapping generation among these elements. In stage 3, the chart
type is predicted. A combination of these three are then passed on to the chart
generation module. This section presents the detailed procedure of these stages.

3.1 Stage 1: x-Axis and y-Axis Label Entity Recognition

In the first stage, we identify the potential candidate words for both x-axis and
y-axis entities of a two dimensional chart. We have formulated the problem as
a supervised machine learning task. Here, input to the problem is a paragraph
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Fig. 1. The overall methodology of Text2Chart.

or natural language text and output is a list of words labeled as x-entity and
y-entity.

To identify x-entity and y-entity, we build a neural network with different
word embeddings and sequence representations. We have employed and experi-
mented with two different strategies - i) detecting both types of entities at once
and ii) using separate models for recognizing x and y entities. Detecting both x
and y entities at once shows a drawback as there lies a possibility that a certain
type of entity may outperform the loss function of the other types as observed
in the experiments (Sect. 4.3).

We have experimented with both of the strategies using word embedding
like Word2Vec [9], fastText [10] and the sequence output of the pre-trained
model provided by BERT [11]. For each sample text in the dataset, we take the
generated embedding and use it as an input to our model. Then we use layers
of Bi-directional LSTM networks. On top of that, we use the time-distribution
layer and dense layer to classify each word index that falls into a category of a
respected entity or not.

3.2 Stage 2: Mapping of x and y Label Entities

After identifying the x and y entities in Stage 1, we map each of the identified x
entity with its corresponding y entity. For example, if we have an x entity set for a
text as {x1, x2, · · · , xM} and y entity set of that text is {y1, y2, · · · , yN} and their
mapping is as follows {(x1, φ(x1)), (x2, φ(x2)), · · · , (xM , φ(xM )}. Please note, here
xi, yj denotes their position in the sequence. Here the mapping function, φ(xi)
maps an entity xi to another entity, yk. However, there is often found that the
entity set lengths are not same M �= N and often the sequential order is not main-
tained. For two x entities xi, xj if they maps to yk, yl, then a sequential mapping
φ guarantees, i ≤ j, k ≤ l whereas the non-sequential mapping will not guarantee
that. However, in our observation, non-sequential mapping is not that frequent.
In order to address these issues, we propose that the mapping is dependent on
the distances between the corresponding entities. We call it our baseline model
for this task. From the training dataset, we learn the probability distribution for
positive and negative likelihood for distances between x and y entities which are
P (d(xi, yk)|φ(xi) = yk) and P (d(xi, yk)|φ(xi) �= yk) respectively. For the missing
values in the range, nearest neighbor smoothing is used to estimate the likelihood
values and then normalized to convert it to a probability distribution. The baseline
model defines the mapping as in the following equation:
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φ(xi) = argmax
k

P (d(xi, yk)|φ(xi) = yk)
P (d(xi, yk)|φ(xi) = yk) + P (d(xi, yk)|φ(xi) �= yk)

(1)

For a particular entity xi and a particular yk entity, we take the two other
entities, one immediately before (xi−1, yk−1) and the next one (xi+1, yk+1) to
create the feature vector. For 6 such entity positions, we generate 15 possible
pairs and take pairwise distances among them. Note that, for two similar type
entities we take unsigned distance and for different entities signed distances
are taken to encode their relative positions into the feature vector. With this
feature vector, we train two models: SVM and Random Forests, where the latter
works slightly better. As this is an argmax based calculation, the probability
distribution of the Random Forest classifier was more consistent than that of
SVM. The reason for the inconsistency of the distribution with the scores in SVC
is that the ‘argmax’ of the scores may not be the argmax of the probabilities.
Therefore we take the auROC as the primary evaluation matrix for this stage.
We take the harmonic mean of auROC of both training and validation so that
the measure is balanced and they do not outperform each other.

3.3 Stage 3: Chart Type Prediction

Generally, a bar chart is the most commonly accepted chart type for any statis-
tical data. However, for better visualization and understanding, pie charts and
line charts are also used. Pie charts are suitable if the entities conform to a
collection/composition. Line charts are suitable for the cases where the entities
themselves form a continuous domain. For this stage, we have applied fastText
word embeddings to build two models with LSTM layers and dense layers. Each
model performs binary classification; one is to predict if a pie chart is suited for
the text or not, and the other is for the line chart. When neither of these two
chart types are fitting, only the bar chart is assigned to the text.

4 Experimental Analysis

Text2Chart is implemented using Tensorflow version 2.3. All the experiments
have run using Google Colab and the cloud GPU provided with it. The hardware
environment of our work requires a CPU of 2.3 GHz, GPU 12 GB, RAM 12.72
GB and Disk of 107 GB. All the experiments have run at least 5 times with
different random seeds and only the average results are reported in this section.
Source codes and the dataset of Text2Chart will be made available via a public
repository (at the time of publication).

4.1 Dataset Construction

While starting this work, no datasets were available for this particular task of
automatic generation of a chart out of a natural language text. Text2Chart
requires a specific dataset from which the text samples are suitable for recog-
nizing the chart information. Here chart information refers to the x-axis entities
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Table 1. Summary of datasets used in the experiments.

Dataset Text x, y Entity prediction Mapping Chart type

samples x Tokens y Tokens x Labels y Labels pairs Pie Line

Training 464 3411 3614 1984 1909 1984 73 58

Validation 116 985 1058 548 529 548 20 11

Test 137 988 1075 574 561 574 20 15

and the corresponding y-axis values respectively. The text samples must con-
tain all these entities to construct the particular chart. We have collected text
samples from Wikipedia, other statistical websites and crowdsourcing. We have
used crowdsourcing to label the data so that the texts are labeled for all three
stages. All the labeled data are then cross checked by a team of volunteers and
only the consensus labels are taken. In total, 717 text samples are taken in the
final dataset with 30,027 words/tokens. The average length of the text samples
is 53 words and the maximum length is 303 words in a single text. This final
dataset is then split in the train, validation and test sets each containing 464,
116 and 137 samples respectively. A summary of the dataset is shown in Table 1.
Please note that in the first stage the token number is higher than labels since a
particular x or y entity/label might consist of two words or tokens. All the texts
are labeled to be suitable for bar charts and only the statistics for pie and line
charts are shown in the table.

4.2 Performance Evaluation

All the methods are trained using the training set and the performance are
validated using the validation set. Only after the final model is selected, the
model is tested on the test set. For the axis entity recognition task in the first
stage, we adopt the F1-score and its variant the harmonic mean of f1-scores.
We observe the Receiver Operating Characteristic (ROC) curve and the area
under curve (auROC) in order to summarize and compare the performances
of the classifiers in the second stage of entity mapping. Finally for chart type
prediction, we adopt Matthews Correlation Coefficient (MCC) evaluation metric,
as MCC being a more reliable statistical rate than F1-score and accuracy in
binary classification evaluation for an imbalanced dataset.

4.3 Axis Label Recognition Task

The first stage of our work is x-axis and y-axis label entity recognition. Here
we predict whether a given word from the text input can be an x-axis or y-axis
entity. We have experimented with our neural architecture model of bidirectional
LSTM combining several embeddings, such as fastText, Word2Vec and BERT
in order to recognize these entities. For each of the embeddings, we have used
two different approaches. In the first approach, x-entity and y entity prediction
is considered as separate prediction tasks. Here we have the two models, one
for each of the tasks. In the second approach, they are considered together as a
combined prediction task.
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Experiments with fastText Embedding. For both of the approaches using
fastText (individual and combined), we have used a neural architecture with
4 hidden layers and a dense output layer. The first two hidden layers consist
of bidirectional LSTM layers of 512 neurons and 128 neurons followed by a
time-distributed dense layer of 64 neurons and a dense hidden layer with 1024
neurons. Epoch and batch size are kept fixed at 8 for all the models considered
here. Experimental results of fastText experiments are given in the first four
rows of Table 2. Note that we have reported precision, recall and F1-score for
x and y entity predictions. Also the harmonic mean of F1-score is reported.
Note that, the individual approach achieves F1-score for x and y entities of 0.66
and 0.85 respectively in the validation set which is improved in the combined
approach being 0.66 and 0.89. It is clear that the prediction or recognition of x
axis entities is a much more difficult task compared to y axis entity recognition.
Here, we can conclude that both models perform almost similarly which is also
reflected in the harmonic mean of F1-score respectively 0.74 and 0.76.

Table 2. Experimental results for the axis label prediction task in the frist stage of
Text2Chart.

Model Dataset Precision

(x)

Recall

(x)

Precision

(y)

Recall

(y)

F1-score

(x)

F1-score

(y)

Harmonic

F1-score

fastText Training 0.81 0.80 0.93 0.88 0.80 0.90 0.84

Individual Validation 0.68 0.64 0.89 0.81 0.66 0.85 0.74

fastText Training 0.81 0.73 0.89 0.97 0.77 0.93 0.84

Combined Validation 0.73 0.60 0.86 0.93 0.66 0.89 0.76

word2Vec Training 0.90 0.88 1.00 1.00 0.89 1.00 0.94

Individual Validation 0.72 0.62 0.79 0.77 0.67 0.78 0.72

word2Vec Training 0.99 0.99 1.00 1.00 0.99 1.00 0.99

Combined Validation 0.72 0.64 0.83 0.74 0.68 0.78 0.73

BERT Training 0.99 0.99 .99 0.99 0.99 0.99 0.99

Individual Validation 0.89 0.86 0.95 0.98 0.87 0.97 0.92

BERT Training 0.99 1.00 0.99 1.00 0.99 0.99 0.99

Combined Validation 0.86 0.78 0.96 0.97 0.82 0.97 0.89

Best Test 0.85 0.82 0.96 0.98 0.84 0.97 0.89

Experiments with word2vec Embedding. The word2vec embedding rep-
resents the word tokens in the corpus by representing the words with common
context in a close proximity in the vector space as well. Similar to the experiments
of fastText we have two approaches employed here: individual and combined. For
word2vec embedding, the network structure is kept the same as in the fastText
experiments. However, for training we have used 16 epochs and a batch size of
8. The experimental results are shown in the second four rows of Table 2. From
Table 2, we can see that this combined approach is giving F1-score of the x and
y entity recognition task as 0.68 and 0.78 respectively which is almost similar
to the performance of the individual approach (0.67 and 0.78 respectively). The
performance only differs in the x entity recognition task which is also observed in
the harmonic mean of F1-score. Note that the overall performance of word2vec
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embedding is significantly worse compared to fastText embedding. Also note that
the higher level of overfitting of the word2vec model has reflected in the high
values of precision, recall and F1 score in all the tasks in the training dataset
which is not repeated in validation.

Experiments with BERT Embedding. We have also experimented with
BERT embeddings on the same architecture proposed in Sect. 3. However, in
these experiments the network structure is different with the same number of
layers. Here too we have used two approaches: individual and combined. In the
individual approach, the first two hidden layers of the neural architecture are
bidirectional LSTM with 1024 neurons in each followed by a time-distributed
dense layer with 1024 neurons and a dense layer with 256 neurons. In the case of
x entity recognition, we have used a batch size of 2 and 80 epochs for training. In
the case of y entity recognition, the batch size was 8. In the combined approach,
the architecture structure has differed only in the last hidden dense layer. Here
the number of neurons is 1024. We have used an online training for this combined
approach. The experimental results with BERT embedding is reported in the
third four rows of Table 2. From the results shown there, we can notice that for
BERT embedding, the performances in the individual approach outperform the
combined approach in x entity prediction performance. The results in y entity
recognition is almost similar for both of the approaches. Thus the both harmonic
mean and F1-score of x entity recognition are superior in combined approach
which are 0.87 and 0.92 respectively compared to those of 0.82 and 0.89 in the
individual approach.

To summarize, we can note that the results in BERT embedding are superior
to two other embeddings. The best achieved values are shown in boldfaced fonts
in the Table. Thus, we take the BERT embedding individual x and y entity pre-
diction approach with bidirectional LSTM as the best performing model among
those used in the experiments. With the best model, we have also tested its per-
formance on the test dataset. The results are shown in the last row of Table 2.
Here, it is interesting to note that the learned model is not overfitting and the
performances in the validation set and test set are not much different.

4.4 Mapping Task

After recognizing the x and y entities with high precision and recall in stage
1, the second stage sets the target to map them in an ordered way. We have
first used a transfer model from the best performing model in the first stage to
see if that helps. However, the very low F1-score of 0.41 and auROC of 0.64
have discouraged us from proceeding in this way. It is evident that the same
architecture is not suitable for the different stages due to differences in the type
of the task. Note that this task is highly imbalanced as the number of positive
mappings are very small compared to negative mappings. Thus the model often
gets biased towards the negative model and might show poor performance in the
positive prediction.
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Table 3. Experimental results for the mapping task in the second stage.

Model Dataset Class Precision Recall F1-score Harmonic F1-score auROC

Baseline Training 0 (−ve) 0.94 0.94 0.94 0.84 0.908

1 (+ve) 0.76 0.76 0.76

Validation 0 (−ve) 0.95 0.95 0.95 0.82 0.914

1 (+ve) 0.73 0.73 0.73

SVM Training 0 (−ve) 0.93 0.93 0.93 0.81 0.897

1 (+ve) 0.72 0.72 0.72

Validation 0 (−ve) 0.96 0.96 0.96 0.86 0.924

1 (+ve) 0.78 0.78 0.78

Random Forest Training 0 (−ve) 0.95 0.95 0.95 0.85 0.913

1 (+ve) 0.77 0.77 0.77

Validation 0 (−ve) 0.96 0.96 0.96 0.84 0.930

1 (+ve) 0.77 0.77 0.77

Best Test 0 (−ve) 0.94 0.94 0.94 0.85 0.917

1 (+ve) 0.77 0.78 0.77

Our baseline model is a simple argmax calculation of the likelihood based on
Eq. (1). The results of the baseline model are presented in the first four rows of
Table 3. In this table, we have reported precision, recall and F1-score for both
of the classes and also the auROC. Note that the results of the baseline model
is encouraging with a high auROC of 0.908. However, note that the positive
class performance is poor compared to the negative class which leaves room for
improvement.

Next we have experimented with the supervised learning approach described
in Sect. 3 using Support Vector Machine (SVM) and Random Forest classifiers.
In Table 3, we notice that the performance in both of the classes are improved
using this approach in both of the classes compared to the baseline model. We
note that the performance in the negative class is the same. However, the F1-
score of the Random Forest classifier is slightly lower in the positive case which
is not that significant (0.77 vs 0.78). The fact is evident in auROC. There we see
significant improvement achieved by the Random Forest classifier compared to
SVM. The best values are shown in boldface font in the table. Thus we conclude
that Random Forest is the best performing model for stage 2.

Finally, we have tested the performance of the best performing Random For-
est model on the test set and the results are shown in the last row of Table 3. We
see that the performances in the test set are stable and similar to the validation
set.

4.5 Chart Type Prediction Task

At the third stage, the task is to predict the suitable chart type from the given
text. Note that for all the texts in the dataset, the bar chart is common and thus
we exclude it from classification models. We train two separate models: one for
the pie chart and another for the line chart. This model uses fastText embedding
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Table 4. Experimental results for chart type prediction task.

Problem Dataset Specificity Sensitivity MCC auROC

Pie chart Training set 0.742 0.944 0.51 0.86

Validation set 0.6945 0.714 0.32 0.66

Test set 0.573 0.75 0.22 0.64

Line chart Training set 0.9634 0.963 0.96 0.96

Validation set 0.990 0.933 0.92 0.98

Test set 0.893 0.733 0.51 0.91

with bidirectional LSTM layers. The network architecture and structure is kept
the same for both of the classifiers. The neural network has three hidden layers.
The first two layers are the LSTM layers with 128 neurons each followed by a
dense layer of 512 neurons. The output layer is a simple sigmoid layer. We have
used the RMSprop algorithm to train the models.

For pie chart recognition, we set the batch size to 128 and the learning rate
to 4e-4. As we have a highly imbalanced dataset, we achieve good enough results
in terms of MCC, scoring 0.22 in the test set as shown in Table 4. The obtained
auROC for pie charts is 0.64 in the test set. We have achieved a better result
in terms of recall or sensitivity of 0.94 in the training set, 0.71 in the validation
set and 0.75 in the test set. For line charts, we set the batch size to 256 and the
learning rate remains as default to 1e-3. In Table 4, we find outstanding results
in terms of auROC score of 0.96 in the training set, 0.98 in the validation set
and over 0.91 in the test set. Our obtained MCC in the train, validation and
test sets is 0.96, 0.92 and 0.51 which is a better score than the prediction of pie
charts.

4.6 Overall Performance

In order to discuss the overall performance of our work, we have created a pipeline
same as shown in Fig. 1. Our pipeline merges all the stages of our work and
outputs the results we have already discussed and shown in this section. After
obtaining the final results, we have checked for all possible errors that occur
after completion of each stage. After completing stage 1, if both of the entity
sets have a similar number of entities (N = M) then we consider 1-to-1 sequen-
tial mapping. The cumulative frequency of error count for each of the stages
is shown in Fig. 2. This plot shows how each stage cumulatively produces error
in the pipeline. However, we notice that although we have a good number of
samples without error, there is a room to improve and as shown in the figure,
the most error-prone task is task 3 due to the poor performance in pie chart
type prediction. We also show one partially correct and one fully correct chart
example generated by Text2Chart in Table 5.
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Fig. 2. Cumulative frequency of error of three states put in a pipeline on the test set.

Table 5. Sample input and outputs of Text2Chart.

Input Sample text Tzuyu is a gaming expert . She surveyed 200 individuals to judge

the popularity of the video games among her all time favorites .

After her survey she concluded that 25 people voted for World of

Warcraft , 46 voted for Black Ops , 12 voted for Overwatch , 25

for Modern Warfare , 30 for PUBG , 50 for Sims and 40 for

Assassin ’ s Creed

Output x Entities [’World of Warcraft’, ’Black Ops’, ’Overwatch’, ’Modern

Warfare’, ’PUBG’, ’Sims’, ’Assassin’, ’s Creed’]

y Entities [’25’, ’12’, ’25’, ’30’, ’50’, ’50’, ’40’, ’40’]

Chart type [’bar’]

Input Sample text Mr . Jamal worked in the Meteorological Department for 8 years

. He noticed a strange thing in recent times . On certain days of

the month , the weather varied strongly . He wrote down the

information to make a pattern of the event . The information of

the paper is as follows : on the 3rd day of the month the

temperature is 36 ◦C , 7th day is 45 ◦C , 9th day is 18 ◦C , 11th

day is 21 ◦C , 17th day is 9 ◦C , 19th day is 45 ◦C , 21st day is

36 ◦C , 27th day is 21 ◦C and 29th day is 45 ◦C . He finds a

weird pattern in these dates and makes a report and sends it to

his senior officer

Output x Entities [’3rd day’, ’7th day’, ’9th day’, ’11th day’, ’17th day’, ’19th day’,

’21st day’, ’27th day’, ’29th day’]

y Entities [’36’, ’45’, ’18’, ’21’, ’9’, ’45’, ’36’, ’21’, ’45’]

Chart type [’bar’, ’Line’]

5 Conclusion

In this paper we have presented Text2Chart, an automatic multi-staged tech-
nique that is able to generate charts from human written analytical text. Our
technique has been tested on a dataset curated for this task. Despite having a
short corpora, Text2Chart provides satisfactory results in every stage regard-
ing automatic chart generation. One of the limitations of our work is the size
of the dataset. With a larger dataset, we believe the methodology presented in
this paper will provide further improved results. Text2Chart is currently lim-
ited to the prediction of only three basic chart types: bar charts, pie charts and
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line charts. It is possible to extend it for further types. Recently a dataset for
chart-to-text has been proposed in [5]. It is possible to use that dataset for the
reverse problem also. We believe it is possible to tune and experiment with more
types of suitable neural architecture further for all the stages to improve overall
accuracy.

A Network Architectures

See Figs. 3 and 4.

Fig. 3. Proposed neural architecture for recognition of x-axis and y-axis entities.



Text2Chart: A Multi-staged Chart Generator from Natural Language Text 15

Fig. 4. Proposed neural network architecture for chart type prediction.
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Abstract. Recent unsupervised GNN based graph anomaly detection
(GAD) methods adopt specific mechanisms designed for anomaly detec-
tion. This is in contrast to earlier methods that utilise components such
as graph autoencoders that were designed for more general use-cases.
However, these newer methods only lead to a modest increase in detection
accuracy at the cost of complicated optimisation schemes and higher run-
times. To overcome these issues, we propose Embedding Neighbourhood
Dissimilarity (END) with Attribute Shuffling (ENDASh), a simple but
scalable and effective GAD framework. ENDASh utilises our proposed
END measure to quantify the degree of abnormality of nodes using
GraphSAGE embeddings that were optimised with Attribute Shuffling,
a data augmentation method designed to project anomalies away from
inliers in the latent space. Extensive experiments on real-world bench-
marks demonstrate the competitive GAD performance of our ENDASh
while being computationally efficient and capable of operating in an
inductive environment.

Keywords: Anomaly detection · Attributed graph · Graph mining

1 Introduction

Attributed graphs are an expressive means of representing complex real-world
interactions, such as publication citations and social media relationships [8,19].
Graph Anomaly Detection (GAD) [1,14] on attributed graphs is the task of
identifying anomalous graph components that deviate from the majority inlier
components. GAD has a wide range of applications in various domains such as
cybersecurity, fraud detection and social network analysis [19].

Neural network based GAD methods have proven to be more effective than
non-network based methods [5,13], due to the ability of GNNs to learn more
meaningful representations of graphs. Earlier GNN based GAD methods suffer
from substantial drawbacks such as design choices that are not explicit for GAD

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13281, pp. 17–29, 2022.
https://doi.org/10.1007/978-3-031-05936-0_2
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or scalability issues. We discuss these issues in detail in Sect. 2. Recently, newer
GNN based GAD methods have overcome these issues by adopting mechanisms
such as contrastive learning [13,22] and adversarial training [2,4] to perform opti-
mizations that explicitly aim to model anomalies. They also improve scalability
by processing the graph into smaller segments to avoid resource bottlenecks.
However, these modifications can involve complicated graph processing steps
and prolonged training and inference time while achieving relatively modest
gains in GAD accuracy compared to earlier methods.

To date, there has been limited work on investigating the use of node embed-
dings for GAD. In this paper, we tackle the GAD problem by obtaining discrim-
inative information from node embeddings. The approach we take improves run-
time and space scalability while having increased accuracy compared to current
baselines. We also leverage a data augmentation step to generate node embed-
dings that are better suited to GAD and use them in the optimization of a
specific function aimed at GAD. To the best of our knowledge, this is the first
paper to demonstrate the utility of data augmentation for GAD.

In this paper, we propose a new framework for GAD that utilizes a novel
anomaly measure called Embedding Neighbourhood Dissimilarity (END), and
a new data augmentation method we term Attribute Shuffling. Our proposed
framework combines END and Attribute Shuffling, so we term it ENDASh. END
is a localized measure that assesses the level of inconsistency between a node and
its immediate neighbours using embeddings generated by a GraphSAGE model
[7]. Using END naively as an anomaly score can already outperform state of the
art methods in terms of accuracy on various benchmark datasets while being
faster to train and make predictions. However, END based anomaly detection
does not perform well on graphs with high degrees and number of attributes.
To overcome this problem, we utilize Attribute Shuffling as a way to make the
training process more explicit for anomaly detection. We term this approach
Attribute Shuffling as it shuffles the attribute matrix associated with an attribute
graph. The combined ENDASh framework exhibits higher accuracy for the GAD
task and is scalable to large graphs because it operates in mini-batch mode
without preprocessing, and has low computational complexity and empirical
runtime. ENDASh is also capable of being used in an inductive setting, so it can
generalise to unseen nodes during training. We conduct experiments on a wide
range of real-world datasets to demonstrate the effectiveness of ENDASh and
validate the feasibility of using Attribute Shuffling to improve GAD.

2 Related Work

Early GNN based GAD methods [5,12] utilise reconstruction errors to detect
anomalies. However, the reconstruction loss function is not explicitly designed
for anomaly detection, resulting in models occasionally being insufficiently dis-
criminative for detection [6,18] (i.e., they can also reconstruct outliers well).
Later works utilise more sophisticated mechanisms to make the training more
targeted towards GAD. Adversarial training is used by methods such as [2,4]
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to model anomalies, so a discriminator can be trained to distinguish them from
normal data. These adversarial training methods are generative in nature and
are not a form of data augmentation. However, they have drawbacks such as
non-convergence and slower training from adversarial training. Furthermore,
finding the appropriate stopping point for training without a labelled valida-
tion set is challenging. Besides adversarial training, Zhou et al.[23] proposed
pseudo-labelling nodes according to the deviations between node embeddings.
However, its optimisation effectively assumes that inliers come from a single dis-
tribution (i.e., located in a hypersphere), which may be unrealistic for real-world
graphs. Contrastive learning and its variants [9,13,22] are also used for generat-
ing pseudo labels to develop discriminators. Nevertheless, these methods rely on
computationally expensive operations such as graph traversals for preprocessing
and multi-round inferences.

Our approach, ENDASh, leverages the processed augmentation method
Attribute Shuffling to effectively model anomalous embeddings while introduc-
ing only trivial overhead. To the best of our knowledge, this is the first study
on applying data augmentation to assist GAD. Due paper length constraints,
we do not provide a detailed review on graph data augmentation. For more
information, we refer readers to recent works such as [20,21].

3 Preliminaries

3.1 Problem Formulation

Notation. Let G = (X,A) denote an attributed graph with n = |V| nodes,
where V is G’s node set, X ∈ R

n×d is the feature matrix, and A ∈ R
n×n is the

adjacency matrix describing the connectivities between nodes.

Definition 1 (Anomaly detection on attributed graphs). In an attributed
graph, a node is anomalaous if it deviates either structurally or contextually from
the majority of the nodes, known as structural anomalies and contextual anoma-
lies, respectively. Typically, structural anomalies contain non-trivial numbers of
links to semantically unrelated nodes, and contextual anomalies possess incon-
gruous attributes with their neighbours. The task of anomaly detection on
an attributed graph G is to find a scoring mechanism S(G, v) for v ∈ V, such
that:

S(vi) < S(vj) ∀(vi ∈ Vin) ∧ (vj ∈ Va), (1)

where Vin and Va are the respective node sets for normal (inlier) and anomalaous
nodes, such that Vin ∪ Va = V ∧ Vin ∩ Va = ∅ ∧ |Vin| � |Va|. To distinguish
outliers from inliers, the scoring mechanism S should ideally satisfy the following
criterion for a threshold τ , such that ∀v ∈ V, S(v) > τ ⇔ v ∈ Va.

This paper studies anomaly detection in a fully unsupervised setting on non-
heterogeneous attributed graphs; that is, no label information is available for
developing the model and all nodes of a graph represent the same type of entities.
Anomaly detection on heterogeneous graphs is beyond the scope of this paper.
GAD can be further categorised into: i) the transductive setting, where all graph
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elements (nodes and edges) are present during training, and ii) the inductive
setting, where only a subset of graph elements are available during training,
requiring the model to generalise to unseen nodes during inference time.

3.2 Representation Learning via GraphSAGE

GraphSAGE learns node representations by iteratively aggregating a node’s
attributes from their K-hop neighbours using trainable and symmetric func-
tions, known as aggregators (denoted as AGGRk, ∀k ∈ {1, ...,K}), where K is
a predefined constant. We choose the mean aggregator [7] due to its efficiency
and empirical performance. The mean aggregator can be written as:

AGGRk(v,N (v)) = MEAN({hk−1
v } ∪ {hk−1

u ,∀u ∈ N (v)}), (2)

where N (v) is the target node v’s neighbour set and hk
v is the embedding of v

at the k-th layer. When k = 1, the inputs are attributes of the relevant nodes.
Each layer k consists of an aggregator AGGRk followed by a linear trans-

formation with weights Wk and an activation layer σ for information passing
between layers. The transformation at layer k can be written as:

hk
v = σ(Wk · AGGRk(v,N (v))). (3)

For the sake of computational efficiency, only some predefined numbers of sam-
ples Nk,∀k ∈ K are required for the aggregation at each layer [7].

GraphSAGE can be optimised without node class labels, making it appli-
cable for unsupervised GAD. We aim to preserve original neighbourhoods in
the embedding space by making node embeddings closer to the embeddings of
their neighbours but far from the embeddings of non-neighbouring nodes via the
following objective function:

L(zu, zv) = − log(σ(z�
u zv)) − Q · Evn∼Pn(v) log(σ(−z�

u zvn
)), (4)

where v is a node within a certain number of hop from the target node u, and
σ is the sigmoid function. Pn is a distribution for generating negative samples
{vn | vn ∈ Pn}, and Q defines the number of negative examples for each target
node.

4 Proposed Methods

In this section, we present our proposed framework Embedding Neighbourhood
Dissimilarity (END) with Attribute Shuffling (ENDASh). We explain in detail,
two key elements of ENDASh: END and Attribute Shuffling. ENDASh can be
viewed as a hybrid method of detecting anomalies inspired by the idea of network
homophily [10], which is explored by our END measure on node embeddings.
We also introduce a lightweight but effective argumentation method, Attribute
Shuffling, with a two-stage training strategy to make GraphSAGE embeddings
more discriminative for GAD, which general-purpose graph embedding methods
do not address. The efficient characteristics of its components with high synergy
empower ENDASh to be fast and efficient.
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4.1 Embedding Neighbourhood Dissimilarity

Embedding Neighbourhood Dissimilarity (END) is a localised measure that
describes how anomalous a given node is with respect to the embeddings of its
randomly sampled 1-hop neighbours. We choose node embeddings because they
contain both topological and attributive properties, encapsulating rich informa-
tion. END is formulated as:

END(zu) =
m∑

i=1

(‖zu‖2 · ‖zvi
‖2

zu · zvi

)
· m−1, (5)

where zu is the embedding of the target node u and {zvi
|i ∈ [1, ...,m]} are

embeddings of m randomly selected nodes {v1, ..., vm} ⊂ N (u) from u’s imme-
diate neighbours N (u). The choice of m is discussed in Sect. 5.3.

We propose to apply END to node embeddings generated by GraphSAGE
as a simple but effective anomaly scoring mechanism (SAGE + END in short).
The intuition is that the inliers’ embeddings should be more congruent with
their neighbours’ in contrast to outliers, which are expected to have higher END
scores.

Algorithm 1: Augmented mini-batch training via Attribute Shuffling
Input: G = (A,X): the graph; idx: target indexes; M0: a GraphSAGE model.
Output: M1: the GraphSAGE model after tuning
idxpos ← random sample one positive example for idx in idx;
Zu,Zv ← M0(G, idx), M0(G, idxpos) ;

X̃ ← random row shuffle(X); G′ ← (A, X̃) ;
Zaug ← M0(G′, idx);
M1 ← ADAM(M0, Laug(Zu,Zv,Zaug)) // Tuning the model using Eq.6

4.2 Augmenting Training via Attribute Shuffling

Although SAGE + END can be effective on some datasets, it does not work
well on complex graphs (i.e., graphs with high degrees and high-dimensional
features). Additionally, GAD is not addressed directly by the objective in Eq. 4,
potentially compromising the model’s GAD effectiveness.

To address these issues, we introduce a simple but effective data augmen-
tation technique, termed Attribute Shuffling, for generating more discriminat-
ing GraphSAGE embeddings for GAD. The overall idea is that we first create
negative samples to model the anomalous embeddings in the latent space by
aggregating misplaced feature vectors (in terms of their position in the original
feature matrix) according to the original computational graph. Simply put, we
shuffle the rows of the attribute matrix X but keep the adjacency matrix A
for aggregations. We then encourage GraphSAGE to project inliers to distant
regions from such negative embeddings.

Algorithm 1 describes how Attribute Shuffling can be used to tune a Graph-
SAGE model. At each mini-batch, for each target node u, we generate: i) zu,
which is an embedding of u, ii) zv, which is an embedding of a randomly selected
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node v that co-occurs within a random walk of length c from u as its positive
embedding and iii) u’s negative embedding via Attribute Shuffling zaug. These
are involved in tuning GraphSAGE according to the following objective:

Laug(zu, zv, zaug) = − log(σ(z�
u zv))−0.5·log(σ(−z�

v zaug))−0.5·log(σ(−z�
u zaug)). (6)

This objective function encourages the model to project anomalies to isolated
regions from their corresponding inliers’ and their neighbours’ embeddings in the
latent space, resulting in more discriminating embeddings for END calculation.

4.3 Two Stage Training

We find that performing END calculations on embeddings output by a Graph-
SAGE model tuned via Attribute Shuffling after being first trained on the objec-
tive defined in Eq. 4, generally yields better performance than GraphSAGE mod-
els tuned using Attribute Shuffle from scratch. Therefore, we introduce a two-
stage training strategy that integrates Attribute Shuffling with SAGE + END
as ENDASh. We first tune the model using Eq. 4 for an initial number of epochs
and then tune the model via the augmented training objective defined in Eq. 6
for an additional number of epochs.

4.4 Runtime and Scalability

The runtime of ENDASh is dominated by embedding generations via Graph-
SAGE operations. The complexity of generating a single embedding is
O(

∏K
k=1 Nk) [7], where Nk is the size of the set of sampled neighbours for aggre-

gation at the k-th layer. Accordingly, the complexity of computing the END of
one node is O((m + 1) · ∏K

k=1 Nk) in the worst case scenario, where none of
its neighbours’ embedding is available. However, in a more realistic case where
predictions are made on a non-trivial proportion of nodes, embeddings may be
required by more than one computation, thus can be cached once computed and
retrieved later, reducing m + 1 by some factors depending on the proportion.
In the best case, where the predictions on all nodes are needed, m + 1 can be
further reduced to 1. Attribute Shuffling attracts only a trivial runtime overhead
because random row shuffling can be performed by simply creating a random
index mapping.

ENDASh operates in a mini-batch fashion for both training and inference,
therefore is free from any major form of resource bottleneck, allowing great
scalability. In addition, unlike some methods, ENDASh does not preprocess the
graph, thus requiring no additional overhead for storing processed data.

5 Experiments

In this section, we perform an empirical evaluation on a wide range of datasets
to test the anomaly detection performance, inductivity, scalability and runtime
of our methods, followed by ablation studies and parameter analysis.
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Table 1. A summary of datasets and the numbers of injected anomalies.

ACM [16] BlogCatalog [17] Flickr [17] ogbn-arxiv [8] ogbn-products [8]

node num. 16,484 5,196 7,575 169,343 2,449,029

edge num. 71,980 171,743 239,738 1,166,243 61,859,140

anomaly num. 600 300 450 6,000 90,000

Datasets. We use five real-world attributed graph benchmarks for our experi-
ments (Table 1). In particular, we extend our experiments to Open Graph Bench-
mark (OGB) benchmarks, in addition to the three benchmarks that are used by
most baselines, for scalability evaluation because of their substantially larger
scales. Experiments in inductive settings are performed on ogbn datasets sub-
ject to the availability of graph split information (Table 4).

Anomaly Injection. To the best of our knowledge, there is no known homoge-
neous attributed graph dataset for anomaly detection with ground truth GAD
information, therefore we have to inject synthetic anomalies. We utilize an injec-
tion scheme that is common practice in many papers, including those that
introduced our baseline methods [2,4,5,13,15]. Specifically, structural anomalies
are injected by creating q random fully connected cliques of size p. Contextual
anomalies are injected by overwriting a node’s attributes with the most different
attributes in r random sampled node attributes from the entire graph in terms
of the Euclidean distance. We repeat this procedure to inject multiple contex-
tual anomalies. For ACM, Flickr, BlogCatalog and ogbn-arxiv, we use identical
injection parameter settings as used in the baseline papers. Since ogbn-products
has not been used by any baseline, we use the ogbn-arxiv’s setting for it, besides
the total number of anomalies, which varies based on the graph (with the ratio of
anomaly kept similar). For each dataset, we inject the same number of anomalies
(p × q) for each type to make the composition balanced. On all datasets, we set
p = 15 and r = 50. We set q to 10, 15, 20, 200 and 3000 for BlogCatalog, Flickr,
ACM, ogbn-arxiv and ogbn-products, respectively.

Baseline Methods. We choose state of the art GNN based GAD methods for
the same application setting as baselines, including DOMINANT [5], COLA [13],
AEGIS [4], GGAN [2] and SL-GAD [22]. Due to the lack of publically available
implementations, we report the results of baseline methods as the reported values
in the original papers. Our anomaly injection scheme is identical to the schemes
in the baseline papers, therefore we believe it is reasonable to use those values.

Implementation Details. Our method is implemented using Pytorch.
ENDASh uses single-layer GraphSAGE models with ELUs (α = 0.5) [3], trained
with the ADAM [11] optimiser. For all datasets, we set embedding dimensions
to 256, END sample set size m to 50, and the length of random walk c to 2. For
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simplicity, we report the two stage training setting with the following 5-tuple:
(stage 1 epoch number, stage 2 epoch number, stage 1 learning rate, stage 2
learning rate. batch size) and summary settings of all datasets as follows: Blog-
Catalog (20, 30, 3e−4, 3e−4, 512), Flickr (20, 30, 2e−4, 2e−4, 512), ACM (5,
5, 1e−3, 1e−4, 1024), ogbn-arxiv (5, 5, 1e−3, 1e−4, 1024), and products (5, 5,
1e−3, 1e−3, 2048).

Table 2. Performance comparisons between our methods and baseline methods in
terms of AUROC ↑. We use “-” to indicate results that are not reported by the original
paper where we cannot rerun experiments due to lack of availability of their implemen-
tation. “OOM” abbreviates “out-of-memory” in our hardware setting.

Dataset Baselines Ours

DOMINANT COLA AEGIS GAAN SL-GAD SAGE + END ENDASh

ACM 0.7494 0.8237 0.7600 0.8770 0.8538 0.9441 0.9527

Flickr 0.7490 0.7513 0.7740 0.7530 0.7966 0.6988 0.8527

BlogCatalog 0.7813 0.7854 0.8170 0.7650 0.8184 0.7871 0.8252

ogbn-arxiv OOM 0.8073 – – OOM 0.9257 0.9273

ogbn-products OOM OOM – – OOM 0.8824 0.8988

Table 3. A summary of runtimes. DOMINANT is measured using full-batch setting
as it cannot run in a mini-batch setting. Others are measured in mini-batch setting.

Ttrain (sec) ↓ Tinference (sample/sec) ↓
Flickr BlogCatalog ACM Flickr BlogCatalog ACM

DOMINANT 138.84 51.54 52.56 1.11 × 10−4 3.54 × 10−5 1.34 × 10−4

COLA 521.77 343.73 1299.41 4.22 × 10−2 4.10 × 10−2 4.76 × 10−2

SL-GAD 1299.07 854.93 2936.82 1.03 × 10−1 9.84 × 10−2 1.08 × 10−1

ENDASh 29.25 25.56 7.53 1.99 × 10−4 2.69 × 10−4 1.52 × 10−4

5.1 Empirical Performance

Transductive Anomaly Detection. Table 2 shows that ENDASh outper-
forms all baseline methods on all five datasets, with substantial improvements
on ACM, Flickr and ogbn-arxiv datasets. It is also worth noting that the per-
formance of SAGE + END can be comparable to ENDASh on some datasets,
suggesting that GraphSAGE embeddings are sufficiently informative for GAD
when an appropriate similarity function is used, such as END. SAGE + END
can be seen as a simplified version of ENDASh without adopting Attribute Shuf-
fling and the two-stage training strategy to enhance the existing data. It can be
used as an alternative to ENDASh for graphs on which the embeddings of a
GraphSAGE trained without using Attribute Shuffling can result in reasonably
discriminative END measures for anomaly detection. More discussion on the
effectiveness is provided in Sect. 5.2.
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Furthermore, it should be noted that our proposed methods are highly scal-
able, as they can achieve competitive performance on ogbn datasets, which are
considerably larger than the other datasets, particularly with the ogbn-products
dataset that contains over a hundred times more nodes than non-ogbn datasets.
This high scalability is made possible because the steps in our proposed meth-
ods can be done strictly in a mini-batch fashion for graphs of any size without
significant resource bottlenecks.

Transductive Runtime. We perform all experiments using the same hardware
configuration (single NVIDIA V100 GPU and four cores of Intel Xeon CPU @
2.60 GHz) for fairness. We only compare to baseline methods that have publicly
available code. For training, we use the same settings as described in the orig-
inal publications. The performance is measured by the total training time. For
inference, we set consistent batch size to 300 for all methods and report average
inference time per node. Note that the focus of the comparisons is with mini-
batch methods, but for completeness, we include DOMINANT despite it only
working in a full-batch setting. Table 3 displays training and inference runtimes
on selected datasets. Our method can be trained in significantly less time than
other GNN based methods and also demonstrates substantially faster inference
speed than baselines that operate in mini-batch, making it more applicable for
larger scale anomaly detection and real-time deployment. Notably, while DOM-
INANT has a faster inference time than us on some datasets, it requires the
entire graph to be loaded in memory, even if just to make a prediction on one
node. This results in us being out of memory when using DOMINANT on the
obgn datasets. ENDASh however does not have such constraints as detailed in
Sect. 4.4, because it uses a small amount of extra time on mini-batch process-
ing to enable greater scalability and flexibility, which is essential for inductive
learning and deployment in evolving environments.

Table 4. Inductive datasets split info.

Number of nodes

Total Train Test Split Info.

ogbn-arxiv 169,343 90,941 48,603 time evol

ogbn-products 2,449,029 196,615 2,213,091 sales rank

Table 5. Inductive perfor-
mance comparisons.

Trans. Induc.

ogbn-arxiv 0.9273 0.9277

ogbn-products 0.8988 0.9002

Inductive Anomaly Detection. Our model naturally operates in an inductive
setting, so we extend our investigation to the task of inductive GAD. Unfortu-
nately, not all benchmarks include graph split information, which is essential for
splitting a graph in a semantically meaningful way (e.g., according to timestamp
information) for inductive graph anomaly detection. Randomly splitting a graph
can result in partitions being significantly different from the whole graph struc-
turally and the splits themselves lacking semantic meaning. Therefore, we only
perform inductive evaluation on the ogb datasets as they contain semantically
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sensible node splits (Table 4). Table 5 shows the comparisons of GAD perfor-
mance between the transductive and the inductive settings. ENDASh achieves
almost identical performance for both settings, demonstrating its strong capa-
bility for inductive detection. Notably, on the ogbn-products datasets, ENDASh
can generalise to unseen nodes after being trained using only a very small per-
centage of nodes, which is advantageous for efficient and timely training on large
scale graphs in practice.

5.2 Ablation Study

This section discusses the effect of Attribute Shuffling and the two-stage training
strategy. Specifically, we compare the GAD performances of ENDASh with its
variant optimised via Attribute Shuffling only and SAGE + END. Since no
ground truth information is available for validation, the performance of SAGE
+ END at two points are reported: i) after training for the epoch number of the
stage 1, and ii) after a further number of stage 2 epochs.

Fig. 1. Performance comparison of ENDASh (the first bar from left) versus SAGE +
END’s two variants (the second and the third bar, respectively) and ENDASh optimised
using Attribute Shuffling only (the fourth bar) on each dataset.

Figure 1 shows the aforementioned comparisons-the two-stage training strat-
egy yields better performance than the other methods on all datasets. The
performance gains on the Flickr and the BlogCatalog datasets are substantial,
especially compared to the performance of models optimised without augmen-
tation, implying that Attribute Shuffling can provide improved training data for
anomaly detection beyond the original graph. By examining the second bar and
the third bar for each dataset, it is noticeable that prolonged training without
Attribute Shuffling is unlikely to improve the performance on most datasets.

The benefit of Attribute Shuffling is fairly minor on the ogbn-arxiv datasets.
We attribute this phenomenon to the limitation of the augmented samples’ qual-
ity. Note that the proposed augmentation method is relatively straightforward
and is done rapidly with a minimal level of processing, so it potentially does not
generate augmented samples that can precisely model all true outliers. In rare
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cases, some of the augmented samples may be more similar to inliers, introduc-
ing unwanted noise impacting the performance. Therefore, the usefulness of the
augmented training method on a given dataset depends on the performance that
can be achieved by SAGE + END, which is consistent with the observation that
the augmented training offers a greater performance gain for datasets on which
SAGE + END is less effective.

The two-stage training also achieves higher performance than training from
scratch using the augmented objective. The stage one training can be regarded
as a form of pretraining or initialisation and the second stage as fine tuning.

5.3 Parameter Analysis

This section investigates how essential parameters affect GAD performance of
ENDASh. We use the three smaller datasets for illustration purposes.

Number of Neighouring Samples for GraphSAGE Aggregation. Figure 2
(a) shows the anomaly detection performance versus the number of samples of
GraphSAGE aggregation. As the number grows, a trend of performance improve-
ment with a decreased margin can be noted, with no further improvement after
some number of points, proving that a subset of each node’s neighbourhood is ade-
quately representative without examining the entire neighbourhood during aggre-
gation. The improvement is more trivial on the ACM dataset than the other two
datasets, attributed to its higher sparsity, as fewer samples are needed to model
neighbourhoods well, suggesting that the number of samples can be set following
the sparsity of the graph to avoid redundant computation.

Fig. 2. Anomaly detection performance using different: (a) GraphSAGE sample sizes;
(b) END sample sizes; and (c) embeddings dimensions.

Number of Samples for END Calculation. Figure 2 (b) depicts the rela-
tionship between the performance of the proposed model and the number of
samples for END computation. Similar to the number of samples for Graph-
SAGE aggregation, the performance increases at a diminishing rate as the sample
size increases on all three datasets. We can also conclude that highly connected
datasets require a larger number of neighbours to obtain better results.
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Dimensionality of Embeddings. Intuitively, the appropriate embedding
dimension for a graph positively correlates to its connectivity and complexity of
its node attributes, aligning with the empirical results shown in Fig. 2(c). For
example, the Flickr and the BlogCatalog datasets have much higher dimensional
feature vectors and average degrees than the ACM dataset. Therefore, when the
dimensionality of embeddings is small, we can observe that increasing it improves
performance more on the two datasets. In practice, the embedding dimension
should be set according to the graphs’ feature dimension and degree. In general,
a number between 128 to 512 is a reasonable range for the initial attempt.

6 Conclusion

This paper introduces a novel framework, ENDASh, that leverages the END
measure with Attribute Shuffling for anomaly detection on attributed graphs.
On a wide range of datasets, ENDASh outperforms state-of-the-art baselines in
terms of AUROC while demonstrating high scalability and competitive training
and inference runtime. ENDASh also generalises to unseen nodes, thus making
it suitable for both transductive and inductive settings. For future work, it will
be interesting to explore more sophisticated augmentation techniques with more
advanced embedding methods with higher scalability.
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Abstract. In recent years, although the Alternating Direction Method of Mul-
tipliers (ADMM) has been empirically applied widely to many multi-convex
applications, delivering an impressive performance in areas such as nonnega-
tive matrix factorization and sparse dictionary learning, there remains a dearth
of generic work on proposed ADMM with a convergence guarantee under mild
conditions. In this paper, we propose a generic ADMM framework with multiple
coupled variables in both objective and constraints. Convergence to a Nash point
is proven with a sublinear convergence rate o(1/k). Two important applications
are discussed as special cases under our proposed ADMM framework. Extensive
experiments on ten real-world datasets demonstrate the proposed framework’s
effectiveness, scalability, and convergence properties. We have released our code
at https://github.com/xianggebenben/miADMM.

1 Introduction

Due to the advantages and popularity of non-differentiable regularized and distribu-
tive computing for complex optimization problems, the Alternating Direction Method
of Multipliers (ADMM) has received a great deal of attention in recent years [5]. The
standard ADMM was originally proposed to solve the following separable convex opti-
mization problem:

minx,z f(x) + g(z) s.t. Ax + Bz = c.

where f(x) and g(z) are closed convex functions, A and B are matrices and c is a vec-
tor. There are extensive reports in the literature exploring the theoretical properties for
convex optimization problems related to ADMM and its variants, including multi-block
ADMM [11], Bregman ADMM [28], fast ADMM [13,17], and stochastic ADMM [22].
ADMM has now been extended to cover a wide range of nonconvex problems, and it
has achieved outstanding performance in many practical applications [38].

Unlike convex problems, the convergence theory on the nonconvex ADMM is much
more difficult, and considerable progress has been made on this problem, please refer to
Sect. 2 for a detailed summary. Recently, however, there has been an increasing number
of real-world applications where the objective functions are multi-convex (i.e. noncon-
vex for all the variables but convex for each when all the others are fixed). For example,
nonnegative matrix factorization, which aims to decompose a matrix into a product of

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13281, pp. 30–43, 2022.
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two matrices, has been applied widely in computer vision, machine learning, and var-
ious other fields [18]; A bilinear matrix inequality problem has been designed for the
analysis of linear and nonlinear uncertain systems [15].

All of the above applications can be considered as special cases of multi-convex
optimization problems. However, such problems have not yet been rigorously and
systematically investigated by ADMM. Moreover, the convergence properties of the
ADMM required to solve such problems remain unknown. In this work, we propose
mild conditions to ensure the convergence of ADMM to a Nash point on the multi-
convex problems with a sublinear convergence rate o(1/k). We also discuss how our
ADMM is applied to two important applications. Extensive experiments show the effec-
tiveness of our proposed ADMM. Our contributions in this paper include:

– We propose an ADMM framework to solve the multi-convex problem, and we inves-
tigate the convergence properties of the proposed ADMM. Specifically, we prove
that the objective value and the residual are convergent. Moreover, any limit point
generated by the proposed ADMM is a Nash point of the original problem. The
convergence rate of the proposed ADMM is o(1/k).

– We demonstrate two important and promising applications that are special cases of
our proposed ADMM framework and benefit from its theoretical properties. Specifi-
cally, we show how these applications can be transformed equivalently to fit into the
proposed ADMM framework.

– We conduct extensive experiments to validate our proposed ADMM. Experiments
on ten real-world datasets demonstrate its effectiveness, scalability, and convergence
properties.

The rest of this paper is summarized as follows: Sect. 2 summarizes previous work
related to this paper. Section 3 introduces the ADMM algorithm and its convergence
properties. In Sect. 4, the proposed ADMM algorithm is applied to several important
applications. Extensive experiments are described in Sect. 5. The paper concludes with
a summary of the work in Sect. 6.

2 Related Work

Multi-convex Optimization Problems: Some works studied multi-convex problems.
The earliest work required that the objective function was differentiable continuous and
strictly convex [36]. Various conditions on separability and regularity on the objective
functions have been discussed in [26,27]. In the most recent work, Xu and Yin presented
three types of multi-convex algorithms and analyzed convergence based on either Lips-
chitz differentiability or strong convexity assumption [37]. For a comprehensive survey,
please refer to [24].

Convergence Analysis of ADMM: Existing literature on the convergence analysis of
ADMM can be categorized into two classes: the convex ADMM and the nonconvex
ADMM. The convex ADMM is investigated relatively well compared with the noncon-
vex ADMM. Existing works either study suitable stepsizes of the convex ADMM or
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extend ADMM to the stochastic version. For example, Bai et al. proposed a general-
ized symmetric ADMM to solve the multi-block separable objective by updating the
Lagrange multiplier twice with suitable stepsizes [3]; Gu et al. extended contractive
Peaceman-Rachford splitting method to ADMM with larger stepsizes [14]; Ouyang
et al. proposed a stochastic ADMM with a convergence rate O( 1√

t
). Despite the out-

standing performance of the nonconvex ADMM, its convergence theory is not well
established due to the complexity of both coupled objectives and various (inequality
and equality) constraints. Most existing works discussed the convergence of the non-
convex ADMM on separable objectives: they provided convergence guarantee to the
stationary solutions with different assumptions [4,8,9,19]. Some works explored more
difficult cases where the objectives are coupled: for example, Wang et al. presented
mild convergence conditions of the nonconvex ADMM where the objective can be non-
smooth [35]; Gao et al. explored the convergence condition of ADMM on multi-affine
constraints [12]; Wang et al. gave the convergence proofs of ADMM in the nonconvex
deep learning problems [29,31,32]; while experiments by Wang and Zhao showed that
the ADMM was not necessarily convergent in the nonlinear-constrained problems [33].

3 ADMM on the Multi-convex Problems

In this section, we present an ADMM framework to solve Problem 1.

3.1 Preliminaries

First, the definition of Lipschitz differentiability is shown as follows [7]:

Definition 1 (Lipschitz Differentiability). Any arbitrary differentiable function G1 :
R

m → R is Lipschitz differentiable if for any x
′
, x

′′ ∈ R
m,

‖∇G1(x
′
) − ∇G1(x

′′
)‖ ≤ D‖x

′ − x
′′‖.

where D ≥ 0 is constant and ∇G1(x) denotes the gradient of G1(x).

The following defines strong convexity, which is indispensable for the proof of conver-
gence to a Nash point.

Definition 2 (Strong Convexity). A convex function G4(x) is strongly convex if there
exists H > 0 such that for ∀x

′
, x

′′ ∈ dom(G4), the following holds

G4(x
′′
) ≥ G4(x

′
) + (v

′
)T (x

′′ − x
′
) + (H/2)‖x

′′ − x
′‖22.

where ∀v
′ ∈ ∂G4(x

′
) is a subdifferential of G4 at x

′
.

Finally, the Nash point is defined as follows [37]:

Definition 3 (Nash Point). Given G5(a1, a2, · · · , am), a Nash point (a∗
1, a

∗
2, · · · , a∗

m)
satisfies the following property:

G5(a∗
1, · · · , a∗

i−1, a
∗
i , a

∗
i+1, · · · , a∗

m) ≤ G5(a∗
1, · · · , a∗

i−1, ai, a
∗
i+1, · · · , a∗

m),
∀(a∗

1, · · · , a∗
i−1, ai, a

∗
i+1, · · · , a∗

m) ∈ dom(G5), (i = 1, · · · ,m).
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Naturally, when we optimize one variable while fixing others, the Nash point ensures the
optimality of this variable [37]. Without loss of generality, we assume that Problem 1
has at least a Nash point, and in the next section, we will prove that any limit point
generated by ADMM converges to a Nash point.

3.2 The ADMM Algorithm

The following problem is our focus in this paper:

Problem 1

minx1,··· ,xn,z F (x1, · · · , xn, z) = f(x1, · · · , xn)+ h(z) s.t.
∑n

i=1
Aixi − z = 0.

where xi ∈ R
pi(i = 1, · · · , n), z ∈ R

q, f(x1, · · · , xn) : R
p → R ∪ {∞}(p =∑n

i=1 pi) are proper, continuous, multi-convex and possibly nonsmooth functions, h(z)
is a proper, differentiable and convex function. Ai ∈ R

q×pi(i = 1, · · · , n) are matrices.
Obviously, the domain of F is dom(F ) = {(x1, · · · , xn, z)| ∑n

i=1 Aixi − z = 0}.
Without the loss of generality, the objective of Problem 1 is assumed to be bounded
from below.

To ensure the convergence of the proposed ADMM, some mild assumptions are
imposed, which are shown as follows:

Assumption 1 (Lipschitz Differentiability). h(z) is Lipschitz differentiable with con-
stant H ≥ 0.

Most loss functions such as the cross-entropy loss and the square loss are Lipschitz dif-
ferentiable [32]. In order to propose the ADMM algorithm, the augmented Lagrangian
function can be formulated mathematically as follows:

Lρ(x1,· · · ,xn,z,y) = F (x1,· · · ,xn, z)+yT (
∑n

i=1
Aixi−z)+(ρ/2)‖

∑n

i=1
Aixi−z‖22.

(1)

where y is a dual variable and ρ > 0 is a penalty parameter. The proposed ADMM aims
to optimize the following n + 1 subproblems alternately.

xk+1
i ← argminxi

f(· · · , xk+1
i−1 , xi, x

k
i+1, · · · ) + (yk)T Aixi

+ (ρ/2)‖
∑i−1

j=1
Ajx

k+1
j + Aixi +

∑n

j=i+1
Ajx

k
j − zk‖22. (2)

zk+1 ← argminz Lρ(· · · , xk+1
n , z, yk) (3)

=argminz h(z)−(yk)T z+(ρ/2)‖
∑n

i=1
Aix

k+1
i −z‖22.
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Algorithm 1 . The Proposed ADMM to
Solve Problem 1
Require: Ai(i = 1, · · · , n), δ > 0.
Ensure: xi(i = 1, · · · , n), z.
1: Initialize ρ, k = 0.
2: repeat
3: for i=1 to n do
4: Update xk+1

i in Eq. (2).
5: end for
6: Update zk+1 in Eq. (3).
7: rk+1 ← ∑n

i=1 Aix
k+1
i − zk+1. # update primal

residual
8: yk+1 ← yk + ρrk+1.
9: k ← k + 1.
10: until ‖rk+1‖ ≤ δ.
11: Output xi(i = 1, · · · , n), z.

Algorithm 1 is presented for Prob-
lem 1. Concretely, Lines 3–5 and 6
update xk+1

i (i = 1, · · · , n) and zk+1,
respectively. Line 7 updates the pri-
mal residual rk+1, which is defined in
accordance with the standard ADMM
[5]: it measures how the linear con-
straint

∑n
i=1 Aixi − z = 0 is violated.

Line 8 updates the dual variable yk+1,
which follows the routine of the standard
ADMM. Line 10 uses the norm of the
primal residual r as a condition to ter-
minate the algorithm, where δ > 0 is a
threshold. Each subproblem is convex and implicitly assumed to be solvable.

3.3 Convergence Analysis

This section focuses on the convergence of the proposed ADMM algorithm. Specifi-
cally, the first lemma states that the augmented Lagrangian Lρ keeps decreasing, which
is stated as follows.

Lemma 1 (Objective Descent). If ρ > 2H so that C1 = ρ/2 − H/2 − H2/ρ > 0,
then there exists C2 = min(ρ/2, C1) such that

Lρ(xk
1 , · · · , xk

n, zk, yk) − Lρ(xk+1
1 , · · · , xk+1

n , zk+1, yk+1)

≥ C2(‖zk+1 − zk‖22 +
∑n

i=1
‖Ai(xk+1

i − xk
i )‖22). (4)

Lemma 1 holds under Assumption 1, and its proof can be found in the supplemen-
tary materials1. The next lemma states that the augmented Lagrangian is bounded from
below, as shown below:

Lemma 2 (Objective Bound). If ρ > 2H , then Lρ(xk
1 , · · · , xk

n, zk, yk) is lower
bounded.

The proof of Lemma 2 can be found in the supplementary materials (See footnote 1).
Now we can prove that the proposed ADMM converges globally in the following theo-
rem.

Theorem 1 (Residual and Objective Convergence). If ρ > 2H , then for the bounded
sequence (xk

1 , · · · , xk
n, zk, yk), then it has the following properties:

a). Residual convergence. This means that as k → ∞, rk → 0, where rk is defined in
Algorithm 1.
b). Objective convergence. This means that as k → ∞, F (xk

1 , · · · , xk
n, zk) converges.

1 The supplementary materials are available at https://github.com/xianggebenben/miADMM/
blob/main/multi convex ADMM-13-18.pdf.

https://github.com/xianggebenben/miADMM/blob/main/multi_convex_ADMM-13-18.pdf
https://github.com/xianggebenben/miADMM/blob/main/multi_convex_ADMM-13-18.pdf
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Theorem 1 guarantees the convergence of the proposed ADMM, whose proof is in
the supplementary materials (See footnote 1). However, xk

i (i = 1, · · · , n) and zk are
not necessarily shown to be convergent. The next theorem states that any limit point is
a feasible Nash Point of Problem 1.

Theorem 2 (Convergence to a Nash Point). Let ρ > 2H , if either of two assump-
tions hold: (a). Ai(i = 1, · · · , n) have full rank. (b). F is strongly convex with
regard to xi. Then for bounded variables (xk

1 , · · · , xk
n, zk), it has at least a limit point

(x∗
1, · · · , x∗

n, z∗), and any limit point (x∗
1, · · · , x∗

n, z∗) is a feasible Nash point of F
defined in Problem 1. That is

∑
Aix

∗
i − z∗ = 0. (feasibility)

F (x∗
1, · · · , x∗

n, z∗) ≤ F (x∗
1, · · · , x∗

i−1, xi, x
∗
i+1, · · · , x∗

n, z∗),
∀(x∗

1, · · · , x∗
i−1, xi, x

∗
i+1, · · · , x∗

n, z∗) ∈ dom(F ), (i = 1, · · · , n).
F (x∗

1, · · · , x∗
n, z∗) ≤ F (x∗

1, · · · , x∗
n, z)∀(x∗

1, · · · , x∗
n, z) ∈ dom(F ) (Nash point).

The proof of Theorem 2 is detailed in the supplementary materials (See footnote 1).
The third theorem states that our proposed ADMM can achieve a sublinear conver-
gence rate of o(1/k) under Assumption 1, despite the nonconvex and complex nature
of Problem 1. Such a rate is state-of-the-art even compared to those methods for simpler
convex problems. The theorem is shown as follows:

Theorem 3 (Convergence Rate). If ρ > 2H , for a bounded sequence
(xk

1 , · · · , xk
n, zk, yk), define uk = min0≤l≤k(‖zl+1 −zl‖22+

∑n
i=1 ‖Ai(xl+1

i −xl
i)‖22),

then the convergence rate of uk is o(1/k).

The proof of this theorem is in the supplementary materials (See footnote 1). The
o(1/k) convergence rate of the proposed ADMM is consistent with much existing work
analyzing the convex ADMM, including [11,16,21]. Our contribution in term of con-
vergence rate is that we extend the guarantee of o(1/k) into the multi-convex Problem 1.

Our proposed ADMM is more general than some influential works in terms of for-
mulation. The relations between our proposed ADMM and previous works are summa-
rized as follows:

1. Generalization of Block Coordinate Descent (BCD) for multi-convex problems.
When the linear constraint

∑n
i=1 Aixi = z is removed in Problem 1, then the proposed

ADMM is reduced to the Block Coordinate Descent [37].

2. Generalization of multi-block ADMM. When f(x1, · · · , xn) = 0, the proposed
ADMM is reduced to the convex multi-block ADMM [25], i.e. the ADMM with no less
than three variables.

Apart from general formulations, the convergence guarantees of our proposed
ADMM cover more applications than previous literature. For example, [35] requires the
coupled objective f(x1, · · · , xn) to be Lipschitz differentiable. However, some impor-
tant applications such as weakly-constrained multi-task learning (Sect. 4.1) and learn-
ing with signed-network constraints (Sect. 4.2) do not satisfy this condition. But they
are covered by our convergence guarantees of the multi-convex ADMM to a Nash point.
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4 Applications

In this section, we apply our proposed ADMM to two real-world applications, both
of which conform to Problem 1 and benefit from the convergence properties of the
proposed ADMM.

4.1 Weakly-Constrained Multi-task Learning

In multi-task learning problems, multiple tasks are learned jointly to achieve a better
performance compared with learning tasks independently [30]. Most work on multi-
task learning has tended to enforce the assumption of similarity among the feature
weight values across tasks [2,10,30,34,41] because this makes it possible to use con-
vex regularization terms like �2,1 norms [34] and Graph Laplacians [41]. However, this
assumption is usually too strong and is seldom satisfied by the real-world data. Instead
of requiring feature weights to be similar in magnitude, a more conservative but prob-
ably more reasonable assumption is that multiple tasks share similar polarities for the
same feature, which means that if a feature is positively relevant to the output of a task,
then its weight will also be positive for other related tasks. This assumption is appro-
priate for many applications. For example, the feature ‘number of clinic visits’ will be
positively related to flu outbreaks, while the feature ‘popularity of vaccination’ will be
negatively related to them, even though their feature weights can vary dramatically for
different countries (namely tasks here). This is achieved by enforcing the requirement
for every pair of tasks with neighboring indices to have the same weight sign. This
optimization objective is shown as follows:

minw1,··· ,wn

∑n

i=1
(Lossi(wi) + Ωi(wi)) (5)

s.t. wi,jwi+1,j ≥ 0 (i = 1, 2, · · · , n − 1, j = 1, 2, · · · ,m).

where n and m denote the number of tasks and features, respectively, wi,j is the weight
of the j-th feature in the i-th task, wi is the weight of the i-th task, and Lossi(wi) and
Ωi(wi) are the loss function and the regularization term of the i-th task, respectively.
The inequality constraint implies that the i-th and the i+1-th tasks share the same sign
for their weights. Equation (5) is rewritten in the following form to fit in our proposed
ADMM framework:

minw1,··· ,wn,z

∑n

i=1
(Lossi(wi) + Ωi(zi)) + λ1

∑n−1

i=1

∑m

j=1
c1(wi,jwi+1,j) (6)

s.t. zi = wi (i = 1, 2, · · · , n).

where z = [z1; · · · ; zn] is an auxiliary variable, and λ1 > 0 is a tuning parameter.
Notice that the inequality constraint wi,jwi+1,y ≥ 0 is transformed to a quadratic

penalty c1(x) such that c1(x) =

{
x2 x < 0
0 x ≥ 0

which makes the formulation consis-

tent with Problem 1. The proposed ADMM algorithm for this case is shown in the
supplementary materials (See footnote 1).
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4.2 Learning with Signed-Network Constraints

The application of network models for social network analysis has attracted the atten-
tion of a large number of researchers [6]. For example, influential societal events often
spread across many social networking sites and are expressed in different languages.
Such multi-lingual indicators usually transmit similar semantic information through
networks and have thus been utilized to facilitate social event forecasting [39]. The
problem with network constraints is formulated as follows:

minβ1,··· ,βn
Loss(β1, · · · , βn) +

∑n

i=1
ωi(βi)

s.t. ∃(βi, βj) ∈ Es,∃(βp, βq) ∈ Ed (1 ≤ i, j, p, q ≤ n).

where βi is the weight of the i-th node. Loss(β1, · · · , βn) is a loss function and
ωi(βi) is a regularization term for the i-th node. Es = {(βi, βj)|βiβj ≥ 0} and
Ed = {(βp, βq)|βpβq ≤ 0} are two edge sets to represent two opposite relationships:
(βi, βj) ∈ Es means that βiβj ≥ 0, while (βp, βq) ∈ Ed means that βpβq ≤ 0. The
constraint means that some pair (βi, βj) satisfies the edge set Es, and that some pair
(βp, βq) satisfies the edge set Ed. For example, in the problem of social event fore-
casting with French and English, Es and Ed are edge sets of synonyms and antonyms
between French and English, and the weight pair of the French word “bien” and the
English word “good” belongs to Es. The problem with network constraints can be
reformulated approximately to the following:

minβ1,··· ,βn,z Loss(β1, · · · , βn) +
∑n

i=1
ωi(zi) + λ2(

∑
(βi,βj)∈Es

c2(βi, βj)

+
∑

(βp,βq)∈Ed

c3(βp, βq))s.t. zi = βi (i = 1, 2, · · · , n) (7)

where z = [z1; · · · ; zn] is an auxiliary variable, and λ2 > 0 is a tuning parameter. The
constraint (βi, βj) ∈ Es and (βp, βq) ∈ Ed(1 ≤ i, j, p, q ≤ n) are transformed to two
quadratic penalties c2(βi, βj) and c3(βp, βq) as follows:

c2(βi, βj) =

{
(βiβj)2 (βi, βj) ∈ Es

0 (βi, βj) ∈ Es

, c3(βp, βq) =

{
(βpβq)2 (βp, βq) ∈ Ed

0 (βp, βq) ∈ Ed

.

The proposed ADMM for this case is also shown in the supplementary materials .

5 Experiments

In this section, we test our proposed ADMM using ten real-world datasets on two
applications detailed in Sect. 4. Scalability, effectiveness, and convergence properties
are compared with several existing state-of-the-art methods on ten real datasets. All
experiments were conducted on a 64-bit machine with Intel(R) Core(TM) processor
(i7-6820HQ CPU@ 2.70 GHZ) and 16.0 GB memory.
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Fig. 1. Convergence curves on Experiments I and II.

5.1 Experiment I: Weak-Constrained Multi-task Learning

To evaluate the effectiveness of our method on the application of weak-constrained
multi-task learning described in Eq. (6), a real-world school dataset is used to evalu-
ate the effectiveness of our proposed ADMM. It consists of the examination scores in
three years of 15,362 students from 139 secondary schools, which are treated as tasks
for examination scores prediction based on 27 input features such as year of the exam-
ination, school-specific features, and student-specific features. The dataset is publicly
available and the detailed description can be found in the original paper [20]. ρ was
set to 1000. Here we chose two kinds of λ1: (1) λk

1 = 105; (2) λk+1
1 = λk

1 + 10 with
λk
1 = 1. λ1(1) and λ1(2) are the first and the second choice of λ1, respectively.

Metrics. In this experiment, five metrics were utilized to evaluate model performance.
Mean Squared Error (MSE) measures the average of the squares of the difference
between observation and estimation. Different from MSE, Mean Squared Logarithmic
Error (MSLE) measures the ratio of observation to estimation. Mean Absolute Error
(MAE) is also an error measurement but computed in the absolute value. The less the
above three metrics are, the better a regression model is. Explained Variance (EV) com-
putes the ratio of the variance of the error to that of observation. The coefficient of
determination or R2 score is the proportion of the variance in the dependent variable
that is predictable from the independent variable. The higher score of EV and R2 are,
the better a regression model is.

Baselines. To validate the effectiveness of the proposed ADMM, five benchmark multi-
task learning models served as comparison methods. Loss functions were set to least
square errors. The number of iterations was set to 5, 000. The regularization parameter
α was set based on 5-fold cross-validation on the training set.

1. multi-task learning with Joint Feature Selection (JFS) [2,41] . JFS is one of the
most commonly used strategies in multi-task learning. It captures the relatedness of
multiple tasks by a constraint of a weight matrix to share a common set of features.
α was set to 100.
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2. Clustered Multi-Task Learning (CMTL) [40,41]. CMTL assumes that multiple tasks
are clustered into several groups. Tasks in the same group are similar to each other.
α was set to 1.

3. multi-task Lasso (mtLasso) [41]. mtLasso extends the classic Lasso model to the
multi-task learning setting. α was set to 10.

4. a convex relaxation of Alternating Structure Optimization (cASO) [1,41]. cASO
decomposes each task into two components: task-specific feature mapping and task-
shared feature mapping. α was set to 0.01.

5. Block Coordinate Descent (BCD) [37]. BCD is an intuitive method to solve multi-
convex problems, which optimizes each variable alternately. α was set to 10.

Table 1. Performance in Experiment I.
Mean
Method MSE MSLE MAE EV R2
JFS 114.1052 0.4531 8.4349 0.2948 0.2948
CMTL 114.9892 0.4647 8.4756 0.2876 0.2875
mtLasso 115.3143 0.4625 8.4725 0.2873 0.2873
cASO 137.8336 0.5204 9.3450 0.1606 0.1605
BCD 149.2313 0.5577 9.8057 0.1299 0.0777
ADMM(λ1(1)) 113.6975 0.4423 8.4024 0.2950 0.2960
ADMM(λ1(2)) 113.2400 0.4428 8.3943 0.3002 0.3002
Standard deviation
Method MSE MSLE MAE EV R2
JFS 2.02 0.02 0.06 0.02 0.02
CMTL 1.85 0.02 0.05 0.01 0.01
mtLasso 1.77 0.02 0.05 0.01 0.01
cASO 7.26 0.01 0.06 0.01 0.01
BCD 1.41 0.01 0.06 0.15 0.01
ADMM(λ1(1)) 0.83 0.005 0.03 0.01 0.01
ADMM(λ1(2)) 0.95 0.01 0.04 0.02 0.02

Performance. As discussed in Sect. 4.1,
the convergence of our proposed ADMM
is guaranteed based on our theoretical
framework. To verify this, Figs. 1(a) and
1(b) illustrate the residual and objec-
tive values in different iterations, which
demonstrates the convergence of the pro-
posed ADMM on this nonconvex prob-
lem. Then the performance of examina-
tion score prediction on this dataset is
illustrated in Table 1. Table 1 shows the
mean and the standard deviation of all
methods, which were repeated 10 times
by initializing parameters randomly, to
make experimental evaluation robust. It
shows that λ1(2) outperforms λ1(1) in four out of five metrics for the proposed ADMM.
In addition, the proposed ADMM achieves the best performance in all the metrics,
compared to all comparison methods. Moreover, the standard deviation of the proposed
ADMM is about 30% smaller than any other comparison method. This is because our
method only enforces that the sign of the feature weight across different tasks is the
same, while comparison methods typically perform too aggressive assumptions on the
similarity among tasks. For example, CMTL enforces that the correlated tasks need
to have similar feature weights using squared regularization on the difference between
feature weights. JFS and mtLasso still tend to enforce similar weights on features in
different tasks by �2,1 norm. Because their enforcement is weaker than CMTL, their
performance is better. cASO gets relatively weak performance because it optimizes
an approximation of a nonconvex problem, and thus the approximate solution may be
distant from the true solution to the original problem. Finally, the BCD performs the
worst among all methods, even though it shares the same formulation with our pro-
posed ADMM. This reflects the advantage of our proposed ADMM algorithm: dual
information in one iteration can be passed to its following iteration by dual variables,
which yields better performance.



40 J. Wang and L. Zhao

Fig. 2. The training time of all methods
in Experiment I.

Scalability. To investigate the scalability of the
proposed ADMM compared with all baselines in
Experiment I, we measured the training time of
them in the school dataset when the number of
features varies. The training time was averaged by
running 20 times. Figure 2 shows the training time
of all methods when the number of features ranges
from 10 to 28. The training time of all methods
increased linearly concerning the number of fea-
tures. cASO was the most efficient of all methods,
while the proposed ADMM was ranked second.
mtLasso and JFS also trained a model within 5 s
on average. CMTL was time-consuming for training, which spent more than 10 s.

5.2 Experiment II: Event Forecasting with Multi-lingual Indicators

Datasets. To evaluate the performance of our proposed ADMM on the application in
Sect. 4.2, extensive experiments on nine real-world datasets have been performed. The
dataset is obtained by randomly sampling 10% (by volume) of the Twitter data from
Jan 2013 to Dec 2014. The data in the first and second years are used and training and
test set, respectively. For the topic (i.e., social unrest) of interest, 1,806 keywords in
the three major languages in Latin America, namely English, Spanish, and Portuguese,
were provided by the paper [39]. Their translation relationships have also been labeled
as semantic links among them, such as “protest” in English, “protesta” in Spanish, and
“protesto” in Portuguese. The event forecasting results were validated against a labeled
event set, known as the Gold Standard Report (GSR), which is publicly available [23].

Metric and Baselines. The metric used to evaluate the performance is Area Under
the receiver operating characteristic Curve (AUC). Five comparison methods includ-
ing the state-of-the-art Multi-Task learning (MTL), Multi-Resolution Event Forecast-
ing (MREF), and Distant-supervision of Heterogeneous Multitask Learning (DHML)
as well as classic methods Logistic Regression (LogReg) and Lasso. ρ was set to 10.
Here we chose two kinds of λ2: (1) λk

2 = 105; (2) λk+1
2 = λk

2 + 10 with λk
2 = 1.

λ2(1) and λ2(2) are the first and the second choice of λ2, respectively. All the hyper-
parameters were tuned by 5-fold cross-validation.

Table 2. Event forecasting performance in AUC in each of the
9 datasets.

BR CL CO EC EL MX PY UY VE
LogReg 0.686 0.677 0.644 0.599 0.618 0.661 0.616 0.628 0.667
LASSO 0.685 0.677 0.648 0.603 0.636 0.665 0.615 0.666 0.669
MTL 0.722 0.669 0.810 0.617 0.772 0.795 0.600 0.811 0.771
MREF 0.714 0.563 0.515 0.784 0.612 0.693 0.658 0.681 0.588
DHML 0.845 0.683 0.846 0.839 0.780 0.793 0.737 0.835 0.835
BCD 0.847 0.668 0.850 0.830 0.773 0.800 0.736 0.835 0.856
ADMM (λ2(1)) 0.864 0.699 0.870 0.848 0.794 0.820 0.746 0.850 0.867
ADMM (λ2(2)) 0.867 0.701 0.872 0.851 0.798 0.823 0.747 0.847 0.865

Performance. As shown
in Table 2, λ2(2) outper-
forms λ2(1) marginally in
seven out of nine datasets
for the proposed ADMM,
and they generally perform
the best among all the meth-
ods, with DHML and BCD
the second-best performer.
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They all outperform the others typically by at least 5%–10%. This is because they
leverage the multilingual correlation among the features to boost up the model’s gener-
alizability. Thanks to the framework of multi-task learning, MTL and MREF obtained
a competitive performance with AUC typically over 0.7, which outperforms simple
methods like LogReg and LASSO by 5% on average.

Table 3. Comparison of running time (in seconds) on
9 datasets in Experiment II.

LogReg LASSO MTL MREF DHML ADMM
BR 30193 1535 233 25889 332 14
CL 2981 242 35 6521 852 11
CO 8060 780 108 14714 87 31
EC 312 295 17 4332 46 25
EL 551 261 17 4669 33 3
MX 17712 2043 853 31349 175 29
PY 7297 527 40 9495 242 5
UY 748 336 20 5305 82 3
VE 5563 1008 49 5769 179 28

Efficiency. In Experiment II, we
also compared the training time of
the proposed ADMM in compari-
son with all baselines on 9 datasets.
The training time was averaged by
running 5 times. The training time
was shown in Table 3. We do not
show BCD because its training time
is similar to the proposed ADMM.
Overall, the proposed ADMM was
the most efficient of all methods for
all datasets. It consumed no more than 30 s on all datasets. MTL ranked second, but
it spent hundreds of seconds on some datasets, like BR and MX. As the most time-
consuming baselines, LogReg and MREF trained a model in thousands of seconds or
more.

6 Conclusions

We propose an ADMM framework for multi-convex problems with multiple coupled
variables. It not only inherits the merits of general ADMMs but also provides advanta-
geous theoretical properties on convergence conditions and properties under mild con-
ditions. Besides, several machine learning applications of recent interest are discussed
as special cases of our proposed ADMM. Extensive experiments have been conducted
on ten real-world datasets, and demonstrate the effectiveness, scalability, and conver-
gence properties of our proposed ADMM.
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Abstract. Deep neural networks have been shown to be very power-
ful methods for many supervised learning tasks. However, they can also
easily overfit to training set biases, i.e., label noise and class imbalance.
While both learning with noisy labels and class-imbalanced learning have
received tremendous attention, existing works mainly focus on one of
these two training set biases. To fill the gap, we propose Prototypical
Classifier, which does not require fitting additional parameters given
the embedding network. Unlike conventional classifiers that are biased
towards head classes, Prototypical Classifier produces balanced and com-
parable predictions for all classes even though the training set is class-
imbalanced. By leveraging this appealing property, we can easily detect
noisy labels by thresholding the confidence scores predicted by Proto-
typical Classifier, where the threshold is dynamically adjusted through
the iteration. A sample reweighting strategy is then applied to mitigate
the influence of noisy labels. We test our method on both benchmark
and real-world datasets, observing that Prototypical Classifier obtains
substaintial improvements compared with state of the arts.

Keywords: Noisy labels · Class imbalance · Contrastive learning

1 Introduction

Deep neural networks (DNNs) have been widely used for machine learning appli-
cations. Despite of their success, it has been shown that the training of DNNs
requires large-scale labeled and unbiased data. However, in many real-world
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Fig. 1. Illustration of normal classifier and Prototypical Classifier.

applications, training set biases are prevalent [9,21,27,28], which typically have
two types: i) class-imbalanced data distribution; and ii) noisy labels. For exam-
ple, in autonomous driving, the vast majority of the training data is composed
of standard vehicles but models also need to recognize rarely seen classes such
as emergency vehicles or animals with very high accuracy. This will sometime
lead to biased training models that do not perform well in practice. Moreover,
large-scale high-quality data annotations are expensive and time-consuming to
obtain. Although coarse labels are cheap and of high availability, the presence
of noise will hurt the model performance. Therefore, it is desirable to develop
machine learning algorithms that can accommodate not only class-imbalanced
training set, but also the presence of label noise.

Both learning with noisy labels and class-imbalanced learning (a.k.a. long-
tailed learning) have been studied for many years. When dealing with label
noise, the most popular approach is sample selection where correctly-labeled
examples are identified by capturing the training dynamics of DNNs [11,29].
When dealing with class imbalance, many existing works propose to reweight
examples or design unbiased loss functions by taking into account the class
distribution of training set [3,8,26]. However, most existing methods focus on
only one of these two training set biases.

In this paper, we address both training set biases simultaneously. As shown
in Fig. 1a, it is known that the classifier directly learned on class-imbalanced
data is biased towards head classes [8,32] which results in poor generalization
on tail classes. Moreover, using sample loss/confidence produced by biased clas-
sifiers fails to detect label noise, because both clean and noisy samples of tail
classes have large loss and low confidence. To solve this problem, we propose to
use Prototypical Classifier which is demonstrated to produce balanced predic-
tions even through the training set is class-imbalanced. Our basic idea is that
there exists an embedding in which examples cluster around a single prototype
representation for each class. In order to do this, we learn a non-linear mapping
of the input into an embedding space using a neural network and take a class’s
prototype to be the normalized mean vector of examples in the embedding space.
Classification is then performed for an embedded test example by simply finding
the nearest class prototype. Notably, Prototypical Classifier does not need addi-
tional learnable parameters given embedding of examples. Unfortunately, it is
easy to observe that simply using prototypes for classification may lead to many
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wrong predictions for samples of head classes as shown in Fig. 1b. The reason
is that the representations are supposed to be modified when the classification
boundaries of tail classes expand. We therefore train the neural networks to pull
together embedding of examples and the prototype of their class, while pushing
apart examples from prototypes of other classes. By doing this, it can avoid
many mis-classifications for samples of head classes, as shown in Fig. 1c. Subse-
quently, we find that the confidence scores produced by Prototypical Classifier
is balanced and comparable across classes. By leveraging this property, we can
simply detect noisy labels via thresholding where the threshold is dynamically
adjusted, followed by a sample re-weighting strategy.

In summary, our key contributions of this work are:

– We propose to learn from training set with mixed biases, which is practical
but has been understudied;

– Our approach, Prototype Classifier, is simple yet powerful. It produces more
balanced predictions over all classes than normal classifiers even when the
training set is class-imbalanced. This property further benefits the detection
of label noise.

– On both simulated datasets and a real-world dataset Webvision with label
noise, Prototype Classifier achieves substantial performance improvement.

2 Related Work

Class-Imbalanced Learning. Recently, many approaches have been proposed
to handle class-imbalanced training set. Most extant approaches can be catego-
rized into three types by modifying (i) the inputs to a model by re-balancing
the training data [16,22,32]; (ii) the outputs of a model, for example by post-
hoc adjustment of the classifier [8,17,25]; and (iii) the internals of a model by
modifying the loss function [2,6,20,23]. Each of the above methods are intuitive,
and have shown strong empirical performance. However, these methods assume
the training examples are correctly-labeled, which is often difficult to obtain
in real-world applications. Instead, we study a realistic problem to learn from
class-imbalanced data with label noise.

Label Noise Detection. Plenty of methods have been proposed to detect
noisy labels [4,7,10]. Many works adopt the small-loss trick, which treats sam-
ples with small training losses as correctly-labeled. In particular, MentorNet [7]
reweights samples with small loss so that noisy samples contribute less to the
loss. Co-teaching [4] trains two networks where each network selects small-loss
samples in a mini-batch to train the other. DivideMix [10] fits a Gaussian mix-
ture model on per-sample loss distribution to divide the training data into clean
set and noisy set. In addition, AUM [19] introduces a margin statistic to identify
noisy samples by measuring the average difference between the logit values for
a sample’s assigned class and its highest non-assigned class. The above meth-
ods only consider class-balanced training sets, thus is not directly applicable for
class-imbalanced problems. Ref. [12] observes that real-world dataset with label
noise also has imbalanced number of samples per-class. Nevertheless, they only
inspect a particular setup of class imbalance.
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3 Prototypical Classifier with Dynamic Threshold

3.1 Motivation

Consider a binary classification problem with the data generating distribution
PXY being a mixture of two Gaussians. In particular, the label Y is either
positive (+1) or negative (−1) with equal probability (i.e., 1

2 ). Condition on
Y = +1,P(X | Y = +1) ∼ N (μ1, σ1) and similarly, P(X | Y = −1) ∼ N (μ2, σ2).
Without loss of generality, let μ1 > μ2. It is straightforward to verify that the
optimal Bayes’s classifier is f(x) = sign(x − μ1+μ2

2 ) [30], i.e., classify x as +1 if
x > μ1+μ2

2 . This reminds us the nearest neighbor classifier, whose classification
boundary is at the middle of two data points (i.e., balanced classification bound-
ary). For general multi-class tasks, this motivates us to measure the distance
of samples to class prototypes, which is empirically observed to produce bal-
anced classification boundary even though the training set is class-imbalanced,
as shown in Fig. 2.

Fig. 2. Experiment on CIFAR-100-LT. x-axis is the class labels with decreasing training
samples and y-axis is the marginal likelihood p(y) on the test set.

In order to do this, we learn a non-linear mapping of the input into an
embedding space using a neural network fθ parameterized by θ using training
set D = {(xi, yi)}N

i=1. The class prototype is taken as the normalized mean vector
of the embedded examples belonging to its class. For example, the prototype for
class k ∈ {1, . . . , K} is computed as:

ck = Normalize
(

1
|Dk|

∑
i∈Dk

fθ(xi)
)

,Dk = {i | yi = k} . (1)

Prototypical Classifier produces a distribution over classes for sample x based on
a softmax over distances to the prototypes in the embedding space. In particular,
when use cosine similarity as distance measure, we have:

Pθ(Y = k | x) =
exp

(
fθ(x)�ck

)
∑

k′ exp (fθ(x)�ck′)
. (2)
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Learning proceeds by minimizing the negative log-probability J(θ) =
− logPθ(Y = k | x) of the true class label k via SGD. Notably, the model in
Eq. (2) is equivalent to a linear model with a particular parameterization [18].
To see this, expand the term in the exponent:

c�
k fθ(x) = w�

k fθ(x) + bk, where wk = ck and bk = 0. (3)

Our results indicate that Prototypical Classifier is effective despite the equiv-
alence to a linear model. We hypothesize this is because all of the required
non-linearity can be learned within the embedding function [24]. Indeed, this is
the approach that modern neural network classification systems currently use.

3.2 Dynamic Thresholding for Label Noise Detection

However, the existence of label noise may hurt the representation learning of the
network. To tackle this issue, it is a common practice to correct noisy labels. Let
ŷ = [ŷ1, · · · , ŷK ] = Pθ(Y | x) be the prediction of Prototypical Classifier, the
labels are refined as stated by the following rule:

ỹ =
{

yi if ŷyi
> τt

arg maxj ŷj otherwise. (4)

In words, we deem samples as clean if the confidence scores on their original labels
is greater than a threshold τt. It is notably that using normal classifiers cannot
achieve this goal due to its biased predictions, while predictions of Prototypical
Classifier are balanced and comparable. We illustrate this finding in Fig. 3.
We then need to construct τt. Intuitively, with the increase of the optimization
iteration t, the predictive confidence also increases in general, so that τt is also
required to increase. Mathematically, we set the dynamic threshold τt as an
increasing function of t, which is given by:

τt = γtτ0. (5)

Fig. 3. Experiment on CIFAR-100-LT. x-axis is the class labels with decreasing training
samples and y-axis is the confidence scores of classifiers on training set.
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Here, τ0 is the initial threshold and γ is set to 1.005 in our experiments. We
provide more analysis about τt in supplementary materials. Lemma 1 summarizes
the performance bound of the label noise detection method.

Lemma 1. With probability at least p, the F1-score of detecting noisy labels
in Dj by thresholding the predictive scores of Prototypical Classifier is at

least 1 − e−v max(N−,N+)+α

N− when the noise ratio is known, where p =∫ μtrue−μfalse−Δ

−1
f(t)dt, f(t) is the probability density function of the differ-

ence of two independent beta-distributed random variables β1 − β2, where β1 ∼
Beta (N−, 1), β2 ∼ Beta (α + 1, N+ − α).

Lemma 1 shows that the performance of noise detection depends on the intraclass
concentration of clean samples in the embedding space (denoted by Δ2

v ), which
is optimized by the prototypical contrastive loss defined in Eq. (6). We refer the
reader to Ref. [33] for the proof of Lemma 1. We further justify the effectiveness
of our method in Fig. 4, which produces high F1-score for both head and tail
classes.

Fig. 4. Experiment on CIFAR-100-LT. We show the F1-score of clean examples selec-
tion module for many, medium and few classes.

3.3 Example Reweighting

In standard training, we aim to minimize the expected loss for the training set,
where each input example is weighted equally. Here we aim to learn a reweighting
of the inputs to cope with hard mislabeled samples whose labels are not correctly
refined, where we minimize a weighted loss:

Lpc =
−1∑N
i=1 wi

N∑
i=1

wi log
exp (fθ(x) · cyi

/τ)∑K
k=1 exp (fθ(x) · ck/τ)

. (6)

With a slight abuse of the notation, we re-define wi to be the weight for the i-th
example and τ is a temperature parameter. We expect the weights can reflect
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the likelihood of examples being correctly-labeled. In that regard, we devise a
weighted version for computing prototypes as:

ck = Normalize
(

1∑
i∈Dk

wi

∑
i∈Dk

wifθ(xi)
)

,Dk = {i | yi = k} . (7)

Recall that, one appealing property of Prototypical Classifier is balanced pre-
dictions across all classes, as opposite to biased normal classifiers. We therefore
simply set examples weights as the predicted score of Prototypical Classifier
on the training label, i.e., for the i-th example, we set wi = Pθ(Y = yi | xi)
where yi is the training label of xi. For samples whose labels are rectified, we
update their weights by w′ = τt−w

2 to reflect the uncertainty. The modified
example weights are always positive since the label is refined if and only if
w = P(Y = yi | xi) ≤ τt. The optimization of Lpc is realized by contrastive
learning, which has been demonstrated effective in learning representations [13].
Observing that the presence of label noise may have negative effect on represen-
tation learning, we train networks to optimize the unsupervised contrastive loss,
which does not use the biased training labels. The basic idea of unsupervised
contrastive learning is to pull together two embeddings of the same example,
while pushing apart from other examples. Formally, let zi = fθ(xi) and z′

i be
the embedding of augmented version of xi, the unsupervised contrastive loss is
computed as:

Li
cc = − log

exp (zi · z′
i/τ)∑B

b=0 exp (zi · z′
b/τ)

, (8)

where τ is a scalar temperature parameter and B is mini-batch size.
Given the above definitions and denoting Lce as conventional cross-entropy

loss, the overall training objective is written as:

L = Lce + λ1Lcc + λ2Lpc, (9)

where hyperparameters λ1 and λ2 are trade-off parameters. We adopt DNNs
as feature extractor and a linear layer as projector to generate latent feature
representation zi. Another linear layer following the feature extractor is used as
classifier. When minimizing Lpc, we apply mixup [31] to improve the generaliza-
tion which has been shown to be effective for learning with noisy labels [29].

4 Experiments

We perform experiments on CIFAR-10 and CIFAR-100 datasets by controlling
label noise ratio and imbalance factor of the training set. Additionally, we per-
form experiments on a commonly used dataset Webvision with real-world label
noise.

4.1 Results on Simulated Datasets

Class-Imbalanced Dataset Generation. Formally, for a dataset with K
classes and N training examples for each class, by assuming the imbalance factor
is ρ, the number of examples for the k-th class is set to Nk = N/ρ

k−1
K−1 .
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Label Noise Injection. Let Y denote the variable for the clean label, Ȳ the
noisy label, and X the instance/feature, the transition matrix T (X = x) is
defined as Tij(X) = P(Ȳ = j | Y = i,X = x). In this work, we follow the setup
in RoLT+ [28] by setting T (X = x) according to the estimated class priors P(y),
e.g., the empirical class frequencies in the training dataset. Formally, given the
noise proportion γ ∈ [0, 1], we define:

Tij(X) = P(Ȳ = j | Y = i,X = x) =
{

1 − γ i = j
Nj

N−Ni
γ otherwise.

(10)

Here, N is the size of training set and Nj is frequency of class j.

Table 1. Test accuracy (%) on CIFAR-10. ∗ denotes ensemble models.

Noise ratio 0.2 0.5

Imbalance factor 10 50 100 10 50 100

(1) CE Best 77.86 64.38 61.79 60.72 46.50 38.43

Last 74.00 61.38 55.69 44.29 32.69 27.78

(2) LDAM Best 83.48 72.01 66.41 63.57 38.92 34.08

Last 82.91 71.23 66.22 62.13 37.97 32.56

(3) LDAM-DRW Best 84.98 76.77 73.24 69.53 49.90 42.60

Last 84.71 75.98 72.46 68.76 47.71 40.47

(4) DivideMix∗ Best 88.79 75.34 66.90 87.54 67.92 61.81

Last 88.10 73.48 63.76 86.88 65.22 59.65

(5) RoLT+∗ Best 87.95 77.26 72.31 88.17 75.11 64.42

Last 87.54 75.90 69.12 87.45 73.92 61.15

(6) Prototypical Classifier Best 90.92 84.12 79.54 84.04 71.44 66.33

Last 90.81 83.71 78.34 83.51 71.44 64.69

Result. We train the PreAct ResNet-18 network using SGD optimizer with
momentum 0.9 for all methods. We set λ1 = 1 and λ2 = 5. We use τ0 =
0.1 for CIFAR-10 and τ = 0.01 for CIFAR-100. Tables 1 and 2 respectively
summarize the results for CIFAR-10 and CIFAR-100 datasets. We compare our
methods with several commonly used baselines for long-tailed learning (1–3)
and learning with noisy labels (4–5). As shown in the results, previous methods
dreadfully degrade their performance as the noise ratio and imbalance factor
increase, while our methods retain robust performance. In particular, compared
with CE, Prototypical Classifier improves the test accuracy by 9% on average. It
can be observed that the improvement becomes more significant when the noise
ratio is high, benefiting from proposed noise detection method.

As DivideMix [10] and RoLT+ [28] are two strong baselines in this task, (4)
and (5) obtain much higher performance than (1–3), particularly when noise
ratio is high. Although (4) and (5) use an ensemble of two networks, our method
(6) outperforms them in most cases. On CIFAR-100, Prototypical Classifier
achieves the best results among all the approaches and outperforms others by a
large margin for both head and tail classes in Fig. 5.



52 T. Wei et al.

Table 2. Test accuracy (%) on CIFAR-100. ∗ denotes ensemble models.

Noise ratio 0.2 0.5

Imbalance factor 10 50 100 10 50 100

(1) CE Best 45.97 33.41 29.85 28.70 18.49 16.24

Last 45.75 33.12 29.58 23.70 16.56 14.19

(2) LDAM Best 47.30 35.70 32.67 27.86 17.62 15.68

Last 47.12 35.50 32.60 24.20 17.50 14.73

(3) LDAM-DRW Best 47.85 36.29 33.38 27.86 17.91 15.68

Last 47.68 36.01 32.99 24.45 17.81 15.07

(4) DivideMix∗ Best 63.79 49.64 43.91 49.35 36.52 31.82

Last 63.17 48.37 42.59 48.87 35.72 31.05

(5) RoLT+∗ Best 64.22 51.01 45.35 53.31 39.78 35.29

Last 63.31 49.40 43.16 52.44 39.27 34.43

(6) Prototypical Classifier Best 65.23 51.73 47.38 57.65 42.51 38.42

Last 65.14 51.46 47.12 57.65 42.51 38.36

Fig. 5. Experiment on CIFAR-100-LT. We show the accuracy for many (#inst >100),
medium (#inst ∈ [20, 100]) and few (#inst < 20) classes.

4.2 Results on Real-World Dataset

We test the performance of our method on a real-world dataset. WebVision [14]
contains 2.4 million images collected from Flickr and Google with real noisy and
class-imbalanced data. Following previous literature, we train on a subset, mini
WebVision, which contains the first 50 classes. In Table 3, we report results
comparing against state-of-the-art approaches, including MentorNet [7], Co-
teaching [4], ELR [15], HAR [1], and DivideMix [10]. We use InceptionResNet-v2
for all methods. We set τ0 = 0.05, λ1 = 1 and λ2 = 2 in all experiments. From the
results, we can see that, by using a single model, the proposed method achieves
competitive performance with DivideMix and outperforms other baselines.

4.3 Ablation Studies

We examine the effectiveness of the each module of our method by removing it
and comparing its performance with the full framework. The results are reported
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Table 3. Accuracy (%) on WebVision and ImageNet. ∗ denotes ensemble models.

MentorNet Co-teaching ELR HAR DivideMix∗ Ours

Webvision top1 63.00 63.58 76.26 75.5 77.32 77.32

top5 81.40 85.20 91.26 90.7 91.64 92.60

ImageNet top1 57.80 61.48 68.71 70.3 75.20 75.12

top5 79.92 84.70 87.84 90.0 90.84 91.92

in Table 4. Generally, it is easy to see that removing any part of the method
significantly drops the performance or even fails in some cases. The performance
of re-weighting and dynamic threshold shows their great effectiveness for dealing
with label noise. Though we do not use the normal classifier trained via Lce,
it is observed to help improve the representation learning. We have a similar
observation for the unsupervised contrastive loss Lce. The strong augmentation
method AugMix [5] also provides substaintial improvement.

Additionally, we also test our method on class-balanced training sets with
label noise in Table 5. Prototypical Classifier outperforms other methods in most
cases, even though both DivideMix and RoLT+ uses an ensemble of two net-
works, which shows the generality of Prototypical Classifier.

Table 4. Ablation studies. ρ = 0.5 and γ = 100. � (�) indicate performance loss (gain)
compared with Prototypical Classifier.

Method CIFAR-10 CIFAR-100

w/o re-weighting Best 61.69 (�4.64) –

Last 58.57 (�6.12) –

w/o dynamic threshold Best 63.85 (�2.48) 39.04 (�0.62)

Last 56.01 (�8.68) 38.67 (�0.25)

w/o mixup Best 52.79 (�13.54) 33.09 (�5.33)

Last 51.43 (�13.26) 32.57 (�5.79)

w/o AugMix Best 62.51 (�3.82) 36.11 (�2.31)

Last 55.21 (�9.48) 35.68 (�2.68)

w/o Lcc Best 55.34 (�9.35) 32.65 (�5.71)

Last 53.17 (�11.52) 32.39(�5.97)

w/o Lce Best 57.61 (�7.08) 35.25 (�3.11)

Last 53.24 (�11.45) 35.02 (�3.34)
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Table 5. Accuracy (%) on class-balanced datasets. ∗ denotes ensemble models.

Noise ratio CIFAR-10 CIFAR-100

0.2 0.5 0.2 0.5

DivideMix∗ Best 92.79 95.03 77.25 73.84

Last 92.41 94.63 77.03 73.42

RoLT+∗ Best 92.46 94.59 78.60 74.11

Last 92.01 94.41 78.14 73.35

Prototypical Classifier Best 95.93 92.55 79.41 75.50

Last 95.80 92.40 79.41 75.10

5 Conclusion

We propose Prototypical Classifier for learning with training set biases. Proto-
typical Classifier is shown to produce balanced predictions for all classes even
when learned on class-imbalanced training set. This appealing property pro-
vides a way of detecting label noise by thresholding the predicted scores of
examples. Experiments demonstrate the superiority of the proposed method.
We believe Prototypical Classifier can motivate solutions to more problems with
class-imbalanced training sets, for instance semi-supervised learning and self-
supervised learning.

Acknowledgments. The authors wish to thank the anonymous reviewers for their
helpful comments and suggestions. This research was supported by the NSFC
(62176118).

A Ablations on Dynamic Threshold

Figure 6 shows a comparison of fixed threshold and the dynamic threshold τt

with τ0 = 0.1. We consider both exponential scheduler controlled by γ and
linear scheduler controlled by the threshold of last iteration τT .

We test the performance of different choice of parameters and the results are
reported in Table 6. From the results, we have two observations: i) when using
fixed threshold or the dynamic threshold grows too slow, performance drops in
the last iterations because many noisy labels are incorrectly flagged as clean;
and ii) when dynamic threshold grows too fast, the network cannot achieve best
performance, because many clean labels are incorrectly flagged as noisy.
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Fig. 6. Comparison of fixed threshold and dynamic threshold. Fix threshold τ = 0.1,
exponential dynamic threshold τt = 0.1γt and linear dynamic threshold τt = 0.1 +
τT −0.1

T
t.

Table 6. Test accuracy (%) on CIFAR-10-LT with imbalance factor 100 and noise
ratio 50%.

Ours (γ = 1.005) Fix Exponential Linear

1.003 1.007 1.01 0.2 0.3 0.4 0.5

Best 66.33 66.01 66.27 63.47 56.81 65.18 66.09 61.78 59.41

Last 64.69 61.37 63.57 58.93 35.84 63.40 65.11 57.84 55.12

B Results on Clean Datasets

Although our method is particularly designed learning with noisy labels, it is
interesting to study its performance on clean but class-imbalanced datasets. In
this experiment, we do not use sample re-weighting and label noise correction.
We report the results in Table 7. For fair comparison, we do not apply AugMix
in this experiment. Intriguingly, Prototypical Classifier consistently outperforms
all baselines by a large margin, showing the superiority of our proposed repre-
sentation learning method.

Table 7. Test accuracy (%) on clean datasets with different imbalanced factor.

CIFAR-10 CIFAR-100

Imbalance factor 10 50 100 10 50 100

CE 88.42 79.56 73.43 60.14 45.79 41.87

LDAM 87.43 80.32 74.50 59.84 47.61 42.59

LDAM-DRW 88.15 83.18 79.43 60.40 48.90 43.63

cRT 88.26 79.22 73.61 60.69 46.67 42.26

NCM 89.45 83.06 79.36 61.46 49.36 45.49

Prototypical Classifier 92.78 86.03 83.11 68.71 56.60 50.94
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Abstract. Correlation is an important information resource, which is
often used as a fundamental quantity for modeling tasks in machine
learning. Since correlation between quantum entangled systems often
surpasses that between classical systems, quantum information process-
ing methods show superiority that classical methods do not possess. In
this paper, we study the virtue of entangled systems and propose a novel
classification algorithm called Quantum Entanglement inspired the Clas-
sification Algorithm (QECA). Particularly, we use the joint probabil-
ity derived from entangled systems to model correlation between fea-
tures and categories, that is, Quantum Correlation (QC), and leverage
it to develop a novel QC-induced Multi-layer Perceptron framework for
classification tasks. Experimental results on four datasets from diverse
domains show that QECA is significantly better than the baseline meth-
ods, which demonstrates that QC revealed by entangled systems can
improve the classification performance of traditional algorithms.

Keywords: Quantum correlation · Quantum-inspired algorithms ·
Classification algorithm

1 Introduction

In machine learning, correlation is considered an important information resource
and is often used as a fundamental quantity in the modeling process of learning
tasks. Correlation is any statistical association, although it usually refers to the
degree to which a pair of variables is linearly related [6].

In recent years, quantum information technology have been developed by
leaps and bounds [4,9]. Quantum information processing has the advantages
that classical information processing cannot match, and can complete informa-
tion processing tasks that cannot be achieved by classical methods [16,18,19],
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such as quantum teleportation, quantum communication, etc. Quantum Correla-
tion (QC) in quantum composite systems [1,17], namely, non-classical statistical
correlation, has become more and more important, because it is the core quan-
tum resource and it is stronger than classical statistical correlation [14]. In fact,
the reason why quantum information processing has the superiority that clas-
sical information processing does not possess is because there is a correlation
between quantum systems that is beyond classical correlation [12].

Since quantum theory is not widely used in classical machine learning tasks,
here we give answers to several questions that readers may be concerned about.
Although quantum theory is generally regarded as a micro-physical theory, its
connotation is about information rather than physics. Since Hardy [7], the infor-
mational nature of quantum mechanics has gradually become more and more
rigorous. Therefore, the laws of quantum mechanics should not only be regarded
as the laws of the micro-physical world, but should be regarded as the general
rules of information processing [3,8].

In this paper, we study the virtue of quantum entangled systems in the clas-
sification tasks and propose a novel classification algorithm called Quantum
Entanglement inspired the Classification Algorithm (QECA) to learn
the statistical correlation between the features and categories. Particularly, base
on the Multi-layer Perceptron (MLP), we develop a novel QC-induced classi-
fication framework. The framework uses a fully connected layer to learn the
parameters of observations of the subsystems, and then uses the weighted sums
to integrate the measured probability values of each entangled state. In short, it
can be understood that the hidden layer neurons (nodes) of the MLP are replaced
with a measurement process of entangled states. This replacement makes QECA
has the ability to learn the QC between features and categories during training
process. We validate the effectiveness of proposed QECA on four machine learn-
ing datasets, and the experimental results show that QECA not only significantly
outperforms the baseline method MLP, but also achieves the best performance
than the other comparing methods in most cases.

The contribution of this paper is to apply QC revealed by quantum entan-
glement into traditional classification tasks of machine learning and leverage it
to develop a novel QC-induced classification algorithm. Moreover, this paper
theoretically analyzes that the framework used has the ability to violate Bell
inequality, which proves that the framework has the ability to reproduce QC.
Finally, this paper experimentally verifies that QC learned by the framework is
effective for classification tasks and combining QC into traditional classification
frameworks can further boost the classification performance.

2 Theoretical Analysis and Verification by Bell Inequality

In quantum theory, when several particles interact, the properties of each particle
will be integrated into the properties of the overall system, and the properties
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of each particle can only describe the properties of the overall system. This
phenomenon is called Quantum Entanglement (QE). QE could also be defined
as one multi-body quantum system in which tensor decomposition is not pos-
sible [13]. First, let us give the basic definition of entanglement for bipartite
systems (namely, 2-qubit).

Definition 1. Let H1 and H2 be two Hilbert spaces and |ψ〉 ∈ H1 ⊗ H2
1. Then

|ψ〉 is said to be disentangled, or separable or a product state if |ψ〉 = |ψ1〉⊗|ψ2〉,
for some |ψ1〉 ∈ H1 and |ψ2〉 ∈ H2. Otherwise, |ψ〉 is said to be entangled.

We begin with an arbitrary bipartite entangled state in the bases σ3|±〉 =
±|±〉2 that

|ψ〉 = α| + −〉 + β| − +〉 (1)

where α and β are the normalization condition with |α|2 + |β|2 = 1 but α, β �= 0.
Without losing generality, α and β can be parameterized as α = eiη sin(ξ),
β = e−iη cos(ξ), where i is the imaginary number with i2 = −1 and η, ξ are two
real parameters but sin(ξ), cos(ξ) �= 0. The density matrix of the entangled state,
ρ = |ψ〉〈ψ|, can be separated to the local and non-local parts [15], ρ = ρlc +ρnlc.
The local part

ρlc = sin2(ξ)| + −〉〈+ − | + cos2(ξ)| − +〉〈− + |, (2)

describes the classic statistical correlation between subsystems (or properties),
which belongs to the classical statistics. The non-local part

ρnlc = sin(ξ) cos(ξ)
(
ei2η| + −〉〈− + | + e−i2η| − +〉〈+ − |) (3)

describes the phenomenon of interference between subsystems (or properties),
which belongs to the quantum statistics.

2.1 The Measurement on Density Matrix

The observable of the subsystem r of the bipartite entangled system, say a and
b, is defined as:

Mr =
[

cos(θr) e−iφr sin(θr)
eiφr sin(θr) − cos(θr)

]
(4)

where θ and φ are two arbitrary real parameters and r ∈ {a, b}. The observable
has a spectral decomposition, Mr =

∑
m mPm

r , where Pm
r is the projector onto

1 The widely used Dirac notations are used in this paper, in which a unit vector v
and its transpose vT are denoted as a ket |v〉 and a bra 〈v|, respectively. ⊗ denotes
the tensor product.

2 {|+〉, |−〉} denotes an arbitrary orthonormal basis of the 1-qubit Hilbert space C
2.

σ3 = σz denotes Pauli matrix, and Pauli matrix refers to four common matrices,
which are 2×2 matrix, each with its own mark, namely σx ≡ σ1 ≡ X, σy ≡ σ2 ≡ Y ,
σz ≡ σ3 ≡ Z and σ0 ≡ I.
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the eigenspace of Mr with eigenvalue m. The possible outcomes of the measure-
ment correspond to the eigenvalues, m, of the observable. Upon measuring the
state |ϕ〉, the probability of getting result m is given by

p(mr) = Tr[Pm
r (|ϕ〉〈ϕ|)] = 〈ϕ|Pm

r |ϕ〉 (5)

where Tr denotes the trace of the matrix.
Projective measurements have many nice properties. In particular, it is very

easy to calculate average values for projective measurements. By definition, the
average value of the measurement is

E(M) =
∑

m

mp(m) =
∑

m

m〈ϕ|Pm|ϕ〉 = 〈ϕ|M |ϕ〉. (6)

The average value of the observable M is often written 〈M〉 ≡ 〈ϕ|M |ϕ〉.
Therefore, the joint probability derived from QE is obtained as:

p(+a,+b) = Tr[(P+
a ⊗ P+

b )ρ]. (7)

It can be also divided into the local (classical probability) and non-local (quan-
tum probability) parts

pall(+a,+b) = Tr[(P+
a ⊗ P+

b )(ρlc + ρnlc)] (8)

= Tr[(P+
a ⊗ P+

b )ρlc] + Tr[(P+
a ⊗ P+

b )ρnlc] (9)
= plc(+a,+b) + pnlc(+a,+b). (10)

Accordingly, the probability of other combinations, i.e., plc(±a,±b), plc(∓a,±b),
pnlc(±a,±b) and pnlc(∓a,±b), can also be obtained. Moreover, the average values
of a and b in the classical and quantum cases are

〈ab〉lc = − cos(θa) cos(θb) (11)

and

〈ab〉nlc = sin(θa) sin(θb) sin(2ξ) cos(φa − φb + 2η), (12)

respectively.

2.2 Verification by Bell Inequality

The theoretical tool for verifying QE is the Bell inequality [2]. Violating (or
Destroying) Bell inequality is a sufficient condition for the existence of QE. The
Bell inequality has many well-known promotion forms, the first and simple of
which is the Clauser-Horne-Shimony-Holt (CHSH) inequality [11]. The form of
the CHSH inequality is simpler and more symmetrical than many other Bell
inequalities that are later proposed. The specific form of the CHSH inequality is

|E(Q,S) + E(R,S) + E(R, T ) − E(Q,T )| ≤ 2 (13)

where E denotes the average value and Q, R, S and T denote observable.
The main conclusions and their proofs are given below:
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Conclusion 1. The local part of the joint probability derived from QE satisfies
the CHSH inequality, which belongs to the local hidden variables theory.

Proof. Let E(a, b) = 〈ab〉lc, i.e. Equation (11), the simple formula transformation
and the absolute value inequality can prove that the CHSH inequality holds, i.e.

|〈QS〉lc + 〈RS〉lc + 〈RT 〉lc − 〈QT 〉lc| ≤ 2. (14)

It indicates that plc is a classical probability.

Conclusion 2. The non-local part (quantum interference term) of the joint
probability derived from QE does not satisfy the CHSH inequality, which belongs
to the quantum mechanics theory.

Proof. Let E(a, b) = 〈ab〉nlc, i.e. Equation (12), we use a counterexample to
prove that the non-local part can violate the CHSH inequality. For example,
when θQ = θR = θS = θT = π

2 , φQ = π
3 , φR = φS = π

6 , φT = 0, ξ = π
4 and

η = 0, then

|〈QS〉nlc + 〈RS〉nlc + 〈RT 〉nlc − 〈QT 〉nlc| ≈ 2.232 � 2. (15)

It indicates that pnlc is a quantum probability.

Conclusion 3. The joint probability derived from QE does not satisfy the CHSH
inequality, which belongs to the quantum mechanics theory.

Proof. Let E(a, b) = 〈ab〉all = 〈ab〉lc + 〈ab〉nlc, the CHSH inequality can also be
violated. For example, when θQ = 0, θR = π

2 , θS = 5π
4 , θT = 7π

4 , φQ = φR =
φS = φT = 0, ξ = π

4 and η = 0, then

|〈QS〉all + 〈RS〉all + 〈RT 〉all − 〈QT 〉all| = 2
√

2 � 2. (16)

It indicates that pall = plc + pnlc is a quantum probability.

2.3 Analysis

Almost all books on quantum mechanics have discussions about the double-slit
experiment, that is, electrons passing through two open slits. See also Ref. [13].
Let Ak denote an event of passing through the slit with label k, here k = 1, 2.
Interpretation of the results of this experiment has led to the following formula
for the probability:

p(A1 ∪ A2) = p(A1) + p(A2) + 2
√

p(A1)p(A2) cos(θ) (17)

where p is a symbol of probability and θ is a certain parameter. Generally,
2
√

p(A1)p(A2) cos(θ) is interpreted as the self-interference inherent to the wave
nature of an electron. It will be convenient to give another form to Eq. (17). Set
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C = A1∪A2 where A1∩A2 = ∅ and rewrite Eq. (17) as a nonclassical (quantum)
total probability formula:

p(C) = p(C|A1)p(A1) + p(C|A2)p(A2) (18)

+ 2
√

p(C|A1)p(A1)p(C|A2)p(A2) cos(θ). (19)

where, as usual, p(C|Ai) = p(CAk)/p(Ak) and p(Ak) > 0, k = 1, 2.
Based on the quantum total probability formula, a natural judgment can be

drawn that the quantum effect can be described as a quantum interference term
for classical probability. In this paper, we decompose the quantum joint probabil-
ity derived from QE into the classical probability and the quantum interference
term, that is, we present the specific form of QC (or called strong statistical
correlation) revealed by QE and the way it works, and use the CHSH inequality
to verify its correctness. In the following, we will experimentally verify the role
of this interference term in classical tasks.

3 Implement Classification Algorithm by the Framework

From the analysis of the previous theoretical section, we can get the following
cognition: The essential reason that QC revealed by QE can be stronger than
the classical correlation is that the quantum interference term described by the
phase information is added. In this section, we will construct a classification
algorithm based on the mathematical formalization of QE to verify the validity
of QC revealed by QE in classification tasks.

This section is organized as follows: First, we will describe how to calcu-
late the quantum joint probability between features and categories. Second, we
describe how to use a fully connected layer to learn the parameters in the subsys-
tems of an entangled system, that is, how to construct QECA. Formally, it can
be understood as replacing the output layer of the MLP with the measurement
operation of the entangled state. Finally, the learning method of parameters in
the model is given.

3.1 Calculate Joint Probability Between Features and Categories

Entanglement arises from the measurement process of entangled systems
(states), that is, obtaining the quantum joint probability not only requires entan-
gled systems, but also requires to define the observables of the entangled systems.

We choose the quantum system with the maximum entanglement under two
qubits as the entangled system, e.g., Bell states, and its form is

|Ψ〉 =
1√
2

(|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉) =
1√
2

(|00〉 + |11〉) . (20)

The reason for choosing the entangled system of two qubits is that we want to
describe one qubit as the attribute (feature) and the other as the label (category).
It can be seen that if there are N attributes in each instance (sample), N Bell
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states are needed. Since there are only two eigenvalues in each set of orthogonal
bases of a qubit, it is suitable for binary classification tasks. Of course, one can
achieve multi-class classification tasks by adding the number of qubits of the
label, but this is not the focus of this paper. Moreover, from the form of the
quantum interference term, the probability amplitude and phase information of
the entangled system can be fully reflected by the polar and azimuth angles
of the measurement operator. In order to reduce the number of parameters of
QECA, we choose the maximum entangled state, i.e., Bell states, to represent
the entangled system.

We define the observable of the subsystem of the entangled system as Eq. (4),
and the spectral decomposition of the observable is

Mr(θr, φr) = P+
r (θr, φr) − P−

r (θr, φr) = |+r〉〈+r| − |−r〉〈−r| (21)

with

|+r〉 = cos
(

θr

2

)
|0〉 + eiφr sin

(
θr

2

)
|1〉 (22)

|−r〉 = sin
(

θr

2

)
|0〉 − eiφr cos

(
θr

2

)
|1〉 (23)

where the polar and azimuth angles, θr and φr, are the arbitrary real parameters.
For the measurement operator of the attribute, Patt, we use φr to represent the
parameter value of the attribute, and θr to represent the degree of freedom of
the attribute, e.g., weight. For the measurement operator of the label, Plab, we
use the determined measurement operator to represent the label, e.g., θlab = π

2
and φlab = 0,

P+
lab =

1
2
(σ1 + σ0), P−

lab =
1
2
(σ1 − σ0). (24)

In fact, any set of eigenstates can be chosen to represent the label, only to
satisfy the orthogonality. The reason why we select a set of orthogonal bases to
represent the label is that the positive and negative examples (samples) of the
two-class classification task are (often) binary opposition.

Now we can formally define the measurement operator of the entangled sys-
tem, i.e., Eq. (20). Assuming that each instance (sample) has N attributes and
one label, the positive and the negative measurement operators for the entangled
system consists of the n-th attribute and the label are

P±
n (θn, φn) = P+

n (θn, φn) ⊗ P±
lab. (25)

P+
n can also be replaced by P−

n , the effect is the same. Applying P+
n and P−

n

separately to each entangled system, i.e., Eq. (20), the probability values of both
positive and negative examples will be obtained,

p±
n (θn, φn) = Tr[P±

n (θn, φn)(|Ψ〉〈Ψ |)] = 〈Ψ |P±
n (θn, φn)|Ψ〉. (26)

Based on this formal framework, we can calculate the quantum joint proba-
bility between the label and any attribute, and then construct QECA.
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3.2 Constructing QECA by Quantum Joint Probability

In QECA, we use a fully connected layer to learn the parameters of the obser-
vations of the entanglement system. Formally, it can be understood as replacing
the output layer of the MLP with a measurement operation of the entangled
system. To make it easier for readers to understand the structure of QECA, we
use the illustrated method to give the architecture of QECA, see Fig. 1.

Fig. 1. Schematic diagram of QECA.

We perform weighting summation on the attributes of each instance, x ∈ R
d,

to get the input of the hidden layer neurons, which is αh =
∑d

i=1 vihxi where
vh ∈ R

d represents the weight. αh plus the bias bh ∈ R, and then apply the
activation function ReLU (Rectified Linear Unit) [10] to get the parameters of
the measurement operator of the entangled system, which is

φh = ReLU(αh + bh). (27)

Together with the defined degrees of freedom, θh ∈ R, the measurement operator
of the entangled system can be obtained, which is P±

h (θh, φh), i.e., Eq. (25). By
applying this measurement operator to the entangled state, i.e., Eq. (20), the
joint probability value of the entangled state, i.e., Eq. (26), can be obtained.

Finally, perform weighting summation on p±
h (θh, φh) to get the final output

value

y± = β± =
q∑

h=1

w±
h p±

h (θh, φh) (28)

where w± ∈ R
q represents the weight. β± represent the input value of the output

layer neurons, as shown in Fig. 1.
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3.3 Parameter Learning

Machine learning uses the loss function to improve the performance of the model.
This process of improvement is called optimization. QECA uses the classical
cross-entropy loss function to act on its loss function. Since Adaptive Moment
Estimation (Adam) defines a clear range of learning rates per iteration, making
the parameters change smoothly, we use Adam as the optimizer for QECA.

4 Experiments

4.1 Datasets and Evaluation Metrics

The experiments were conducted on the four most frequently used machine learn-
ing datasets from UCI [5]. Due to the simulation of complex quantum operations
on classical computers, limited by the computing power of classical computers,
we can only verify our algorithms with lightweight datasets.

Abalone3 is a dataset that predicts the age of abalone through physical
measurements. Since QECA is verified under a two-class task, it is divided into
an adult group (covering age ≥ 10) and adolescent group (covering age < 10).
The purpose of this division is to make the amount of data in the two groups as
close as possible.

Car Evaluation4 is a dataset that categorizes the car by a few simple indica-
tors. We reclassified the original four categories into two, unacceptable (covering
unacc) and acceptable (covering acc, good and vgood).

Wine Quality5 is a dataset that scores on wine quality. We divide the scores
less than or equal to 5 into one class, and the others into another.

Breast Cancer6 is a dataset that is diagnosed by the patient’s physiological
indicators, which is a two-class dataset.

All experiments use the 5-fold Cross-Validation method to divide the training
set and test set. The experimental evaluation metrics, F1-score, ACC (Accuracy)
and AUC (Area Under Curve), are taken as the average of 5 results.

4.2 Compared with Classical Classification Algorithms

Baselines: QECA is built on the basis of the standard MLP. Compared with
the MLP of the same structure and setting, it can truly reflect the superiority
of QECA. Both QECA and MLP uses an architecture of a single hidden layer,
in order to compare them in a fair manner (or less interference). The number
of neurons in the input layer is equal to the number of attributes; the number
of neurons in the hidden layer is twice the number of input layers; because it is
a binary classification task, the number of neurons in the output layer is two.

3 http://archive.ics.uci.edu/ml/datasets/Abalone.
4 http://archive.ics.uci.edu/ml/datasets/Car+Evaluation.
5 http://archive.ics.uci.edu/ml/datasets/Wine+Quality.
6 http://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original).

http://archive.ics.uci.edu/ml/datasets/Abalone
http://archive.ics.uci.edu/ml/datasets/Car+Evaluation
http://archive.ics.uci.edu/ml/datasets/Wine+Quality
http://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)
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Both use the cross-entropy loss function to evaluate the model and the optimizer
Adam to optimize the parameters.

We also conduct a comprehensive comparison across a wide range of machine
learning algorithms, including Logistic Regressive (LR), Decision Tree (DT),
Naive Bayesian Model (NBM), K-Nearest Neighbor (KNN), Support Vector
Machine (SVM), Linear Discriminant Analysis (LDA), Quadratic Discriminant
Analysis (QDA), Gradient Boosting Decision Tree (GBDT) and Ada Boosting
Decision Tree (ABDT).

Parameter Settings: QECA has three hyper-parameters, which are learning
rate, mini-batch and training epoch, respectively, and uses the same settings on
all datasets: the learning rate is 0.0001, the mini-batch is 1 and the training
epoch is 500. Their weights are initialized to a truncated positive distribution,
and the biases to 0.01. The permutation and combination method is used to
select the hyper-parameters.

The hyper-parameters in the baselines are set to: in LR, penalty is L2; in
DT, min-samples-split is 10; in SVM, C is 1.0 and kernel is rbf ; in KNN, n-
neighbors is 10; in LDA, solver is svd and store-covariance is True; in QDA,
store-covariance is True; in MLP, activation is relu and solver is adam; in
GBDT, n-estimators is 20; in ABDT, n-estimators is 20. Other hyper-parameters
not listed use the default value of the framework scikit-learn7.

Experiment Results: Inspired by the quantum double-slit experiment, we also
use the quantum interference term to characterize the strong statistical corre-
lation revealed by QE and design an algorithm to verify the role of the quan-
tum interference term in the classification task. Table 1 presents the experiment
results under Abalone, Breast Cancer, Wine Quality (Red) and Car Evaluation
respectively, where bold values are the best performances out of all algorithms.
From the experimental results, the most metrics of QECA on four datasets are
significantly better than the majority of machine learning algorithms. The basic
conclusion that QECA has excellent classification ability can be drawn. This
proves the effectiveness of QECA from a holistic perspective.

Moreover, the comparison with the MLP can explain that QECA is improved
on the basis of MLP, and it shows that the quantum interference term plays an
important role on QECA, that is, the quantum interference term described by
the quantum phase has learned a strong statistical correlation between attributes
and labels. Below we will analyze the entire learning process to determine
whether the learning (or classification) ability is stable rather than accidental.

4.3 Comparison with the Training Process of Standard MLP

In order to analyze QECA’s learning ability in more detail, we compared the
training process of QECA with the baseline method MLP. We use the validation

7 https://scikit-learn.org/stable/index.html.

https://scikit-learn.org/stable/index.html
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set divided by the 5-fold Cross-Validation method as the test set to obtain the
accuracy curve during the training process. The hyper-parameter settings of
both QECA and MLP are exactly the same as those in Experiment Sect. 4.2.
We selected three representative datasets for experiments: Wine Quality (Red)
and Wine Quality (White) have the same data structure, but the amount of data
in Wine Quality (Red) is balanced and Wine Quality (White) is not balanced;
Moreover, in order to illustrate the effect of the number of attributes on the
training effect, we use Abalone to compare with Wine Quality.

The experiment results are shown in Fig. 2. From the accuracy curve of the
training process under the three datasets, compared with the MLP, QECA has
significant improvement and its contribution is obvious. The experimental results
of this section can prove that the quantum interference term plays an impor-
tant role in QECA. It also further shows that QC revealed by QE can play an
important role in the classic classification task.

Fig. 2. Experiment results: the left column is the accuracy curve on the training set,
and the right column on the test set.

5 Conclusion and Future Work

In this paper, we propose a novel classification framework, called Quantum
Entanglement inspired the Classification Algorithm (QECA), to learn a strong
statistical correlation (i.e., QC) between features and categories and leverage it
to improve the classification performance by integrating QC into MLP. QECA
achieved excellent results on the four machine learning datasets compared with
the baseline method MLP, which only uses the statistical correlation described
by classical theory. More importantly, QECA also outperforms the other com-
petitive methods in most metric. These results prove the effectiveness of QC in
classification tasks.
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Abstract. In semi-supervised learning, co-training is successfully in
augmenting the training data with predicted pseudo-labels. With two
independently trained regressors, a co-trainer iteratively exchanges their
selected instances coupled with pseudo-labels. However, some low-quality
pseudo-labels may significantly decrease the prediction accuracy. In this
paper, we propose a self-paced safe co-training for regression (SPOR)
algorithm to enrich the training data with unlabeled instances and their
pseudo-labels. First, a safe mechanism is designed to enhance the qual-
ity of pseudo-labels without side effects. Second, a self-paced learning
technique is designed to select “easy” instances in the current situa-
tion. Third, a “qualifier-based” treatment is designed to remove “weak”
instances selected in previous rounds. Experiments were undertaken on
nine benchmark datasets. The results show that SPOR is superior to
both popular co-training regression methods and state-of-the-art semi-
supervised regressors.

Keywords: Co-training · Self-paced learning · Semi-supervised
regression · Safe learning

1 Introduction

Semi-supervised regression (SSR) [26] aims to use additional unlabeled data to
improve learning performance. However, some unlabeled data can help build the
model, while others cannot [1,17]. Therefore, the quality of both added unla-
beled data and assigned pseudo-labels is critical to learning performance. Co-
training [6] is a well-known form of semi-supervised learning. To efficiently select
unlabeled data and assign pseudo-labels, co-training trains two different classi-
fiers and changes their pseudo-labels in an iterative manner. Co-training is also
especially effective in dealing with regression task. Different from the classifica-
tions tasks, the co-training regression method [25] selects suitable unlabeled data
based on the improvement of labeled data’s quality after adding the unlabeled
data. In this way, more hidden insights in unlabeled data can be distinguished
through two different regressors.

Despite the advantages of co-training in SSR, popular methods still have major
drawback. That is, they assume that unlabeled instances with high-confidence
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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are credible for the model. For co-training, most methods assume that unlabeled
instances with high-confidence are credible for the model. However, this assump-
tion is too subjective to be fully satisfied in applications. In fact, the regressors
may not be robust enough in the initial selection process. They may choose weak
unlabeled instances and assign pseudo-labels to them. These weak instances and
pseudo-labels cannot improve learning performance and will remain in the labeled
data throughout the whole process. Consequently, it is highly desirable to reduce
the impact of weak instances and labels in the co-training process.

Fig. 1. The algorithm framework. 1) In the pre-training process, SPOR uses labeled
data L to construct 2 base regressors. 2) Each time we select a confident instance using
Regressor i from the unlabeled pool. This instance is predicted by all regressors. All
these predictions are fused using a labeling safe mechanism to obtain the pseudo-label.
The selected instance coupled with the pseudo-label augment the training data of the
next regressor. Because there are 2 regressors and T iterations, this process repeats
2 × T times.

In this paper, we propose a self-paced safe co-training for regression (SPOR)
algorithm to handle the above issue. Figure 1 shows the main framework of
SPOR. First, the two base regressors are trained on labeled data only. Then,
these regressors will select unlabeled instances for each other among the sampled
unlabeled data. In this step, the instances selected in the previous process will be
re-evaluated. Once the previously added instances are weaker than the current
selection, these instances will be removed from the labeled data. Finally, the
pseudo-labels of all regressors will be merged to learn the safety label. This
learned safety label will not be worse than the pseudo-label. The safety labels
will be added to the labeled data of the next regressor along with the selected
instances to help build the model.
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Our main contributions can be summarized as follows:

– A safe co-regression mechanism is designed to improve the pseudo-label qual-
ity of unlabeled instances. This mechanism provides a label enhancement,
which can improve label quality without side effects.

– A self-paced learning paradigm is inserted into the selection process to mine
more appropriate unlabeled instances. This paradigm corresponds with the
insights of self-paced implementation and selects unlabeled instances with an
“easy-to-hard” way.

– An adaptive and “qualifier-based” treatment is adopted to reduce the impact
of weak instances. This treatment corresponds to the improvement of co-
training, which can remove the weak unlabeled instances and keeping the
confident ones in labeled data.

2 Related Work

This section introduces the three related studies of SPOR, including self-paced
learning, co-training regression and safe learning.

Self-paced learning (SPL) [13] is a general methodology for problem-solving
especially in datamining andmachine learning. It is rooted in the curriculum learn-
ing model [5], which learns the model by including samples from easy to complex
in the training process. Due to its versatility, SPL is widely used in various tasks,
e.g., object tracking [20], image classification [12] and multimedia event detection
[9,11]. SPL also has been connected with other theories to form new ones, such as
self-paced curriculum learning [12], self-paced co-training [18,19].

The Co-training [6] method has been proposed to ameliorate the shortage of
self-training. It estimates unlabeled instances through two different base models
that are trained from different perspectives of labeled instances. Co-training
regression can be roughly spirited as multi-view [4,22,23] and single-view [10,
25] paradigm. Besides, Co-Expectation Maximization Algorithm (Co-EM) [7]
extends the co-training regime on the data sets without natural feature split.
Balcan et al. [2] proposed “expansion assumption”, which reduced the strong
assumption requirements of co-training.

The safe mechanism [24] is a special mechanism of semi-supervised learning
(SSL) which concerns the problem that the exploitation of unlabeled data might
hurt learning performance. Its goal is to improve learning performance without
the negative consequences of adding more unlabeled data. The safe scheme is
related to two branches of studies, safe classification [15,17] and safe regression
[16]. Kwok et al. [14] established a general safe classification framework for dif-
ferent performance metrics such as F1 scores, AUC, and Top-k. In addition,
Balsubramani et al. [3] explored a robust prediction with the highest accuracy
based on the supervised prediction restricted to a specific candidate set.

3 The Proposed Algorithm

In this section, we introduce the details of the proposed method, self-paced
co-training for regression (SPOR). We first present the mathematical form of
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SPOR, and then introduce the designed safe regression mechanism. Finally, we
will introduce the details of the algorithm.

3.1 The Model

This section presents the mathematical details of SPOR, which extends the self-
paced safe co-training framework for regression. Let l denote the number of
labeled instances and u the number of unlabeled instances, V = {v(1),v(2)} be
the set of selection vectors. The selection vector of j-th regressor is denoted by
v(j) = (v(j)

l+1, . . . , v
(j)
l+u) where v

(j)
l+i = 1 if xl+i is selected and 0 otherwise. Let

G = {g1, g2} be the set of regressors, gj be the j-th learner where j = {1, 2},
gj (xi) be the prediction of xi, gj(xi) be the safety label of xi, L(yi, gj (xi)) be
the loss function. Our optimization objective is

min
V,G

E =
2∑

j=1

l∑

i=1

L (yi, gj(xi)) +
2∑

j=1

l+u∑

i=l+1

v
(j)
i

(
L (

gj(xi), gj(xi)
) − λ(j)

)
, (1)

where λ(j) is the age parameter which controls the size of selected unlabeled
instances for j-th regressor in each training iteration.

From the viewpoint of self-paced learning, SPOR is a self-paced regression
method with two semi-supervised regressors by committee. The inner hard self-
paced regularizer λ(j)v

(j)
i encodes the robustness of regressor. With the training

progress, the age parameters λ(j) will decrease, and the robustness of the regres-
sor increases. More unlabeled instances can be learned according to the enhanced
regressor. This is in line with the principle of SPL and the SSR method of using
unlabeled instances to increase learning performance.

From the viewpoint of co-training, SPOR is a co-training regression method
with adaptive confidence criteria. The maximum confidence level of the instances
selected by the co-regressor varies in different selection processes. The confidence
of the weak instances selected earlier may be lower than the current confidence
criterion. By removing the weak instances, better performance can be obtained
for labeled data. This finely suits the idea SPOR’s idea of recorrecting the weak
instances to improve learning performance.

3.2 The Safe Technique

Safe regression [16] aims to learn a safety pseudo-label y that performs no worse
than its baseline. In SPOR, we use the confidence-based method to help select
the appropriate instances. Let gj(x) denote the semi-supervised prediction of
the j-th regressor on x, where j = 1, 2, and g

(0)
j (x) is the supervised prediction

of x, y denote the true label of x. The performance of safety prediction gj(x)
can be measured by the difference of mean squared error against y

max
y∈R

((
g
(0)
j (x) − y

)2

− (
gj(x) − y

)2
)

. (2)
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Fig. 2. The safe strategy is described through a geometric projection way. The safe
strategy aims to learn a projection of g

(0)
j (x) onto a label plane D. The projection label

gj(x) is significant closer than g
(0)
j (x) to real label y.

However, in reality, the truth label y and the optimal weights αi are hardly
to obtain.

To simplify above problem, αi can be assumed from a convex liner set M =
{(α1, α2) | α1 + α2 = 1, αi > 0, i = 1, 2} and the worst-case performance gain in
co-training process similarity as [3,17]

max
y∈R

min
α∈M

2∑

i=1

αi

((
g
(0)
j (x) − gi(x)

)2

− (
gj(x) − gi(x)

)2
)

. (3)

Eq. (3) can gain a closed-form solution by setting the derivative w.r.t y to zero

gj(x) =
2∑

i=1

αigi(x). (4)

Substituting the Eq. (4) to Eq. (3), the equivalent form only relates to α

min
α∈M

(
2∑

i=1

αigi (x) − g
(0)
j (x)

)2

, (5)

which can be viewed as a geometric projection problem as illustrated in Fig. 2.
Expanding Eq. (5) and the problem can be solved as a simple convex quadratic
program

min
α∈M

(
αTFα − gTα

)
, (6)

where F ∈ R
2×2 is a kernel matrix of yi, and Fij = yi · yj for any i, j ∈ {1, 2},

g = [2g1(x)gj(x), 2g2(x)gj(x)]. It is effective to obtain the optimal weights α∗
i

with the help of optimization solvers. After that, we can obtain the learned safe
prediction gj(x) =

∑2
i=1 α∗

i gi(x) according to the Eq. (4).

3.3 The Instances Selection Strategy

In SPOR, our “qualifier-based” treatment combines instance confidence with a
self-paced paradigm for instance selection. The instance confidence represents
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the promotion of labeled data after adding into labeled data. The self-paced
paradigm can select appropriate unlabeled examples to add to the labeled data.

Let L be the labeled data, Ω be the nearest neighbor set of xi in L, xk be
the k-th element of Ωi. The confidence value Δi can be calculated according to

Δi =
∑

xk∈Ωi

(yk − gj(xk;L))2 − (yk − gj(xk;L ∪ {xi}))2 . (7)

Based on the calculated confidence values, the unlabeled instances can be
selected according to

vi =
{

1, if Δi > λΔmax;
0, otherwise, (8)

where vi is the selection vector of xi, λ is the self-paced regularizer to control
the number of selection instances, Δmax is the maximum confidence value of
unlabeled instances.

The confidence value Δi represents the improvement of L after adding xi. The
higher the Δi, the greater the value of xi to the labeled data. In particular, when
xi is an outlier, Δi is 0. The self-paced regularizer λ indicates the robustness of
regressors. As the training progresses, the robustness of the regressor increases,
λ decreases, and more instances can be included in the labeled data. The change
of λ actually reflects the increase in the robustness of the regressor.

Fig. 3. The example of our “qualifier-based” treatment.

Figure 3 illustrates a simple example of our selection strategy. In round T ,
the self-paced regularizer is 0.7, and the confidence standard is 0.56. In unlabeled
pool, x5 and x7 will be treated as confident instances and included in labeled
data. In addition, in the label data, x1 will be considered as a weak instance
to be removed, because its confidence is lower than the current standard. The
updated labeled data will be used for the T + 1 round.

3.4 Algorithm Description

Algorithm 1 presents the general framework of SPOR. The first step is to ini-
tialize the model parameters. Line 1 sets the v(1) and v(2) to 0, indicating that
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no unlabeled instances are selected. The λ(1) and λ(2) are both set to 1, indicat-
ing that only the highest-confidence unlabeled instance can be selected. Line 2
builds two supervised regressors g1 and g2 only on the original labeled data.

Algorithm 1. Self-paced Safe Co-training for Regression
Input: labeled data x1, . . . ,xl, unlabeled data xl+1, . . . ,xl+u, labels y1, . . . , yl, age
parameters λ(1) and λ(2), selection vectors v(1) and v(2), pool size P and max iteration
number T .
Output: regressors g1 and g2.

1: Initialize λ(1), λ(2), v(1), v(2);
2: Train g1 and g2 on labeled data;
3: while (some instances can be selected ‖ training iterations < T ) do
4: for (j ← 1 to 2) do
5: Sample P unlabeled instances;
6: Compute the confident value Δi by g3−j according to Eq. (7);
7: Update v(j): Select confidenct instances xi and update the selection vector

v(j) according to Eq. (8);
8: Construct a linear kernel martrix F where Fmn = gm(xi)·gn(xi) where m, n ∈

{1, 2};

9: Derive a vector g =
[
2g1(xi) · g

(0)
j (xi), 2g2(xi) · g

(0)
j (xi)

]
where g

(0)
j is the

initial regressor of gj ;
10: Solve the convex quadratic optimization Eq. (6) to gain the optimal weights

αi =
[
α1
i , α

2
i

]
;

11: Calculate gj(xi) =
∑2

j=1 αj
igj(xi);

12: Update gj : Add the xi and gj(xi) into labeled data of gj and train j-th
regressor;

13: Update λ(j): Reduce λ(j);
14: end for
15: end while
16: return g1 and g2;

The second step is to select the high-confidence instance according to the cur-
rent regressor. In lines 5–6, the confidence value of sampled unlabeled instances
can be calculated according to Eq. (7). Then, in line 7, SPOR selects xi and
updates the selection vectors v(3−j) according to the calculated confidence.

The third step is to learn the safety pseudo-label gj(xi). Lines 8–9 construct
a label plane by semi-supervised prediction g(xi), supervised prediction g(0)(xi)
and regressor weights αi. Then, in line 10, the regressor weights αi can be
solved by a convex solver as a simple convex quadratic program. In line 11, the
safety label gj(xi) can be derived according to Eq.(4). Finally, in line 12, the age
parameters λ(j) will de reduced to allow more confident instance can be included
into labeled data. In detail, instead of adjusting λ(j) directly, we increase the
number of confidence instances that should be picked every 10 training epochs.
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The last step is to update the regressors gj+1 according to Eq. (1). The above
process will be repeated until the regressor cannot select any unlabeled instances
or the maximum number of selection iterations is reached.

4 Experiments

In this section, we undertake experiments to answer the following questions:

1) Can the safe strategy effectively improve the quality of pseudo-labels during
training?

2) How accurate SPOR is in comparison to the state-of-the-art label propagation
algorithm?

The implementation of SPOR is available in the website http://github.com/
fansmale/SPOR in which all source code is accesssible.

4.1 Experiment Settings

Table 1 lists nine datasets that have been employed for testing in existing SSR lit-
erature. They cover diverse domains including physical measurements (abalone),
biography (pollen), engineering (folds5x2), etc.

Table 1. Data sets.

Data set Size Feature Training size Test size Source

cpusmall 8192 12 2000 6192 Delve

folds5x2 pp 9565 4 2000 7565 UCI

pollen 3848 5 2000 1848 StatLib

puma8NH 8192 8 2000 6192 UCI

wind 6574 14 2000 4574 Statlib

wine quality 6497 11 2000 4497 UCI

space ga 3107 6 2000 1107 StatLib

abalone 4177 8 2000 2177 UCI

kin8nm 8192 8 2000 6192 UCI

For each dataset, we randomly sampled 2000 instances as the training set,
while the others were used as the testing set. The training set is further parti-
tioned into labeled and unlabeled parts at a certain ratio. To simulate real cases,
2.5%, 5%, 10% and 20% of the training set were served as the labeled data in
different experimental settings.

We compared our approach with four state-of-the-art SSR algorithms,
COREG [25], CoBCReg [10], SAFER [16], MSRRA [8] and BHD [21]. To ensure
the best performance, we adopted the source code provided by the authors and
the best settings given in reference. Besides, in SPOR, we employ two basic net-
works with 3 hidden layers (32×32×32 and 32×64×32) as the base regressors.

http://github.com/fansmale/SPOR
http://github.com/fansmale/SPOR
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4.2 The Effectiveness of the Safe Strategy

To validate our safe mechanism, we calculate the average RMSE of pseudo-labels
and safety labels to real labels in selected instances.

Fig. 4. Mean squared errors of pseudo-labels and safety labels to real labels on 2.5%,
5%, 10% and 20% labeled ratio. Safety labels are significant better than pseudo-labels.

Figure 4 shows the test results in dataset cpusmall, pollen and wind. We have
the following observations:

– The learned safety labels are significantly better than original pseudo-labels.
The safety labels can achieve a 50.41% mean improvement compared to
pseudo-labels in all datasets. Even in the pollen, the safety labels still achieve
a 13.88% mean improvement than pseudo-labels under different labeled ratios.

– The safe strategy is robust and not greatly affected by the number of labeled
instances. The learned safety labels can still achieve a 46.75% mean improve-
ment than pseudo-labels in all datasets under 2.5% labeled ratio. With the
labeled ratio increases, the change in performance improvement of safety
labels is not significant. This means that our safe strategy is robust and
the safe strategy is still effective in improving label quality.

4.3 Comparison with Semi-supervised Methods

To answer our second question of SPOR, we calculate the RMSE and R2 values
of SPOR and comparison methods.

Figure 5 shows the results of RMSE in comparison on to nine real-world
datasets. It can be observed that SPOR achieves the best average performance
under different labeled ratios, which demonstrates the superiority of our method
to comparison methods. We have the following observations:

– Our “qualifier-based” treatment can reduce the influence of weak instances.
Under the setting of 2.5% labeled ratio, SPOR achieves an average perfor-
mance rank of 1.67 (5 best performance out of 9) in all comparison methods.
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Fig. 5. Root mean squared errors comparison of different models against different
labeled instances on the nine datasets.

– The self-paced paradigm is effective in unlabeled instances selection. In the
RMSE experiments, the learning performance of all methods increases with
the labeled ratio. We can observe that SPOR has the fastest performance
improvement of all algorithms. In particular, the SPOR performance increases
faster than other methods when the labeled ratio is 20%.

For the R2 test, different labeled ratios have little effect on the results. Thus,
Table 2 only shows the results of the R2 test under 2.5% labeled ratio. We can
observe that SPOR is robust and it outperforms (6 out of 9) other comparison
methods in most datasets. On some datasets such as abalone and pollen, SPOR
still achieves the second-best performance compared to the other methods. This
indicates that SPOR is more robust than the other methods. This makes sense
because the “qualifier-based” processing method removes weak instances or out-
liers from the labeled data. In other words, the R2 test confirms the idea of
SPOR, which reduces the impact of weak instances during the training process.
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Table 2. R2 test for comparison methods and SPOR under 2.5% labeled ratio. The
best results for each dataset and the best average performance for all datasets are
highlighted with bullets.

Dataset COREG CoBCReg SAFER MSSRA BHD SPOR

cpusmall 0.6778 −0.9331 0.5987 −3.7244 −0.0125 0.6913•
folds5x2 pp 0.8824 0.9071 0.8454 0.9214 -0.0218 0.9245•
pollen −0.3172 −0.1415 −0.2195 −0.1026• −0.0181 −0.1362

puma8NH 0.2101 0.2374 0.1914 0.2937 −0.0131 0.3141•
wind 0.5291 0.6365 0.5066 0.6669 −0.0169 0.6819•
wine quality 0.0636 0.1606 0.1043 0.1305 −0.0255 0.1647•
space ga 0.0701 0.2295 0.0879 0.2418 −0.0535 0.3132•
abalone 0.2557 0.4168• 0.2867 0.4079 −0.0127 0.3595

kin8nm 0.3065 0.3296• 0.2596 0.2838 −0.0154 0.3066

Mean Rank 4.22 2.78 4.44 2.78 5.22 1.56•

5 Conclusion and Future Work

This paper proposes a self-paced safe co-training regression method, which
extends the co-training framework on regression. To enable SPOR to train regres-
sors in a better way, a safe co-regression mechanism is designed to assign better
pseudo-labels. In addition, we also analyze the performance of the safe strat-
egy in the training process. Experimental results verify the advantage of SPOR
beyond comparison methods.

The research directions for our future work include designing an appropriate
self-paced regularizer for regression. Besides, since the valuable of safe strategy
in co-training, we can develop a more general safe co-training mechanism to deal
with multiple view regression tasks.

Acknowledgment. This work is supported in part by the Central Government Funds
of Guiding Local Scientific and Technological Development (No. 2021ZYD0003)

References

1. Balcan, M.F., Blum, A.: A discriminative model for semi-supervised learning. J.
ACM 57(3), 1–46 (2010)

2. Balcan, M.F., Blum, A., Yang, K.: Co-training and expansion: towards bridging
theory and practice. In: NIPS, vol. 17, pp. 89–96 (2004)

3. Balsubramani, A., Freund, Y.: Optimally combining classifiers using unlabeled
data. In: COLT, vol. 21, pp. 211–225 (2015)

4. Bao, L., Yuan, X.F., Ge, Z.Q.: Co-training partial least squares model for semi-
supervised soft sensor development. Chemometr Intell. Lab. Syst. 147, 75–85
(2015)



82 F. Min et al.

5. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In:
COLT, pp. 41–48 (2009)

6. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training.
In: COLT, pp. 92–100 (1998)

7. Brefeld, U., Scheffer, T.: CO-EM support vector learning. In: ICML, p. 16 (2004)
8. Fazakis, N., Karlos, S., Kotsiantis, S., Sgarbas, K.: A multi-scheme semi-supervised

regression approach. Pattern Recogn. Lett. 125, 758–765 (2019)
9. Gu, Y., Yang, H., Zhou, C.: SelectNet: self-paced learning for high-dimensional

partial differential equations. J. Comput. Phys. 441, 110444 (2021)
10. Hady, M.F.A., Schwenker, F., Palm, G.: Semi-supervised learning for regression

with co-training by committee. In: ICANN, pp. 121–130 (2009)
11. Jiang, L., Meng, D.Y., Mitamura, T., Hauptmann, A.G.: Easy samples first: self-

paced reranking for zero-example multimedia search. In: ACM MM, pp. 547–556
(2014)

12. Jiang, L., Meng, D.Y., Zhao, Q., Shan, S.G., Hauptmann, A.G.: Self-paced cur-
riculum learning. In: AAAI, vol. 29, pp. 2694–2700 (2015)

13. Kumar, M.P., Packer, B., Koller, D.: Self-paced learning for latent variable models.
In: NIPS, vol. 23, pp. 1189–1197 (2010)

14. Li, Y.F., Tsang, I.W., Kwok, J.T., Zhou, Z.H.: Convex and scalable weakly labeled
SVMs. J. Mach. Learn. Res. 14(7), 2151–2188 (2013)

15. Li, Y.F., Wang, S.B., Zhou, Z.H.: Graph quality judgement: a large margin expe-
dition. In: IJCAI, pp. 1725–1731 (2016)

16. Li, Y.F., Zha, H.W., Zhou, Z.H.: Learning safe prediction for semi-supervised
regression. In: AAAI, vol. 31, pp. 2217–2223 (2017)

17. Li, Y.F., Zhou, Z.H.: Towards making unlabeled data never hurt. IEEE Trans.
Pattern Anal. 37(1), 175–188 (2014)

18. Ma, F., Meng, D.Y., Xie, Q., Li, Z.N., Dong, X.Y.: Self-paced co-training. In:
ICML, vol. 70, pp. 2275–2284 (2017)

19. Ma, F., Meng, D., Dong, X., Yang, Y.: Self-paced multi-view co-training. J. Mach.
Learn. Res. 21(57), 1–38 (2020)

20. Supancic, J.S., Ramanan, D.: Self-paced learning for long-term tracking. In: CVPR,
pp. 2379–2386 (2013)

21. Timilsina, M., Figueroa, A., d’Aquin, M., Yang, H.: Semi-supervised regression
using diffusion on graphs. Appl. Soft Comput. 104, 107188 (2021)

22. Wang, W., Zhou, Z.H.: A new analysis of co-training. In: ICML, vol. 12, pp. 1135–
1142 (2010)

23. Wang, W., Zhou, Z.H.: Co-training with insufficient views. In: ACML, pp. 467–482
(2013)

24. Yu-Feng, L., Lan-Zhe, G., Zhi-Hua, Z.: Towards safe weakly supervised learning.
IEEE Trans. Pattern Anal. 43(1), 334–346 (2019)

25. Zhou, Z.H., Li, M.: Semi-supervised regression with co-training. In: IJCAI, vol. 5,
pp. 908–913 (2005)

26. Zhu, X.J., Goldberg, A.B.: Introduction to semi-supervised learning. Synth. Lect.
Artif. Intell. Mach. Learn. 3(1), 1–130 (2009)



Uniform Evaluation of Properties
in Activity Recognition

Seyed M. R. Modaresi1,2(B) , Aomar Osmani2 ,
Mohammadreza Razzazi1,4 , and Abdelghani Chibani3

1 SSRD Lab., Computer Engineering Department, Amirkabir University
of Technology, Tehran, Iran

razzazi@aut.ac.ir
2 LIPN-UMR-CNRS 7030 Lab., Sorbonne University Paris Nord, Paris, France

{modaresi,aomar.osmani}@lipn.univ-paris13.fr
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Abstract. The main additional problem in activity recognition (AR)
systems in contrast to traditional ones is the importance of duration:
a predicted concept in AR is durative and can be correct in a period
and incorrect in another one. Therefore, it is fundamental to extend
the correctness vocabulary and to formalize a new evaluation system
including these extensions. Even in similar areas, few empirical attempts
are proposed which are confronted with the problems of correctness and
completeness. In this paper, we propose the first formal multi-modal eval-
uation approach for durative concepts. This novel mathematical method
evaluates the performance of an AR system from multiple perspectives,
including detection, total duration, relative duration, boundary align-
ment, and uniformity. It extracts the properties considered in the state-
of-the-art and redefines the well-known true-positive, false-positive and
false-negative terms for durative events. Our proposed method is exten-
sible, interpretable, customizable, open source and improves the expres-
siveness of the evaluation while its computation complexity remains lin-
ear. Comprehensive experimental evaluations are conducted to show the
usefulness of our proposed method.

Keywords: Evaluation · Activity recognition · Time series

1 Introduction

Activity Recognition (AR) is expected to be a core component in numerous
future Internet of Things applications such as healthcare, smart homes, and secu-
rity [5,22,23]. Therefore, evaluating the effectiveness of different AR algorithms
is essential. Some metrics such as accuracy, observing the recall against precision
are common metrics that are easy to understand and interpret even by non-
experts. These metrics are well-used for discrete instances and pre-segmented
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Fig. 1. a) Classical instances b) Durative instances. Durative one may partially correct
and partially incorrect while the classical one is either correct or not.

Table 1. The notations used in this paper.

Symbol Description

TP, TN, FP, FN True Positive, True Negative, False Positive, False Negative

e=(c, [s:f]) Event e has class c that occurs from time s to time f

GTE, PE GTE=Ground Truth Event, PE = Predicted Event

E, R, P E =Event set, R = GTE set, P= PE set

|X| The number of element in set X

T (e), T (E) T (e) = Duration of e, T (E) =
∑

e:E T (e)

e′ = e1∩ e2 e1 = (c1, t1) ∧ e2 = (c2, t2) ∧ c1==c2 ∧ e′ = (c1, t1∩ t2)

e1 ∩ E2
⋃

e2:E2
e1 ∩ e2

[.] Iverson bracket. 1 when the enclosed condition is true; otherwise, 0

data sequences [5]; where, a predicted instance is either correct or incorrect.
However, concepts in AR are durative; thus, a predicted concept can be correct
in one period, incorrect or partially correct in another one [26]. Accordingly, as
shown in Fig. 1, previously well-defined terms used in traditional systems such
as true positive (TP), false positive (FP), false negative (FN) are not suitable
for durative concepts [26].

However, it is often assumed that time-frame, event-based, or classifier per-
formance follows the whole system performance [4,5,22,23]. This assumption
neglects practical scenarios and may misleadingly present convincible results
(Sect. 2). Despite the importance of evaluating durative concepts, it is not well-
developed even in other areas. Still, there is no universally accepted formula for
evaluating the effectiveness of systems with durative concepts.

This paper proposes a novel mathematical method for evaluating different
properties of AR systems. It redefines TP, FP, and FN to consider various prop-
erties such as detection, total duration, relative duration, boundary alignment,
and uniformity between ground truth and predicted events. Therefore, confusion
matrix based metrics such as recall, precision, and f-score, can be calculated to
evaluate and compare different systems. Furthermore, it is simple, time-efficient,
extensible, and customizable. It also overcomes the limitations of existing meth-
ods. Although, it can select an appropriate algorithm for a new application by
prioritizing properties differently. The experiments show that our method can
outperform state-of-the-art methods with enhanced generalization capability.
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2 Preliminaries and Related Work

Evaluating the performance of AR systems is usually done by comparing pre-
dicted events (PEs) with the ground-truth events (GTEs) [16]. It can be viewed
as the matching of two time-series. However, it is not easy to determine the time
boundaries of ground truth labels perfectly; moreover, the distinction between
activities is not always clear [5]. Therefore, some decision functions accommodate
offsets using ambiguous range [10], fuzzy event boundaries [20], time series match-
ing techniques (such as dynamic time warping, longest common sub-sequences
[7]), or categorical probability distribution [9]; however, they fail to distinguish
different types of errors (e.g., fragmentation) [27]. Common approaches to eval-
uate AR systems include time-frame, event-based, and classifier performance
[12,17,23]. Time-frame based methods uses fixed period interval as atomic units
and facilitate comparing different AR algorithms since each frame is indepen-
dent of both the GTEs and PEs [12,17]. Nevertheless, the interpretation of errors
is not the same in different applications. Hence, each frame’s error is classified
to insertion (detection of an activity when nothing actually happened), overfill
(time before and after the occurrence time of an activity that is incorrectly iden-
tified as part of the activity), and merge (covering multiple GTEs by a single
PE) as sources of FP errors and deletion (failure to detect an activity), substitu-
tions (wrongly detected with another class), underfill (not detected duration at
the beginning and end of the activity), and fragmentation (detecting a GTE by
multiple PEs) as sources of FN errors [17]. Moreover, event based methods are
also essential to be considered as well as time-frame [27]. Event based errors are
categorized as insertion, deletion, fragmentation, merge and fragmented-merge
(occurrence of both merge and fragmentation errors) [27]. However, an expert
must do a time-consuming analysis of these massive and heterogeneous diagrams,
matrices, and information. Therefore, combining them as a scalar metric is com-
plex. Besides, These approaches also consider the total duration of positional
errors and do not provide an event-based tunable model for it.

From the behavior analysis perspective, evaluating each activity needs a dif-
ferent evaluation method [1]. e.g., duration sensitive activities need to be evalu-
ated differently from frequency sensitive ones. Timeliness is another metric used
for online and realtime prediction [24]. It is defined as the duration continuous
correct prediction of an activity without switching to an inaccurate prediction.
To compare different AR algorithms in a similar situation, a competition is held
and time frame f1-score, recognition delay, installation complexity, user accep-
tance, and interoperability are used as the evaluation criteria [8].

In sound event detection (SED) [4], video action detection [3], anomaly detec-
tion [26], and video abnormal event detection [11], etc., concepts are also dura-
tive. The IEEE Audio and Acoustic Signal Processing challenge [25] highlights
the need for an appropriate metric in SED. Still, researchers mainly used col-
lar, segment (time-frame based), and PSDS (polyphonic sound detection score)
methods [4,16]. However, they can not show the different sources of errors. Our
recent work dedicated to multimodal metrics in SED system [18] provides some
evaluation approaches depending on the hypothesis and constraints on SED
applications. National Institute of Standards and Technology (NIST) developed
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a challenge for detecting activities in video (ActEV) [3]. It firstly used false
alarms rate (instance based) and missed detections probability (instance based)
as evaluation metrics. However, In 2019, it uses time-frame method for calcu-
lating false alarm rate [3]. Other metrics in abnormal event detection in video
are false rejection rate, equal error rate, decidability index, receiver operating
characteristic curves, and area under the Curve [6,11]. However, equal error
rate can be misleading in the anomaly detection setting [15]. Numenta anomaly
benchmark [14] is designed to evaluate different anomaly detection algorithms.
It uses a scaled sigmoidal scoring function for the relative position of each detec-
tion; however, it ignores fragmented predictions. To resolve previously mentioned
issues, researchers in [26] redefine precision and recall for time-series (particu-
larly on anomaly detection). They need some functions to be explicitly defined
for a given application. Those functions are: γ (to consider fragmented events),
δ (to consider the positional relation between PE and GTE), overlap (the rate
of the correctly detected events (e.g., overlap(x, y,δ()) = T (x ∩ y)/T (x)), and α
which is a coefficient. They are formulated in Eq. (1) using notations of Table 1.

exist(e, X)=[e ∩ X �= ∅], score(e, X)=γ(e, X)× Σ
x∈X

overlap(e, e ∩ x, δ()), (1)

Recall=
1

|R|
∑

r∈R

α×exist(r, P) + (1−α)×score(r, P), Precision=
1

|P|
∑

p∈P

score(p, R)

Issues in [26] (Eq. (1)) are analysed deeply in the following:

1. It surprisingly ignores the α (coefficient) in calculating precision. Therefore,
it gives inconsistent weights to overlap function in calculating recall and
precision. Therefore, to prevent misled interpretation, they can not be used
as complementary (e.g., in calculating f1 score).

2. Fragmented PEs have significant positive score in precision. e.g., in Fig. 2, the
precision of (a) is much higher than (b). Similar situation happens for recall.

3. It normalizes the duration of events to avoid the duration impacts. Briefly,
the precision calculation is avg

p∈P
( TP

T (p)
) and the recall calculation is avg

r∈R
( TP

T (r)
).

This normalization looks well for a single PE and GTE; however, in total,
it gives different values for TP in recall and precision. Therefore, they are
not calculated in a similar mathematical model and they can not be used as
complementary (e.g., for f1-score). Equation (2) presents these calculations
for Fig. 2 (d).

Precision =
TP1
P1

+ TP2
P2

1 + 1
=

Σnormalized TPs based on PEs
Σnormalized PEs

(2)

Recall=
TP1
R1

+ TP2
R2

+ 0
R3

1 + 1 + 1
=

Σnormalized TPs based on GTEs
Σnormalized GTEs

4. Defining an appropriate cardinality function is complex. Furthermore, it is
difficult to adjust and tune this formula since the dependencies between car-
dinality, position, and overlap are not clear [10]. e.g., in Fig. 2 (c), the first
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Fig. 2. Example activities that help to
explain the drawbacks in [26].

Fig. 3. Evaluation of AR systems that
use different segmentation approach.

and second GTEs have the same recall (0.33) (using γ(e,X) = |e ∩ X|−1 as
suggested by authors). It is similar for calculating precision for merged PEs.

5. This approach can not be applied to duration-sensitive activities[1].
6. Adding a new property (e.g., total duration) is not straightforward.

Issue in classifier metrics is the inability to compare algorithms in a unified
space since AR systems may use various segmentation (windowing) algorithms.
Figure 3 is an illustration of two algorithms. Activity A1 is not detected in seg-
ments C1, T1 and T2. Thus, the classifier accuracy in the first approach is 50%
while it is 60% in the second one. Clearly, the difference in their performances
are due to the effects of the different segmentation procedures. Accordingly, it
may misleadingly present convincing results and it can not capture duration
specific properties, although it is widely used in several papers [5,7,13,19,23].
Time frame accuracy is more consistent metric [12]; however, it can not displays
different property of an AR system such as uniformity, detection of each event
or the boundary alignment. Additionally, a long event affect the whole result.

As a result, a new metric is needed to better evaluate AR algorithms while
paying attention to the peculiarities of the applications and activities.

3 Proposed Metric

An evaluation method should determine the different properties of AR algo-
rithms. We define a measurement (in terms of recall and precision) for each
property, and all together constitute our proposed metrics. A weighted combi-
nation of them can produce a scalar value, or they can be used collectively as
a multi-objective metric. Because of our approach’s modularity, it can be easily
extended to include a measurement for a new property. Our metric is based on
the following assumptions: 1- R and P are given as input. 2- Times in concepts
are durative and specified. 3- The acceptable time shift of PEs to be assumed as
detected is within the GTE range. i.e., PEs and GTEs are relevant when they
have some overlap. 4- Only a single activity class is exist. For multi-class cases,
all classes are evaluated individually as a positive class and the rest as a negative
one. This allows using different parameters for each activity class which is an
necessary feature for AR [1]. 5- One instance of an activity class occur at a time.

We use ground truths as references in the normalization process because
they are independent of predictions of different algorithms. Therefore, we cluster
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GTEs and PEs in such a way C={(r,ps)|r ∈ R∧ps={p∈P|r∩p �=∅}∧ps �= ∅}).
Orphan PEs are considered as C = {p ∈ P|p ∩ R = ∅}.

Each instance in the classical model is either correctly predicted or not (each
TP, FP or FN is either 0 or 1). However, in the durative model, a GTE may
be partially covered by positive PEs. Therefore, we allow partial value for TP,
FP, and FN. In the following, we present the properties which are drawn from
state-of-the-art and our formulas for measuring their values.

Detection (D) Property calculates the detection of a GTE even by a small
(at least θ [10]) PE (It checks for the existence of overlaps between PEs and
GTEs). A GTE is TP if it is detected at least once and is FN if it is not. PEs
that don’t have any intersection with any GTEs are considered as FP. This
property is useful in applications like alarm systems [26].

TPD =
∑

(r,ps):C

[
∑

p:ps

T (r ∩ p)

T (r)
> θtp

]
, FPD =

∑

(r,ps):C

[
∑

p:ps

T (p) − T (r ∩ p)

T (r)
> θfp

]
+ |C|

(3)

FND = |R| − TPD,

Therefore, a GTE is considered as TP when at least θtp fraction of it is cor-
rectly identified; otherwise, it will be considered as FN. FP counts not detected
PEs (|C|) plus the PEs which the rate of its wrong prediction part is higher than
θfp.

Uniformity (U) Property considers the detection of GTE by a single PE
instead of multiple fragmented ones. e.g., in a taking medicine event, detecting
two taking medicine events instead of one shows a disorder; therefore, the dura-
tion is not as important as the number of occurrences. Researchers in [26,27]
consider uniformity as an essential property; however, they do not formulate it.
Event analysis [27] leads us to consider a GTE as a TP if it is identified by only
one PE. In this case, all other PEs are considered as FP or FN.

TPU =
∑

(r,ps):C

[|ps ∩ R|=1] , FNU =
∑

(r,ps):C

[|ps ∩ R|>1] , FPU = |P| − |C|−TPU

(4)

Thus, the recognized GTEs are considered as TP if each is detected by one PE
and that PE does not identify any other GTEs; otherwise, they are considered
as FN. Similarly, a PE, that is neither TP nor orphan, is considered as FP.

Total Duration (T) Property is well-known and is similar to time-frame-
based methods. It divides the PEs and GTEs by their boundaries; therefore,
each frame is either TP, FP, FN, or TN [12].

TPT =
∑

(r,ps):C

T (r ∩ ps), FNT = T (R) − TPT
, FPT = T (P) − TPT

(5)
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Relative Duration (R) Property normalizes the duration of each event indi-
vidually to lessen the effect of varying durations of events.

TPR =
∑

(r,ps):C

T (r ∩ ps)
T (r)

, FPR =
∑

(r,ps):C

min(1,
∑

p:ps

T (p) − T (r ∩ p)
T (r)

),

FNR =|C| − TPR (6)

Consequently, TP (FN) is the sum of normalized durations of correctly detected
(incorrectly undetected) parts of GTEs. The FP calculation is similar; however,
FP of each cluster can not exceed 1.

Boundary Alignment (Bt) Property rewards TP when PEs GTE’s bound-
aries precisely match the boundaries of its related PEs; otherwise, it loses some
score by FN (underfill error1), or FP (overfill error (see footnote 1)) [27]. This
property concentrates only on the alignment error and is related to the needs
considered in [26,27]. The parameter t specifies the kind of alignment (start (Bs)
or end (Be)).

∀t :{start, end}: fn1(r,ps) = if ps �= ∅ then 1 − e−βt
underfillt(r,ps)

T (r) else 0

fp1(r,ps) = if ps �= ∅ then 1 − e−βt
overfillt(r,ps)

T (r) else 0

TPBt =
∑

(r,ps):C

max(0, 1 − fp1(r,ps) − fn1(r,ps))

FNBt =
∑

(r,ps):C

fn1(r,ps), FPBt =
∑

(r,ps):C

fp1(r,ps)

(7)

Accordingly, TP of each cluster is justified by the alignment error between
predictions and ground truths. In addition, errors increase exponentially
(adjustable with βt) by the distance between the boundaries of PEs and GTEs.
Increasing parameter βt gives more penalties to longer positional errors.

Precision, Recall, and F-Score are calculated using the following known for-
mula using TPs, FPs, and FNs that were defined earlier for each AR properties.

∀f ∈ {D, T, R, Bs, Be, U}: //Abbreviation of properties (8)

Recallf =
TPf

TPf + FNf
, Precisionf =

TPf

TPf+FPf , Ff
1 = 2

Precisionf .Recallf

Precisionf + Recallf

Computation Complexity of the presented formulas is O(|R| × |P |) because
elements of both sets of P and R are iterated. Since each element of R needs only
related P; the interval tree helps us to optimize it to O(|R|log|R| + |P |log|P |).
In the case that P and R are sorted by time, this complexity can be reduced to
O(|R| + |P |) by considering the time relationships of P and R.
1

overfillstart(r, ps)=max(0, start(r) − start(ps)) underfillstart(r, ps)=max(0,start(ps)−start(r))

overfillend(r, ps) = max(0, end(ps) − end(r)) underfillend(r, ps)=max(0, end(r) − end(ps)).
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4 Experimental Results

This section presents an experimental study of our metric. The first experiment
is done on small visualizable data. The second one compares two algorithms
in a real-world dataset. The parameters of each property of our metric are as
follows. The θtp, θfp are needed to have an appropriate detection property. In
this experiment, if a PE has any overlap with GTE (θtp = 0), we consider it as
TP; additionally, if an incorrect part of a PE is longer than the related GTE’s
duration (θfp = 1), we consider it as FP. We also use (βt = 2) to consider near
linear boundary error. The codes and datasets are existed in our repository at
https://github.com/modaresimr/AR-MME-EVAL.

Fig. 4. Ground truths and output of two algorithms used in [27].

Table 2. Details of our metric for algorithms of Fig. 4. The spider chart (right image)
shows the f1-score on each property for those algorithms.

Algorithm Alg.a Alg.b
Property recall precision f1 recall precision f1

detection 0.73 0.50 0.59 0.73 1.00 0.84
uniformity 0.75 0.43 0.55 0.62 0.83 0.71
total duration 0.78 0.77 0.77 0.84 0.90 0.87
relative duration 0.73 0.81 0.77 0.83 0.85 0.84
boundary start 0.81 0.93 0.86 0.87 0.84 0.85
boundary end 0.99 0.78 0.87 0.85 0.87 0.86

Our Proposed Metric on Small Data is explored in this experiment for
simplicity in visualization. This data contains a subset of 13 relations between
two intervals in Allen’s interval algebra [21]. This data and our metrics’ outputs
are illustrated on Fig. 4 and Table 2. Clearly, more PEs of Alg.a are incorrectly
predicted than Alg.b in Fig. 4, while the number of undetected GTEs is the same.
The precision and recall in detection measurement confirm this observation.
The uniformity of Alg.b is higher than Alg.a since most of the GTEs detected
with a single PE in Alg.b instead of multiple fragmented PEs. For the total
duration measurement, we can see that the correctly predicted time frames (TP)
in Alg.b are more than Alg.a, while it is inverse for the incorrect ones. The
relative duration normalizes events independently and applies the total duration
measurement. It shows Alg.b predict more part each recognized concept than
Alg.a. Since the concepts’ duration are similar, the total duration shows similar

https://github.com/modaresimr/AR-MME-EVAL
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result. In the boundary measurement, we can observe that almost all predictions
of Alg.a cover the end boundary of GTEs. Therefore, the end part of all GTEs
are well-detected (recall = 0.99); however, there are some part of predictions
after end of the GTE’s boundary that are incorrectly predicted (prediction =
0.78).

Our Proposed Metric on a Public Dataset is explored in this experiment.
We compare non-overlapping sliding time window of 30 s (SW)2 with Hierarchi-
cal Hidden Markov model (H-HMM) [2] to show how our metric works. WSU
CASAS Home1 dataset [13] that contains 32 sensors, 400,000 events and about
3000 durative concepts (activities) is used in this experiment. We use its first
20% for test and the remaining for training.3 Then we evaluate the effectiveness
of take medicine activity and the macro average of all classes.4 We compare [26]
and [27] metrics with ours. The classifier metric issues is discussed in Sect. 2.

Table 5 (b) shows that 50% of times, HHMM algorithm do not detect the
concepts and 29% of times it can not detect the start boundary while almost
none of its prediction is incorrect. For SW algorithm, it shows great performance
except around 16% of times the prediction is fragmented. However, our metric
(Table 3) shows this observation is not complete. Analysing the data shows
that the duration of 5% of concepts is equal to the others. Therefore, they
dominate the system’s quality when using the time frame metrics (e.g., Ward’s
time metrics) and classifier metrics5. Table 5(a) helps to understand more about
the predictions with event analysis perspective. It displays that 28% and 40% of
predictions in SW and HHMM algorithms are incorrectly predicted (in contrast
to the observation from Table 5(b)). However almost all of the concepts are
recognized by SW algorithm and nearly half of them are not recognized at all
in the HHMM algorithm. It also shows that the predicted concepts in both
HHMM and SW algorithm are mostly uniform (have few fragmented or merged
predictions). These observation is clearly shown in our detection and uniformity
property in Table 3. Our proposed metric also correctly shows the quality of
detecting the boundaries of concepts while Table 5 (b) display these information
totally. Since the duration of this class is much less than the total duration of this
dataset while this class constitutes 13% of concepts in this dataset, the last four
errors in Table 5 (b) are close to zero. Relative duration properties in Table 3
shows SW either recognize a whole ground truth concept (recall = 0.92) or does
not recognize the concept at all; however, its prediction exceed the boundaries
(precision < 0.6).

Table 4 shows the metric proposed in [26] with the different parameters. We
can observe that γ function, which considers fragmented and merged predictions,
has a small affect on the recall and precision. As it is observable from our uni-

2 We use feature extraction in [13] and three layers perceptron for classifier step.
3 The internal steps are not important since the concentration is on the metrics.
4 For saving the space, the analysis of other classes are existed in our repository.
5 If the used segmentation algorithm generates more segments for longer events which

is the case with the well-used sliding window method.
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Table 3. Our metric and the spider chart of f1 over two algorithms for one class.

Algorithm HHMM SW
Property recall precision f1 recall precision f1

detection 0.53 0.51 0.52 0.97 0.49 0.65
uniformity 0.95 0.97 0.96 0.86 0.89 0.88
total duration 0.19 0.32 0.24 0.80 0.41 0.55
relative duration 0.39 0.58 0.47 0.92 0.54 0.68
boundary start 0.70 0.63 0.66 1.00 0.48 0.65
boundary end 0.86 0.54 0.66 0.92 0.34 0.49

Table 4. Tatbul metric [26] with several parameters and its f1 chart for one class.

Algorithm HHMM SW
Parameter recall precis. f1 recall precis. f1

α=0, γ=1, δ=back 0.42 0.29 0.34 0.93 0.27 0.42
α=0, γ=1, δ=middle 0.39 0.37 0.38 0.92 0.36 0.52
α=0, γ=1, δ=front 0.37 0.37 0.37 0.92 0.34 0.50
α=0, γ=1, δ=flat 0.39 0.33 0.36 0.92 0.31 0.46
α=1, γ=1, δ=flat 0.53 0.33 0.41 0.97 0.31 0.47
α=0, γ=reci, δ=flat 0.39 0.33 0.36 0.92 0.30 0.45

Table 5. Ward’s proposed metrics for evaluating two algorithms for one class

(a) Event metrics HHMM SW (b) Time metrics HHMM SW

Deletions / |R| 0.47 0.03 True positive rate 0.19 0.80

Merged / |R| 0.03 0.13 Deletion rate 0.50 0

Fragmented / |R| 0 0.04 Fragmenting rate 0 0.16

Frag. and merged / |R| 0 0 Start underfill rate 0.29 0

Correct / |R| 0.51 0.80 End underfill rate 0.02 0.03

Insertions / |P | 0.40 0.28 1-false positive rate 1.00 1.00

Merging / |P | 0.02 0.05 Insertion rate 0 0

Fragmenting / |P | 0 0.06 Merge rate 0 0

Frag. and merging / |P | 0 0 Start overfill rate 0 0

Correct / |P | 0.58 0.61 End overfill rate 0 0

formity property in Table 3, we can see the predictions of both algorithms are
uniform but HHMM works better. This observation, can not be captured from
Tatbul’s metric. As analysed at the end of Sect. 2, the main issue of Tatbul’s met-
ric is that recall and precision are not calculated in similar model and can not be
used as complementary (e.g., changing α parameter has effect only on recall.).
Lastly, δ parameter in Table 4 is proposed by them to consider the boundary
alignment errors; however, changing that does not provide significant changes in
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Table 6. Macro average of all classes by our metric over two algorithms.

Algorithm HHMM (macro avg) SW (macro avg)
Property recall precision f1(m) recall precision f1(m)

detection 0.44 0.42 0.41 0.86 0.34 0.51
uniformity 0.98 0.92 0.95 0.97 0.85 0.9
total duration 0.31 0.46 0.34 0.58 0.4 0.48
relative duration 0.37 0.87 0.47 0.67 0.78 0.73
boundary start 0.8 0.92 0.82 0.92 0.83 0.85
boundary end 0.94 0.89 0.9 0.89 0.79 0.81

recall and precision while our boundary properties in (Table 3) clearly provide
the situation of predictions. This experiment ends with Table 6 that compares
the macro average of our metric across all classes of this dataset.

5 Conclusions

In general, activity events are durative in AR. Choosing an appropriate evalu-
ating metric is an essential step to compare AR systems. However, due to the
absence of an appropriate one, researchers often use time-frame, event-based, or
classifier performance, which can misleadingly present convincible performance
for an AR system. This paper proposes a new mathematical model to evaluate
AR algorithms which is expressive (by capturing several properties of AR algo-
rithm such as detection, total duration, relative duration, boundary alignment,
and uniformity), customizable (the adjustable parameters can support a wide
range of applications and can give more weights to some properties of AR algo-
rithms), extensible (adding a new property is straightforward and independent
of others). Although our method can give more meaningful information about
AR algorithms, its computation complexity remains linear on the size of predic-
tions and ground truths. Our metric has been tested on several datasets, and
its ability to measure different AR algorithm properties has been shown. One
exciting outcome of this formulation is the possibility to generate a profile (in
terms of properties) for each algorithm. Therefore, it can be used as a heuristic
for faster algorithm selection which will be explored more in future researches.
We are also interested in including fuzziness in our properties.
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Abstract. In the last years, we have witnessed the increasing usage of
machine learning technologies. In parallel, we have observed the raise
of quantum computing, a paradigm for computing making use of quan-
tum theory. Quantum computing can empower machine learning with
theoretical properties allowing to overcome the limitations of classical
computing. The translation of classical algorithms into their quantum
counter-part is not trivial and hides many difficulties. We illustrate and
implement alternatives for the quantum nearest neighbor classifier focus-
ing on the challenges related to data preparation and their effect on the
performance. We show that, with certain data preparation strategies,
quantum algorithms are comparable with the classic version, yet allow-
ing for a theoretical reduction of the complexity for distances calculation.

Keywords: Quantum KNN · Encodings · Quantum Machine Learning

1 Introduction

Machine Learning (ML) gained a lot of attention in the latest years due to its
effective usage in many applications [18]. These applications typically require
high performance in terms of accuracy and low computational time. Another
research field for which we have observed significant advancements is Quantum
Computing (QC) [11]. QC is the exploitation of properties of quantum states,
such as superposition and entanglement, to perform computation. The idea is
that with QC it is possible to solve certain problems substantially faster than
with classical computing. Nowadays, both ML and QC are playing a crucial
role in how society deals with information and data. Therefore, their combi-
nation seems something natural. Indeed, Quantum Machine Learning (QML)
summarizes approaches that use synergies between machine learning and quan-
tum computing [9].

Among existing QML approaches, we focus on those using QC to process
classical datasets [15]. They require a classical-quantum “interface” that is typi-
cally realized through ad-hoc data transformation procedures. These procedures
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13281, pp. 96–108, 2022.
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are designed according to the task that we want to solve and they can be different
depending on the structure of the circuits of the QML algorithm employed.

We focus here on the Quantum K-Nearest Neighbor (QKNN) algorithm.
The theoretical advantage of QKNN with respect to KNN is that QKNN can
calculate the distances between the test instance and all the records in the
training set at the same time. In the literature we can find various versions of
QKNN [1,3,8,13,14,16,20] implementing different distance functions and requir-
ing different data encoding. However, none of them allows to easily reproduce
the results to understand which are the pros and cons of the different quantum
circuits. In this paper, we clearly describe the quantum circuits implementing
two versions of QKNN that adopt different distance functions. We design the cir-
cuits responsible for the calculus of the distances and those responsible for storing
the data. We analyze all these circuits in detail by examining also their com-
plexity, and we empirically experiment with the different QKNN methods. Our
analysis illustrates the theoretical and empirical differences on various datasets.
In particular, we want to assess if the accuracy scores of QKNN solutions are
promising, and, thus, employable for real world tasks. The results show that,
with appropriate data encoding and training strategies, QKNN is comparable
or even better than the classic KNN. However, current technological limitations
do not allow to empirically reach the better theoretical complexity of QKNN.
Indeed, the experiments highlight that the challenges in the usage of QKNN lie
in the data preparation and its encoding.

2 Related Works

In the following, we review representative works on QKNN. We refer the reader
to [15] for a comprehensive overview on key concepts, ideas and QML algorithms.

In [16] is designed one of the first proposal of QKNN that relies on a
binary representation of the data combined with Hamming distance. The data
is encoded in the qubits according to the so called basis encoding. The overall
algorithm runs in polynomial time O(Tmn) where n is the number of features,
m is the number of training examples and T is the accuracy threshold. Another
QKNN based on Hamming distance and basis encoding is discussed in [13]. Here,
the features of the training and test instances are extracted, stored as bit vectors
and mapped to quantum ground states [11]. The differences between test sam-
ple and vectors of the training set are computed in quantum parallelism using
CNOT gates. Hamming distances are then computed, exploiting the addition
circuit proposed in [6]. The outcome is identified modifying the corresponding
ancilla qubit according to a distance threshold. The time cost is O(n3), with
n number of features. This evaluation does not take into account the cost of
the initial state preparation. Another QKNN based on Hamming distance has
been proposed in [8]. Hamming distances are computed as in [13]. Instead, the
selection of the nearest neighbor is performed through a quantum sub-algorithm
for searching the minimum of an unsorted integer sequence [5]. The overall time
complexity for a constant value of k and n � m, is O(

√
m log m), showing a

quadratic speedup over its classical counterpart.
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A QKNN encoding data using amplitude encoding is proposed in [14]. The
training and test data are stored in superposition using a number of qubits log-
arithmic in nm. Then, an Hadamard gate is applied to an ancilla qubit resulting
in an interference between each of the training data with the test data. Finally,
a conditional measurement allows to select the entries of the training set clos-
est to the test data. Another approach using amplitude encoding is presented
in [20] for s-sparse datasets, i.e., only s features are non-zero, while, an appli-
cation of QKNN based on amplitude encoding to image classification has been
presented in [3]. The QKNN in [1] employs a controlled swap and an Hadamard
on an ancilla qubit to statistically estimate the Fidelity, a distance measure cor-
responding to cosine similarity. In contrast with other approaches, the class label
is not encoded in qubits. Thus, the test data is labeled after a classic majority
voting. From the state-of-the-art it is clear that QKNN has valuable properties
that make it more efficient than classic KNN, at least from a theoretical perspec-
tive. However, most of the aforementioned work does not provide many details
about the quantum circuits nor about the data preprocessing needed to run the
QKNN algorithms. Our work, in addition to providing a deep comparison of the
performance of various QKNNs, clarifies various implementation aspects that
make different QKNN procedures reproducible and comparable.

3 Setting the Stage

A classification dataset D = 〈X,Y 〉 consists of a set X of m instances described
by n features, and a set Y of m labels yi ∈ N each assigned to an instance
x(i) ∈ X. Each label (or class) yi is chosen among l available labels in V , i.e.,
l = |V |. In ML, given a dataset D, the objective is to learn a function f that
assigns to an unseen instance x a label y, i.e., y = f(x) such that y = ŷ where
ŷ is the real class of x. Our objective is to show how this problem can be solved
with QML procedures modeling the well known K-Nearest Neighbor (KNN)
classifier [18]. We keep our paper self-contained by summarizing here the key
concepts necessary to comprehend our analytical proposal.

Classical KNN. KNN is a supervised ML algorithm implementing function
f . KNN takes as input a set of training examples D and the number of nearest
neighbors k. Then, it works as follows [18]. For each test example x, given a
distance function d, it computes the distance between x and all the instances in
D. Then it selects from D the k instances Dx ⊆ D having the smallest distance
from x, i.e., Dx are the nearest neighbors of x. Finally, it assigns to x a label
based on the majority class of the nearest neighbors. Despite being simple, KNN
can be characterized with many variants [18]. First, the parameter k controls
KNN sensitivity and can affect the classification outcome. In many applications
k = 1 is effectively adopted [16]. For 1NN the test instance is assigned the label
of the closest record in the training set. Second, the distance function d must
be selected. The most commonly used distances are the Euclidean distance for
continuous features, and the Hamming distance for categorical ones. Third, the
selection of the majority class can be weighted. KNN has a main weakness. Given
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a test instance x, KNN must calculate the distance between x and every record
in the training set. Thus, its computational complexity is O(nm). To reduce the
number of training records we can use centroids instead of real data. The test
instance x is compared with a small set of records representative for the classes of
the problem typically obtained by averaging the n dimensions. As an alternative,
KNN can refer to a sample D′ ⊂ D of instances randomly selected, with m′ < m
and m′ = |D′|. In any case, even though the number of training instances can
be reduced, KNN still requires to calculate m′ distances on n features. QKNN
can overcome this limitation calculating all the distances simultaneously.

Amplitude Encoding and Basis Encoding. We can encode information into
qubits in different ways [15]. We report here the two encoding for QKNN.
Amplitude encoding associates classical data with the amplitudes of a quantum
state. Given the normalized vector x = (x0, . . . , xn−1), we prepare the quantum
state |ψ〉 =

∑
j xj |j〉. If n is a power of two, it can be encoded in a quantum

state on exactly n̂ = log2 n qubits while shorter vectors must be padded with
zeros to reach a dimension which is a power of two. Amplitude encoding only
requires log(nm) qubits to encode a dataset with m records and n features.
Basis encoding associates a classical �-bit-string with a computational basis state
of an �-qubit system. For instance, the string 0011 is encoded as the basis state
|0011〉. In this way, if we use s bits to encode a feature, each n-feature record is
represented with � = n s bits. Thus, given a binary dataset X where each record
x(i) ∈ X is a binary string of the form x(i) = (x(i)

0 , . . . , x
(i)
�−1), we can prepare

a superposition of basis states |x(i)〉 where each qubit corresponds to a bit of
the binary input |X〉 = 1√

m

∑m−1
i=0 |x(i)〉. The amplitude vector of |X〉 has values

1/
√

m for basis states associated with a record of X, and zero otherwise. Since
the number of amplitudes 2� is larger than the number of nonzero amplitudes
m, basis encoding datasets generate sparse amplitude vectors.

Initial State Preparation. This step is required by both encodings to load
the data into the states |ψ〉 and |X〉, respectively. To preserve the advantages of
quantum algorithms, quantum state preparation should be performed efficiently.
A standard approach is proposed in [17]. A different one is based on the use
of Quantum Random Access Memory (QRAM) [10,12,19]. A QRAM has the
same three basic components as the RAM: a memory array, an address register,
and an output register. Address and output registers are composed of qubits
instead of bits, while the memory array can be either quantum or classical. The
Flip-Flop QRAM (FF-QRAM) proposed in [12] can read unsorted classical data
stored in memory cells, and superpose them in the computational basis states
with non-uniform probability amplitudes to create a specific input state for a
quantum algorithm. FF-QRAM allows to encode discrete or continuous classical
information as quantum bits or as probability amplitudes of a quantum state.
For amplitude encoding, the final state is obtained after a post-selection step.
For registering or updating classical data consisting of m entries, each with n
features, FF-QRAM requires O(mn) quantum operations.
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4 Quantum KNN Algorithms

Generally, all the QKNN procedures work on a single test instance. Indeed the
computation of the quantum circuits destroys the initial quantum states that
have to be re-prepared to classify a new test instance [14]. On the other hand,
there are two fundamental aspects for which QKNN algorithms can differ: (i)
the distance function used, and (ii) the data encoding. The choice of a distance
function highly impacts the data encoding.

Another aspect to address is that several QKNN approaches use k = 1, while
some other do not have a well-defined notion of k. This choice is mainly due to
the fact that (i) using k > 1 can require more computational resources, (ii) it is
not trivial to find the k closest instances and run a majority voting using quan-
tum circuits, (iii) distances are calculated in parallel among different instances.
Among the various QKNN implementations briefly discussed in Sect. 2, only [3]
and [1] allow to specifically set k > 1. However, in [1] the quantum circuit is
only used to calculate the distances. Therefore, the computation needed to iden-
tify the k nearest neighbors and the majority voting is performed with classic
calculus. In [3] the distances are moved from the amplitudes to the basis using
amplitude estimation [2], but the paper does not present enough details to repro-
duce the quantum circuit and the code used is not available. Hence, since our
goal is to observe the performance of a complete QML procedure, and to have
a completely reproducible research, we focus on k = 1 for the basis encoding
and to the distance with the closest class for amplitude encoding, and leave a
detailed analysis of QKNN with k > 1 for future studies. We highlight that,
independently from the distance function adopted and from the data encoding,
because of the limited computational resources available, it is not typically pos-
sible to exploit all the instances and features of a given dataset. Thus, in the
rest of paper, we denote by m′ ≤ m the number of training instances encoded
in the quantum circuit of QKNN, and with n′ ≤ n the number of features used.

QKNN with Amplitude Encoding. We describe here an implementation of
QKNN inspired by [14] that uses the Euclidean distance. We use aQKNN as a
short name for amplitude encoding-based QKNN.

Quantum Euclidean Distance. To compute the Euclidean distance d(δ, φ) of
two quantum states |δ〉, |φ〉 stored in a register D, we need to use an additional
ancilla qubit A that will be entangled with the two states |δ〉 and |φ〉: the state
|0〉A will be entangled with |δ〉, while |1〉A with |φ〉. This can be accomplished
by first applying an Hadamard gate on the ancilla, and then by loading in the
register D the two states conditioned on the ancilla: in the branch where the
ancilla is |0〉A we load |δ〉, and in the other branch we load |φ〉, as shown in Fig. 1.
After this step, the initial state |0〉A|00 · · · 0〉D becomes 1√

2
(|0〉A|δ〉D +|1〉A|φ〉D).

Finally, an Hadamard applied to the ancilla generates the state 1
2

(|0〉A(|δ〉D +
|φ〉D)+ |1〉A(|δ〉D −|φ〉D)

)
. The probability of measuring the ancilla in the state

|0〉A is given by pA = 1
4‖δ+φ‖22 that in turns corresponds to pA = 1− 1

4‖δ−φ‖22 =
1 − 1

4d(δ, φ), since δ and φ are unit vectors.
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Fig. 1. Circuit for the Euclidean distance. Fig. 2. Classif. with Euclidean distance.

Quantum Data Encoding. The quantum data encoding adopted to use the
Euclidean distance is done through Amplitude Encoding. In particular, we adopt
the FF-QRAM [12] to store the amplitude encoded values in the circuit. Given D
with m instances and a single feature, we need m̂ = log2(m) qubits denoted by
|a(i)〉 = |a(i)

0 a
(i)
1 . . . a

(i)
m̂−1〉 to address a specific instance i, where 0 ≤ i < m, and

an additional qubit |.〉R storing the feature value x(i) of instance i via amplitude
encoding. To avoid overloading the notation, we denote by |x(i)〉R the qubit
which amplitude-encodes the feature x(i). We model the FF-QRAM as:

QRAM(D) =
m−1∑

i=0

|a(i)〉|x(i)〉R, (1)

where |a〉 acts as a register index that identifies a given memory address.
To store the feature value x(i) in the amplitude of register R we first normalize

it in the range [−1, 1] and then perform a rotation of an angle θi = arcsin x(i)

around the Bloch Sphere −→y axis. Once applied the rotation R−→y (θi) along −→y we
retrieve the amplitude x(i) by post-selection of |x(i)〉R = cos θi|0〉R + sin θi|1〉R

on qubit |1〉R. We highlight that the FF-QRAM rotates (i.e., stores the feature
value x(i)) the same qubit |.〉R, but it does not overwrite the previous stored
value x(i−1) since the register index switched from |a(i−1)〉 to |a(i)〉. In some
sense, even if we are rotating the same qubit in register R, every time that the
register index switches, we are targeting a brand-new qubit.

To extend the FF-QRAM of Eq. 1 to handle more than one feature, we add a
“second level addressing” using additional qubits. If n is the number of features,
then n̂ = log2(n) qubits are needed to locate a given feature j, where 0≤j<n,
of a given instance i. We denote these qubits as |b(i)〉 = |b(i)0 b

(i)
1 . . . b

(i)
n̂−1〉. Also,

since we are dealing with training instances, we also need to load their class.
Thus, l̂ = log2(l) qubits are needed and |c(i)〉 = |c(i)0 c

(i)
1 . . . c

(i)

l̂−1
〉 is the class

index of the instance x(i), for 0≤i<m. Thus, we have

QRAM(D) =

m−1∑

i=0

n−1∑

j=0

|a(i)〉|c(i)〉|b(i)j 〉|x(i)
j 〉R. (2)
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Fig. 3. Quantum circuit computing Hamming Distance between |δ〉 and |φ〉.

As already observed, from a computational resources perspective it is typi-
cally difficult to simulate a training process of a QML algorithm over an entire
dataset D exploiting each feature. This is the reason why we decided to select a
subset m′ ≤ m training instances and n′ ≤ n feature of a given dataset D. Hence,
to be precise, we need to change the indexes of m and n in Eq. 2 to m′ and n′,
respectively. Then, the dataset D can be encoded into a quantum state which
has an amplitude vector of dimensions n′m′ that is constructed by concatenating
all the training inputs. It follows that the amplitude vector to represent training
and test inputs requires O(log2(n′) + log2(m′)) qubits.

Quantum Classification with Euclidean Distance. Given D, we want
to classify a test instance x exploiting quantum parallelism by means of the
quantum Euclidean distance. We denote as |a〉⊗m̂, |b〉⊗n̂ and |c〉⊗l̂ the regis-
ters exploited to amplitude encode the test instance and each of the training
instances. We use amplitude-encoding to load the test x and D. |x〉 and |ψ〉 are
the encode of x and of the superposition of D, respectively. Note that, for the
test instance x we encode a superposition of classes instead of a specific one. To
implement the Quantum Euclidean distance, we then need an additional ancilla
qubit with ground state |0〉A entangled with |x〉, and an excited state |1〉A entan-
gled with the superposition |ψ〉 of the training set. Finally, we apply the H-gate
to the ancilla, thus computing all Euclidean distances among x and D in just
one single shot as shown in Fig. 2. The post-selection of states with R = 1 and
A = 0 and the measure of register C allows to assign the class to x.

Indeed, measuring the ancilla in the state |0〉A produces a state with ampli-
tudes depending on the distances between the test vector and all the training
ones, so that a measure on C gives as most probable outcome the class of the
training instances closest to x. This method relates to KNN when setting k = m
and weighing the training instances by the distance measure [14]. The computa-
tional cost of aQKNN is O(m′n′) and is the same of the classic KNN. The cost
is dominated by the quantum encoding of the classical data. However, once the
data have been encoded, the classification is very fast as it consists in just two
Hadamard gates and conditional measurements.

QKNN with Basis Encoding. We use bQKNN to refer to QKNN using
Hamming distance and the basis encoding described in this section.
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Quantum Hamming Distance. The Hamming distance between two binary
strings δ and φ of equal length � is given by the number of positions at which
the two strings differ and can be evaluated by first computing the bitwise XOR
of the two strings and then counting the number of 1s in the obtained sequence.
The Hamming distance circuit thus consists in the following steps:

1. Base encode the two binary vectors δ and φ in the two registers |δ〉 and |φ〉.
2. Perform the bitwise XOR between |δ〉 and |φ〉 using CNOT gates. In fact,

CNOT(|δj〉, |φj〉) = |δj〉|δj ⊕ φj〉, for 0 ≤ j ≤ � − 1. Set |δj ⊕ φj〉 as |rj〉.
3. Counting the 1s in |r〉 = |r0〉, . . . , |r�−1〉 returns the Hamming distance. The

sum of the 1s in |r〉 is computed with the circuit discussed in [6] that takes
in input the register |r〉 and a register |d〉 of h = log2 �� qubits needed to
represent the sum of the 1s in the string r.

The steps above are summarized in Fig. 3 assuming � = 3 and h = 2 qubits.
With basis encoding the number m of records in the dataset D does not

impact in the encoding as all records are in superposition, while the number n
of features impacts on the representation. For this reason, it becomes crucial to
use less features than those available if we can use at most � qubits. Indeed,
if we reserve s bits for each feature, we need to reduce the number of features
from n to n′ s.t. n′ s ≤ �. Thus, before running bQKNN we have to compress
the information captured by the n features into � bits. We perform this task
following two different strategies. The first one consists in the discretization of
the numerical attributes through the Recursive Minimal Entropy Partitioning
(RMEP) method [4], if necessary preceded by a PCA run. The second strategy
consists in using a hash function preserving Hamming distance. In particular, we
adopt Locality-Sensitive Hashing (LSH) [7]. The problem with both RMEP and
LSH is that more instances can be associated to the same binary representation.

We overcome this limitation by removing binarized duplicate instances from
the training set, and adopting a majority voting to determine the class label.

Once the data have been encoded as binary strings, we can initialize the
quantum register via basis encoding following the strategy of [19]. In order to
memorize the m binary instances of length �, the quantum circuit requires 2�+1
qubits, logically organized as follows: an �-qubit register |x(i)〉 for the m binary
instances; a register |c(i)〉 of two control qubits used to determine which states
are affected by a particular operator; and an additional � − 1 garbage qubit
register used to implement Multi-Control Toffoli (MCT) gate with � control
qubits through a chain of � − 1 classical Toffoli gates. Observe that in the first
register there is one qubit for each bit in the instance to be stored, and therefore
any possible binary pattern can be represented appropriately flipping the qubits.

Quantum Classification with Hamming Distance. Given D, we want to
classify a test instance x by means of the Hamming distance [8]. First, we need
to prepare and load the dataset, eventually reducing the number of features
to n′. Once computed the superposition |X〉 of the m training instances as in
Eq. (1) in an �-qubit register, with � = n′ s, we base encode x in the register
|x〉 = |x0x1 . . . x�−1〉. We then compute the Hamming distances in one shot,
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exploiting quantum parallelism. After this step, the register |d〉 contains the
superposition of all the Hamming distances between the test instance x and
each training instance x(i). The last step is to find the training instance x(i)

minimizing the Hamming distance with x. This last problem can be depicted
as “searching the minimum of an unordered integer sequence” and it is detailed
in [8]. The class of x(i), is the bQKNN prediction.

The cost of the bQKNN is of order O(m′ � + � log2 � +
√

m′ log � log m′),
where the terms account for the initial state preparation, the Hamming distance
computation, and the computation of the instance with the minimum Hamming
distance from the test vector. The cost of the input preparation is linear in
the number of training instances and in the number of qubits. Again the most
expensive step is data preparation, and the algorithm will become competitive
only when the encoding of classical data will be done more efficiently.

5 Experiments

Experiments for QKNN are run both using a quantum simulator and (when pos-
sible) using the resources offered by IBM Quantum Experience1. We ran experi-
ments on three well-known open source datasets: iris, cancer, and mnist2. We
used 70% of the datasets for training and the remaining 30% for evaluation.

Due to limited computational resources, we cannot train QKNN algorithms
on the whole training set. Thus, we set as n′ ≤ n the number of features used by
aQKNN and as � ≤ n s the number of bits used by bQKNN. When possible, we
experiment with n′ = n. However, since this is typically not feasible, we perform
PCA [18] to work with n′ < n features. Moreover, still due to limited compu-
tational resources, we set the size of the training set as m′ ≤ m. For each test
instance x, we train the models with m′ = l · i for i ∈ [1, . . . , 32], where l = |V | is
the number of class labels. We select the m′ ≤ m training instances employing
two different strategies named sampling and prototypes, respectively. Inspired
by [1,16], for the sampling strategy we sample uniformly at random m′ training
instances. Since the selection is random, for each test record we repeat the clas-
sification at least 50 times using different samples of m′ training instances. We
report the results by averaging the measures observed over the various experi-
ments. For the prototypes strategy if i = 1 and m′ = l, then, like in [20], we use
a single prototypical instance for each class obtained as the average value for
each feature. If i > 1, then we use i prototypes for each class. We derive these
prototypes as the centroids returned by centroid-based clustering algorithms [18]
applied separately for each subset of instances belonging to the same class. We
exploit K-Means [18] for preparing the prototypes for the amplitude encoding
and K-Modes [18] for the binary encoding. To have a fair comparison we adopt
the same strategy for the experiments also with the classic KNN.
1 Python code available at: https://github.com/Brotherhood94/quantum knn. We

implemented QKNN using the qiskit library: https://qiskit.org/.
2 https://scikit-learn.org/stable. For mnist we focus on the task of classification

between “0” and “8”.

https://github.com/Brotherhood94/quantum_knn
https://qiskit.org/
https://scikit-learn.org/stable
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Fig. 4. Performance comparison in terms of accuracy on the iris dataset.

Results. We report the performance in terms of accuracy [18] for QKNN in the
amplitude (aQKNN) and basis (bQKNN) versions, compared with the classic
KNN for the Aer QASM quantum simulator of qiskit with 8192 shots. For
bQKNN we consider the two different data preparation approaches presented:
RMEP and LSH identified with -e and -h, respectively. All the methods are
evaluated with the same experimental setting varying the number of features n′

and the number of training instances m′.

Iris. In Fig. 4 we observe the performance for the iris dataset. We note that,
when considering less instances, the performance is markedly lower w.r.t. classic
KNN using the whole training set as illustrated with the red continuous line.
However, in the prototype setting with PCA and n′ = 2, KNN achieves accuracy
comparable with the accuracy on the whole training set for m′ ≤ 6. Also, we
observe that for iris the RMEP encoding has always better performance than
the LSH one. In all the plots is that aQKNN is on average half point under
KNN, but shows promising behavior. Indeed, for n′ = n = 4, i.e., when we are
exploiting all the available features, and thus no PCA is applied, aQKNN is even
better than KNN with m′ = 24 in the prototype setting. This is a signal that the
quantum circuit and the necessary data manipulation do not necessarily affect
too much the performance with respect to a classic setting. Also, when n′ = 2
using sampling we notice that bQKNN-e is comparable to KNN. This is probably
due also to the binary encoding that makes different instances collapsing into the
same representation. On the other hand, when n′ = 2 using prototypes bQKNN
methods have markedly lower performance than KNN and aQKNN. Finally, we
notice an improvement in the performance of bQKNN-h when m′ > 12. We
can conclude that, on some setting, depending on the data preparation, the
performance of QKNN and KNN can be comparable.

On the iris dataset we were also able to run experiments on a real quantum
machine. We run experiments on ibmq 16 melbourne, the one with the highest
number of qubits among those at our disposal, i.e. 15 qubits. Unfortunately, we
were only able to perform the experiment with n′ = 2, m′ = 2 in the prototype
setting. The performance are not extraordinary as we reached an accuracy of less
than 0.5 versus a score of about 0.6 obtained in the simulator. This is probably
due to the fact that the qiskit circuits run on the real machine, that does
not optimize for the quantum noise that can interfere during the calculus [16].
Probably, a re-ordering of the quantum wires would reduce real interference
bringing the performance close to those obtained with the simulator.
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Fig. 5. Performance comparison in terms of accuracy on the cancer dataset.

Fig. 6. Performance comparison in terms of accuracy on the mnist dataset.

Breast Cancer. In Fig. 5 we show the accuracy for cancer dataset. We notice
that the performance of quantum approaches are in line with those of the classic
one (red line). This is also probably due to the fact that for cancer we are
facing a binary classification problem. QKNN approaches are comparable and
even better than the classic KNN trained with comparable settings. Moreover, it
is clear from the plots using sampling strategy that when the number of training
instances m′ increases, then the accuracy of both aQKNN and bQKNN increases.
The bQKNN version seems better than the aQKNN one when using prototypes.
However, we were not able to run experiments for bQKNN with n′ > 4, while
the results for aQKNN are not reported due to lack of space. Differently from
the previous results, in these cases KNN is slightly better than aQKNN, but we
have an overall drops in the accuracy. Finally, as for iris, the performance of
bQKNN-e are markedly better than those of bQKNN-h.

Mnist. In Fig. 6 we show the accuracy for the mnist dataset. We report results
only for the sampling strategy as the prototype one, like for the datasets illus-
trated above, leads to worse accuracy scores. The first aspect that we notice is
that, when m′ > 16 there is a consistent drop in the performance of bQKNN.
As before, the LSH version of bQKNN has worse performance than the RMEP
one. When m′ < 16 the performance of the various algorithms are comparable
and both aQKNN and bQKNN reach the same level of KNN when m′ = 16
and n′ = 2. Thus, the dimensionality reduction adopted, i.e., the PCA, proba-
bly helps in identifying discriminating attributes. Results for n′ = 2 are slightly
better than n′ = 4 for aQKNN. Hence, probably the usage of more information
insert distortions into the amplitudes of the data used by aQKNN.
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6 Conclusion

We have presented in detail the similarities and differences between alternatives
for QKNN algorithms and we have experimented with them on different datasets.
Results are promising as they show that, exploiting quantum-parallelism, the
QKNN can theoretically overcome current state-of-the-art ML approaches. Also,
from an empirical perspective, the QKNN has comparable scores with respect to
classical KNN. In addition, due to limited computational resources, we had to
employ PCA on the features of the three datasets. In general, PCA seems to have
a positive impact on the classification tasks. However, it is important to remark
two aspects. First, QKNN has a lower complexity than KNN in calculating the
distances but requires a higher cost at data preparation time. Several future
research directions are possible. We would like to study the impact of QKNN
with different values of k. Also, we would like to analyze the complexity of the
data preparation. Finally, we would like to perform a similar analysis on other
QML algorithms such as SVM, or Neural Networks.
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Abstract. We present an attention-to-embedding framework that
explicitly addresses the challenge posed by multi-instance learning (MIL)
classification tasks, where learning objects are bags containing various
numbers of instances. Two key issues of this work are to extract rele-
vant information by determining the relationship between the bag and
its instances, and to embed the bag into a new feature space. To respond
to these problems, a network with the popular attention mechanism is
designed that assigns a new representation and a class probability vector
to a given instance in the bag. In addition, compared with the tradi-
tional MIL methods, we offer a new embedding function according to the
assigned results of instances to process the bag embedding that is unre-
lated to the distance metric. As a result, MIL challenges will be reduced
to single-instance learning (SIL) problems that can be solved using basic
machine learning algorithms such as SVM. Extensive experiments on
thirty-four data sets demonstrate that our proposed method has the
best overall performance over other state-of-the-art MIL methods. This
strategy, in particular, has a substantial advantage on web data sets
and better stability. Source codes are available at https://github.com/
InkiInki/AEMI.

Keywords: Attention · Embedding · Multi-instance learning ·
Network

1 Introduction

Multi-instance learning (MIL) was originally designed for drug activity prediction
[4]. In contrast to traditional single-instance learning (SIL), each object in MIL is
a bag containing various numbers of instances. A label is assigned to the bag, but
not to the individual instances. To date, MIL has also been frequently utilized in
a variety of applications, such as image classification [15], text categorization [14],
sentiment analysis [1], and web index recommendation [10].
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Over the years, many excellent algorithms for MIL classification tasks have
been proposed. Traditional MIL covers but is not limited to the following solu-
tions: a) Instance-based approaches calculate the bag label by predicting the
instance label and combining MIL assumptions [6]; b) Bag-based approaches
treat each bag as an atom and train a classifier based on bag-level metrics,
such as graph kernel [19] and isolation set-kernel [14]; and c) Embedding-based
approaches transform bags into a new feature space and establish the learning
process with SIL methods [13]. Neural network-based MIL can be categorized
into two types [11]: a) mi-Net uses an instance-level classifier to obtain the
instance probabilities. As a result, the bag label is derived using instance prob-
abilities and the convex max operator (or max operator); and b) MI-net builds
a fixed-length vector as the new representation of the bag and learns a bag-level
classifier directly to obtain the bag label.

Fig. 1. The overall framework of AEMI: a) The original bag Bi with a series of unla-
beled instances xij ; b) The attention-net for extracting instance information; and c)
The bag-level embedding is used to transform each bag into a new feature space. In
addition, d is the dimension; L, D, H and E are the number of nodes; C is the number
of classes; � and ⊕ are element-wise multiplication and addition, respectively; leij and
pij are the new representation and class probability vector of xij , respectively.

In this paper, we propose a new attention-to-embedding framework (AEMI)
to handle multi-instance learning classification tasks. Figure 1 shows the AEMI’s
overall framework, which innovatively combines the attention mechanism derived
from neural networks and the MIL embedding method. The first part is a sample
image that can be regarded as a bag, with each sub-area corresponding to one
of the bag’s instances. This part reflects the challenge that the neural network
must face when applied to MIL: The label of the image is known, but the label
of the instance contained within it is unknown. In the previous MIL neural
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network-based approaches, the relationship between instances and the bag is
commonly determined via pooling functions or attention coefficients. While in
our configuration, the embedding function needs to ensure that the embedded
bags can be distinguished.

Therefore, we provide an attention network whose input is the instance and
outputs are its new representation and class probability vector. By designing an
embedding function and controlling the size of the representation, each instance
can be embedded as a vector, and each bag can be transformed into the same
space by the arithmetic average of all embedded vectors, as shown in the third
part. As a result, any traditional SIL classifier can be employed to train a model.

The contributions of this work are summarized as follows:

– We convert MIL tasks into SIL ones by designing a framework that connects
MIL neural networks with the embedding method. This has the advantage
of alleviating the issue of neural network classification instability caused by
random parameter initialization.

– We design a network that is not reliant on the MIL pooling function and an
embedding function without distance metrics. Specifically, the class proba-
bility vector of each instance in the bag is introduced into the embedding
process to improve the distinguishability of embedding bags.

Experiments are undertaken on thirty-four MIL classification data sets to
quantify the performance of AEMI. These data sets come from a variety of fields,
including drug activity prediction, text classification, image classification tasks
and web index recommendation tasks. In most cases, the experimental results
show that AEMI outperforms state-of-the-art algorithms and has demonstrated
significant benefits on web data sets.

2 Related Work

In this section, we will briefly introduce the related work, including MIL attention
neural networks and embedding methods.

2.1 MIL Attention Neural Networks

The attention mechanism is commonly employed in deep learning for text anal-
ysis [2] or image recognition [5]. However, few studies have focused on the atten-
tion mechanism of MIL. Attention-net [8] incorporates interpretability into the
MIL method and increases its flexibility. Loss-attention [9] connects the atten-
tion mechanism with the loss function. Unlike prior techniques, we exclusively
employ neural networks to obtain the new representations and class probability
vector for each instance in the bag. Therefore, the network we designed does not
depend on the MIL pooling function, and its input is the instance assigned as
the corresponding bag label.
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2.2 MIL Embedding Methods

Multi-instance embedding methods’ core idea is to transform the bag into a
new feature space and train a model with traditional machine learning methods.
miFV [12] extracts information from the instance space using the Gaussian mix-
ture model and derives the embedded vector using the Fisher vector, while the
time complexity of this technique increases as the dimensionality of the data set
grows. MILDM [13] designs an instance evaluation function to select instances
with the most discriminativeness and builds a mapping pool to embed bags.
StableMIL [17] builds upon identifying a novel connection between MIL and
the potential outcome framework in causal effect estimation. The majority of
these methods rely on distance metrics, such as the bag-level average Haus-
dorff distance [16] and the bag-instance minimum distance [13]. However, the
adaptability of different distance measures to different types of data sets may
be completely different. Therefore, we design an embedding function by combin-
ing the instance’s new representation and probability vector derived from the
attention-net.

3 Methodology

In this section, we will first describe the preliminaries of the proposed AEMI
algorithm. Then, the attention-net and bag-level embedding are introduced as
part of AEMI. Finally, we have some discussions about this method.

Let B = {Bi}N
i=1 be a MIL data set with N bags, where Bi = {xij}ni

j=1 ∈ B
is a bag with ni instances, xij ∈ Bi, ni = |Bi| and d is the dimension. Let
Y = [y1, . . . , yN ] be the label vector corresponding B, where yi ∈ {1, . . . , C} is
the label of Bi and C is the number of classes. With the basic MIL assumption
[4], label yi is supposed that: a) Bi is labeled as c-th class iff it contains at least
one c-th class instance; and b) Bi contains an instance belonging to two or more
classes is impossible.

Our goal is to transform the MIL tasks into SIL ones by connecting the
attention-net with the bag-level embedding.

3.1 The Attention-Net

The core of MIL attention network [8] is to calculate an attention coefficient for
each instance xij :

αij = wT(tanh(V pT
ij) � sigmoid(UpT

ij)), (1)

where w ∈ R
L×1 and V ,U ∈ R

L×C are parameters of neural network, L is the
number of fully connected layer’s nodes, C is the number of classes, pij is the
class probability vector of the instance xij and � is element-wise multiplication.

To extract the information of xij and construct the embedding function, we
modify this mechanism to generate the attentional representation of xij ∈ Bi

ha
ij = softmax((tanh(hr

ijW
t) � sigmoid(hr

ijW
s))W o), (2)



Attention-to-Embedding Framework for Multi-instance Learning 113

where
hr

ij = relu(xijW
r), (3)

and W t,W s ∈ R
L×D, W o ∈ R

L×D and W r ∈ R
d×L are parameters of the

designed attention-net fψ(·), D is the number of nodes and d is the dimension.
In addition, ha

ij and hr
ij are merged into

hm
ij = ha

ij ⊕ hr
ij , (4)

where ⊕ is element-wise addition. To improve the information extraction capa-
bilities of the network, and get the new representation and class probability
vector of instance, we add the following fully connected layers:

lhij = sigmoid(hm
ijW

h),

leij = sigmoid(lhijW
e), (5)

pij = sigmoid(leijW
c),

where W h ∈ R
L×H , W e ∈ R

H×E , W c ∈ R
H×C , H and E are the number of

nodes.
Network fψ(·) will participate in the construction of the embedding function,

and the most basic requirement it needs to meet is to determine the class of xij .
Therefore, we set the input of fψ(·) to xij , and its label will be assigned as yi.
The benefits include the following: a) Instance label and bag label to ensure
uniformity; b) The training process is not affected by the bag structure; and
c) With appropriate modifications, most existing MIL neural networks can be
applied. Finally, we define the loss function as

� = −
N∑

i=1

ni∑

j=1

log
exp(pyi

ij )
∑

c exp(pc
ij)

, (6)

where pc
ij ∈ pij .

3.2 The Bag-Level Embedding

The embedding function is used to transform a bag into a new feature space,
and its general definition is as follows:

FB(Bi) �→ Bi = [d(B1,K1), . . . , d(B|K|,K|K|)], (7)

where K is a key sample set derived from the bag space B, Ki is the i-th sample of
K, and d(·, ·) is the distance between the bag and the key sample. By specifying
the size of K, the bag Bi can be embedded as a vector bi in the new feature
space.

One disadvantage of Eq. (7) is that the employed d(·, ·) has a significant impact
on embedding results. Therefore, by considering the probability distribution of
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instances in the bag, we design a new bag-level embedding without distance met-
rics as

FN (Bi) �→ bi =
1
ni

ni∑

j=1

FI(xij), (8)

where
FI(xij) =

∥∥C

c=1
pc

ijl
e
ij , (9)

where ‖ denotes concatenation. For example, for an input instance xij , we assume
that the corresponding outputs are pij = [0.8, 0.2] and leij = [0.4, 0.5]. As a
result, FI(xij) = [0.32, 0.4]‖[0.08, 0.1] = [0.32, 0.4, 0.08, 0.1]. The advantage of
this strategy is that the difference between the embedding results of the two
instances will be positively correlated with their class probability vectors.

Algorithm 1 presents the pseudo code of the AEMI algorithm. Line 1 gener-
ates the instance space X by collecting all instances of the data set B, and uses
it as the input to the attention-net fψ(·). Line 2 assigns the label of instance xij

as yi ∈ Y with the goal of allowing fψ(·) to distinguish as accurately as possible
the instances in different classes of bags. Line 3 generates a single-instance label
vector L and uses it to participate in the loss calculation. Line 4 trains fψ(·)
with these generations. Lines 5–9 embed each bag Bi into bi according to the
designed embedding function, and merge it into X.

Based on the set of embedding vector X and its corresponding label vector Y,
we can train a classification model M with a traditional single-instance classifier.

Algorithm 1. The AEMI algorithm
Input:

Data set B;
Label vector Y;

Output:
Single-instance classifier M;
The trained neural network fψ(·);

1: X = {xij |i ∈ [1..N ], j ∈ [1..ni]}, where xij ∈ Bi ∈ B, N = |B| and ni = |Bi|;
2: Assign the label of instance xij as yi, where yi ∈ Y is the label of Bi;
3: Generate the single-instance label vector L by collecting all the assigned instance

labels;
4: Train a neural network fψ(·) with X and L;
5: X = ∅;
6: for (i ∈ [1..N ]) do
7: Embed bag Bi into bi according to Eq. (8) with fψ(·);
8: X ← X ∪ {bi};
9: end for

10: Train a single-instance classifier M with X and Y;
11: Output M and fψ(·);
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Proposition 1. The time complexity of Algorithm 1 is O(εdn), where ε, d,
and n are the number of epochs, dimensions, and total instances in all bags,
respectively.

Proof. Let the number of bags be N . The instance space X and its corresponding
label vector L are generated in Lines 1–3. Their time complexity is O(n). In Line
4, the training of neural network costs O(εdn). Lines 5–9 embed each bag into a
new feature space, which costs O(dn). Line 10 trains a single-instance classifier,
which costs O(EN). Generally, we have E < d and N � n. Therefore, the total
time complexity of AEMI is O(εdn).

3.3 Scheme Analysis

The following are two characteristics of the designed attention-net: a) Adaptabil-
ity: The structure of this attention-net is adaptively adjusted according to the
size of the data set, i.e., any dimensional instance can be represented in a vec-
tor. To put it another way, this network can function normally with the default
parameter settings; and b) Interpretability: Ideally, ∀xij ∈ Bi, yi = c, pc

ij ≥ pk
ij ,

where k ∈ [1..C]. Therefore, our goal is to construct an embedding function with
higher distinguishability by making the training results of the designed network
fit this state as much as possible.

By combining embedding-based approaches with neural networks, the AEMI
algorithm is designed to transform MIL tasks to the SIL ones. With this algo-
rithm, each bag Bi can be embedded as a vector bi ∈ R

CE in the new feature
space. According to embedding results, we may encounter such a dilemma. When
CE ≥ d, where d is the dimension, the increased dimensionality of the embed-
ding vector may cause some noise.

4 Experiments

In this section, we will firstly describe the used data sets and the comparison
algorithms. Then, the AEMI algorithm is put to the test in comparison against
seven state-of-the-art approaches in a series of experiments.

4.1 Data Sets

We conducted experiments on four types of MIL data sets: Drug activity pre-
diction, text classification, image classification data sets, and web index recom-
mendation data sets. All of these data sets can be found at https://blog.csdn.
net/weixin 44575152/article/details/104769348.

Drug Activity Prediction. The benchmark data sets musk1 and musk2 are
commonly used in drug activity prediction tasks [4]. Its goal is to predict whether
a new molecule can be used to make a drug. In the MIL domain, a musk molecule
is represented as a bag with a variable number of 166-dimensional instances.
According to the basic MIL assumption, a molecule is positive iff it possesses at
least one instance that can be used to make a drug; otherwise negative.

https://blog.csdn.net/weixin_44575152/article/details/104769348
https://blog.csdn.net/weixin_44575152/article/details/104769348
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Text Categorization. To conduct experiments, we employed ten text data
sets derived from the Newsgroups corpus. Each data set contains 50 positive
and 50 negative bags. Each positive bag contains 3% of posts from the specified
positive class and the rest from other classes, whereas instances of negative bags
are randomly drawn from the non-main class. Each instance is also represented
by a 200-dimensional TFIDF feature.

Image Classification. Corel with 100 categories is a famous database for the
image classification task [3]. Each category contains 100 images in JPG format
with a shape of 187 × 126 or 126 × 187. Elephant and tiger are from the Corel
database, and all of them have been preprocessed by the Blobworld bag gener-
ator. To consider a more challenging scenario, we built ten mnist-bag data sets
with the mnist classification data set. Take mnist0 as an example. The gener-
ation details are as follows: a) Set the number of positive and other class bags
to 100; b) Set the minimum and maximum size of bags to 10 and 50, respec-
tively; c) Set the minimum and maximum number of the positive instances in
the positive bag to 2 and 8, respectively; d) Each positive instance is an image
randomly selected from the 0-th class of the mnist data set, while the other
instance is from the other classes; and e) The selected image will be stretched as
a 786-dimensional instance. The random seed of the generating algorithm will
be fixed for experimental fairness.

Web Index Recommendation. The purpose of web index recommendation
is to recommend interesting web page indexes to particular users. Each of the
nine sub data sets in the web data set corresponds to a user’s evaluation of a
web page [18]. Each web page serves as a bag and links on the page serves as
instances. Since web page processing is connected to word frequency, web data
sets have high-dimensionality and sparsity.

4.2 Comparative Algorithms

As a comparison, we employed seven start-of-the-art MIL classification algo-
rithms listed below: a) BAMIC [16] and miVLAD [12] use the clustered centers
of bag- and instance-level kMeans as key samples, respectively; b) miFV [12] uses
the Gaussian mixture model to extract information of the data set; c) MILDM
[13] selects the key samples with the discriminative instance evaluation criterion;
d) MILFM [7] treats all instances of positive bags and the clustered centers of
other bags as key samples; and e) Attention-net [8] and loss-attention [9] are two
popular MIL networks. Table 1 shows the parameter settings for AEMI and the
above algorithms.
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Table 1. Parameter settings.

Algorithm Parameter Setting

AEMI Epoch for musk, elephant and tiger 100

Epoch for others 5

Learning rate 0.001

Number of nodes E Number of bags N

BAMIC Number of clustering centers N

Distance metric Average Hausdorff with Euclidean distance [16]

miFV Components of Gaussian mixture model 1

miVLAD Size of Code book 1

MILDM Distance metric Bag-instance maximum distance [13] with gamma 1

Instance selection mode Global

Number of discriminative instances N

MILFM Number of clustering centers 50

Distance metric Same as MILDM

Attention-net Epoch and Learning rate Same as AEMI

Loss-attention Epoch Same as AEMI

Learning rate 0.0001

4.3 Experimental Results

Tables 2 shows the experimental results of the AEMI and seven rival algorithms
based on three SIL classifier kNN, SVM and J48. The best accuracy value for
each data set is highlighted with “•”. Average (d < 1000/d ≥ 1000) denotes
the average classification performance across data sets in the specified dimen-
sion range. The results demonstrate that the AEMI algorithm has a significant
advantage on web recommendation and the mnist data sets. Specifically, the
accuracy of AEMI is about 10% greater than that of competing methods on
some data sets, such as mnist9 and web4, and the average ones are 3.6% than
in second place and 30.4% than in penultimate place when d < 1000. The fol-
lowing reasons may apply: a) The proposed attention-net can effectively extract
information from web data sets and generate the new representation and class
probability vector for instances; and b) The embedding mechanism converts the
bag into the new feature space while preserving as much information as possible.

Furthermore, some results necessitate further care. a) On the text categoriza-
tion data sets, AEMI achieves a moderate outcome, while BAMIC, miFV, and
miVLAD get relatively large advantages. For example, miFV has a considerable
edge on the news.mf data set. The reason for this could be that the Gaussian
mixture model of miFV can effectively mine the information of this type of data
sets. While the news.mf’s embedding results of AEMI may contain some noise;
and b) MILDM and MILFM have inadequate impacts on text and web data
sets. All three methods find key instances in the specified instance space. Take
the “flower”/“other” images as an example, the number of “flower”-instances is
usually less than the number of “other”-instances. As a result, these selected key
instances may not be “key”.



118 M. Yang et al.

Table 2. Performance comparison between AEMI and rival algorithms. Experiments
were run 5 times 10CV and an average of the classification accuracy (± the standard
deviation) is reported.

Data set (d) BAMIC miFV miVLAD MILDM MILFM Attention-net Loss-attention AEMI

Musk1 (166) 0.891 ± 0.011 0.920 ± 0.008• 0.847 ± 0.011 0.824 ± 0.025 0.871 ± 0.005 0.884 ± 0.022 0.890 ± 0.020 0.867 ± 0.019

Musk2 (166) 0.860 ± 0.011• 0.848 ± 0.015 0.780 ± 0.054 0.826 ± 0.016 0.822 ± 0.035 0.822 ± 0.047 0.848 ± 0.019 0.804 ± 0.010

News.aa (200) 0.852 ± 0.010 0.834 ± 0.016 0.836 ± 0.027 0.510 ± 0.050 0.510 ± 0.000 0.862 ± 0.019 0.874 ± 0.016• 0.808 ± 0.023

News.cg (200) 0.812 ± 0.004• 0.802 ± 0.008 0.790 ± 0.014 0.526 ± 0.052 0.504 ± 0.010 0.610 ± 0.017 0.644 ± 0.033 0.782 ± 0.016

News.mf (200) 0.696 ± 0.019 0.736 ± 0.016• 0.716 ± 0.029 0.488 ± 0.037 0.510 ± 0.006 0.666 ± 0.022 0.716 ± 0.032 0.676 ± 0.037

News.rm (200) 0.808 ± 0.016 0.877 ± 0.020• 0.812 ± 0.016 0.546 ± 0.041 0.530 ± 0.026 0.854 ± 0.021 0.871 ± 0.026 0.818 ± 0.013

News.rsh (200) 0.828 ± 0.010 0.884 ± 0.010 0.894 ± 0.010 0.442 ± 0.021 0.500 ± 0.000 0.872 ± 0.005 0.914 ± 0.012• 0.884 ± 0.022

News.sc (200) 0.774 ± 0.010 0.750 ± 0.018 0.818 ± 0.023• 0.518 ± 0.042 0.512 ± 0.004 0.780 ± 0.014 0.802 ± 0.036 0.800 ± 0.026

News.se (200) 0.938 ± 0.004• 0.926 ± 0.005 0.918 ± 0.008 0.574 ± 0.061 0.530 ± 0.000 0.554 ± 0.010 0.572 ± 0.036 0.864 ± 0.014

News.tpmd (200) 0.830 ± 0.000 0.799 ± 0.016 0.832 ± 0.015 0.554 ± 0.019 0.554 ± 0.048 0.836 ± 0.016 0.844 ± 0.012• 0.788 ± 0.033

News.tpmi (200) 0.690 ± 0.011 0.752 ± 0.015 0.766 ± 0.015• 0.482 ± 0.037 0.506 ± 0.005 0.720 ± 0.013 0.482 ± 0.022 0.710 ± 0.011

News.trm (200) 0.728 ± 0.008 0.740 ± 0.014 0.786 ± 0.022• 0.466 ± 0.048 0.510 ± 0.011 0.606 ± 0.060 0.514 ± 0.064 0.720 ± 0.026

Elephant (230) 0.762 ± 0.012 0.852 ± 0.013 0.853 ± 0.010 0.765 ± 0.022 0.817 ± 0.023 0.848 ± 0.014 0.872 ± 0.005 0.875 ± 0.010•
Tiger (230) 0.704 ± 0.011 0.789 ± 0.006 0.843 ± 0.008• 0.692 ± 0.008 0.754 ± 0.006 0.810 ± 0.031 0.819 ± 0.011 0.814 ± 0.009

Mnist0 (786) 0.913 ± 0.018 0.820 ± 0.009 0.873 ± 0.002 0.484 ± 0.015 0.507 ± 0.002 0.979 ± 0.005 0.995 ± 0.003• 0.985 ± 0.010

Mnist1 (786) 0.978 ± 0.004 0.724 ± 0.013 0.845 ± 0.013 0.803 ± 0.012 0.975 ± 0.006 0.873 ± 0.146 0.992 ± 0.004• 0.980 ± 0.003

Mnist2 (786) 0.773 ± 0.021 0.858 ± 0.009 0.910 ± 0.008 0.462 ± 0.008 0.496 ± 0.028 0.959 ± 0.019 0.966 ± 0.005 0.973 ± 0.005•
Mnist3 (786) 0.865 ± 0.015 0.787 ± 0.005 0.863 ± 0.004 0.556 ± 0.009 0.580 ± 0.024 0.940 ± 0.006 0.942 ± 0.019 0.956 ± 0.006•
Mnist4 (786) 0.855 ± 0.006 0.757 ± 0.011 0.810 ± 0.017 0.451 ± 0.012 0.520 ± 0.034 0.931 ± 0.014 0.896 ± 0.024 0.937 ± 0.011•
Mnist5 (786) 0.759 ± 0.023 0.759 ± 0.016 0.831 ± 0.009 0.487 ± 0.028 0.496 ± 0.008 0.922 ± 0.020 0.838 ± 0.039 0.964 ± 0.006•
Mnist6 (786) 0.914 ± 0.006 0.837 ± 0.017 0.852 ± 0.007 0.466 ± 0.026 0.460 ± 0.034 0.927 ± 0.037 0.963 ± 0.007• 0.959 ± 0.006

Mnist7 (786) 0.908 ± 0.012 0.859 ± 0.013 0.855 ± 0.006 0.530 ± 0.027 0.629 ± 0.037 0.986 ± 0.004• 0.974 ± 0.004 0.975 ± 0.008

Mnist8 (786) 0.786 ± 0.035 0.731 ± 0.020 0.808 ± 0.005 0.494 ± 0.021 0.507 ± 0.002 0.879 ± 0.035 0.749 ± 0.062 0.926 ± 0.014•
Mnist9 (786) 0.837 ± 0.017 0.742 ± 0.017 0.797 ± 0.005 0.583 ± 0.023 0.516 ± 0.017 0.845 ± 0.010 0.771 ± 0.048 0.958 ± 0.005•
Web1 (5863) 0.844 ± 0.016• 0.838 ± 0.007 0.813 ± 0.018 0.838 ± 0.007 0.824 ± 0.012 0.811 ± 0.015 0.811 ± 0.140 0.809 ± 0.013

Web2 (6519) 0.806 ± 0.024 0.826 ± 0.007 0.818 ± 0.013 0.833 ± 0.009 0.820 ± 0.023 0.807 ± 0.019 0.820 ± 0.006 0.838 ± 0.018•
Web3 (6306) 0.815 ± 0.024 0.826 ± 0.009 0.827 ± 0.012• 0.826 ± 0.007 0.815 ± 0.020 0.813 ± 0.009 0.813 ± 0.007 0.813 ± 0.023

Web4 (6059) 0.765 ± 0.004 0.807 ± 0.012 0.844 ± 0.015 0.806 ± 0.015 0.804 ± 0.020 0.844 ± 0.027 0.785 ± 0.009 0.916 ± 0.011•
Web5 (6407) 0.789 ± 0.004 0.782 ± 0.061 0.822 ± 0.014 0.787 ± 0.021 0.781 ± 0.011 0.822 ± 0.015 0.776 ± 0.011 0.895 ± 0.009•
Web6 (6417) 0.809 ± 0.019 0.778 ± 0.005 0.847 ± 0.016 0.846 ± 0.021 0.816 ± 0.022 0.811 ± 0.020 0.782 ± 0.005 0.920 ± 0.012•
Web7 (6450) 0.558 ± 0.016 0.687 ± 0.030 0.742 ± 0.012 0.602 ± 0.037 0.566 ± 0.018 0.713 ± 0.021 0.485 ± 0.031 0.786 ± 0.019•
Web8 (5999) 0.504 ± 0.032 0.706 ± 0.021 0.727 ± 0.021 0.544 ± 0.016 0.576 ± 0.032 0.713 ± 0.012 0.466 ± 0.050 0.806 ± 0.024•
Web9 (6279) 0.500 ± 0.015 0.753 ± 0.022 0.758 ± 0.021 0.551 ± 0.021 0.591 ± 0.021 0.724 ± 0.039 0.503 ± 0.021 0.809 ± 0.026•
Average (d < 1000) 0.823 ± 0.012 0.808 ± 0.013 0.831 ± 0.014 0.564 ± 0.028 0.588 ± 0.015 0.832 ± 0.025 0.823 ± 0.023 0.868 ± 0.014•
Average (d ≥ 1000) 0.710 ± 0.017 0.778 ± 0.019 0.800 ± 0.016 0.737 ± 0.017 0.733 ± 0.020 0.784 ± 0.020 0.693 ± 0.031 0.844 ± 0.017•

Table 3 shows the comparison results of the maximum and minimum clas-
sification accuracy of the AEMI algorithm and an attention network method.
The terms “net” represents the gate-attention network [8] used for comparison
and “our” denotes specifically to the comparison of AEMI’s SVM classification
results. The symbol �/� means that the difference between the maximum value
minus the minimum value is greater than or equal to 0.05/0.1. The results show
that AEMI can alleviate the instability of the neural network caused by param-
eter initialization without reducing the classification performance. In the mnist2
data set, for example, the net method’s accuracy varies by 37.5%, while ours
varies by only 1%.
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Table 3. Performance comparison between AEMI and gate-attention network. Exper-
iments were run 5 times 10CV and minimum/maximum of the classification accuracy
(± the standard deviation) is reported.

Data set Net (Min) Net (Max) Our (Min) Our (Max)

Mnist0 	0.915 	0.970 0.970 0.995

Mnist1 �0.585 �0.960 0.975 0.985

Mnist2 0.940 0.950 0.965 0.980

Mnist3 0.935 0.980 0.955 0.965

Mnist4 	0.895 	0.945 0.920 0.950

Mnist5 �0.860 �0.960 0.955 0.970

Mnist6 �0.775 �0.960 0.950 0.965

Mnist7 0.975 0.990 0.965 0.985

Mnist8 0.875 0.915 0.910 0.945

Mnist9 	0.820 	0.870 0.950 0.960

Web1 0.800 0.846 0.791 0.827

Web2 0.773 0.818 	0.809 	0.864

Web3 0.800 0.836 	0.791 	0.855

Web4 	0.818 	0.873 0.900 0.927

Web5 	0.773 	0.855 0.882 0.900

Web6 	0.791 	0.855 0.900 0.927

Web7 0.700 0.746 0.764 0.809

Web8 0.709 0.745 	0.764 	0.836

Web9 	0.682 	0.736 	0.773 	0.846

5 Conclusion and Further Work

We propose the AEMI algorithm to train an attention-net based on the rela-
tionship between the bag and its instances, and use an embedding function to
transform MIL tasks into SIL ones. The experimental results of studies prove
that AEMI is superior to state-of-the-art MIL classification methods, has signif-
icant advantages, especially on web data sets, and has relatively stable classifi-
cation performance. In addition, the majority of the rival MIL methods perform
poorly on MIL web recommendation and mnist, and the neural network-based
methods’ outcomes of successive experiments may be substantially different due
to the random setting of the parameter initialization.

The following topics deserve further investigation:

– More flexible embedding functions. Web data sets with thousands of features
can be effectively reduced in dimensionality using the proposed embedding
function. However, this may increase the dimensionality of these relatively
low-dimensional data sets after embedding. As a result, these may be a factor
in their moderate performance on some data sets, such as musk1 and tiger.
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– More efficient neural networks. On most data sets, the designed attention-net
only requires 5 epochs of training to achieve good results, but on few data
sets like musk1, it requires more epochs. Some details are shown in Table 1.
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Abstract. Multi-instance learning (MIL) handles complex structured
data represented by bags and their instances. MIL embedded algorithms
based on representative instance selection transform bags into a single-
instance space. However, they may select weak representative instances
due to the ignorance of the internal bag structure. In this paper, we pro-
pose the multi-instance embedding learning through high-level instance
selection (MIHI) algorithm with two techniques. The fast bag-inside
instance selection technique obtains instance prototypes of each bag. It
fully utilizes the bag information using our new density and affinity met-
rics. Based on the instance prototypes, the high-level instance selection
technique chooses instances using the peak density metric. It obtains
high-level instances with higher representative power than the instance
prototypes. Experiments were conducted on six learning tasks and nine
comparison algorithms. The results confirmed that MIHI achieved bet-
ter performance in terms of efficiency and classification accuracy. This
method, in particular, has a substantial advantage in image retrieval and
web data sets.

Keywords: Embedding · High-level instance · Instance selection ·
Multi-instance learning

1 Introduction

Compared with traditional single-instance learning (SIL), multi-instance learn-
ing (MIL) is the study of bags containing multiple instances. Taking the drug
activity prediction as an example, molecules and their isomers are viewed as bags
and instances, respectively. The task is to predict whether the new molecule is
suitable for making drugs. A molecule is positive if at least one of its isomers
can be used to make drugs, otherwise it is negative. Furthermore, multi-instance
problems are common in real-world application scenarios, such as image retrieval
[2], text classification [21], and web index recommendation [14].

In recent years, many embedded MIL algorithms based on instance proto-
types have been widely proposed. Their common strategies tend to perform clus-
tering in the entire instance space to select instance prototypes [10,15]. MILFM
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Negative bag

Step 1: select instance prototypes 

Step 2: select high-level  instances

Our method
(a)(a) (b)(b)

Traditional method

Fig. 1. The main framework of MIHI is compared with traditional methods. Traditional
methods usually use clustering algorithms to select instance prototypes in the entire
data space. Our method first selects the instance prototypes from the bag, and then
selects the high-level instances from the instance prototypes.

[10] first selects instance prototypes in the entire instance space, and selects
cluster instances from the negative bags. CMIL [9] only divides the instances of
the positive bag into multiple clusters, and selects the instances with the high
score in each cluster as the instance prototypes. However, two dilemmas will be
encountered: 1) The cardinality of the instance space is much larger than that of
the bag space; and 2) The number of negative instances is far greater than that
of positive instances. As a result, the classification effectiveness may be reduced.
Figure 1 shows an example of tiger image classification task. In subgraphs (a)
and (b), there are tigers, grass and water. In subgraphs (c) and (d), there are
only grass and water. Obviously, grass and water occupy a large proportion of
the entire feature space. The instances prototypes chosen by traditional methods
are more likely to be grass and water than tigers. However, the selected instances
have weak representativeness due to ignoring the internal structure of the bag.
Therefore, the selection of highly representative instance prototypes is the key
to the embedded MIL algorithms.

In this paper, we propose the multi-instance embedding learning through
high-level instance selection (MIHI) algorithm to handle these issues with two
techniques. Figure 1 shows the main framework of MIHI. The goal is to select
high-level instances with strong representativeness. In Step 1, the fast bag-inside
instance selection technique is designed to select instance prototypes from each
bag. This technique takes into account the density and affinity of instances in the
bag. The instance prototypes highlight the bag’s internal structure information.
Accordingly, the high-level instance selection technique chooses global represen-
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tative instances. For each instance prototype, we calculate its local density and
the minimum distance from higher-density prototypes. Then the instance proto-
types with peak density are identified as the high-level instances. Experiments
on six learning tasks confirmed the effectiveness of MIHI in terms of efficiency
and classification accuracy. The main contributions of our work are:

– We propose a fast bag-inside instance selection technique, which can
effectively exploit the structure information of the bag. By using new density
and affinity metrics, the instance prototypes of the bag are found.

– We propose a high-level instance selection technique based on instance proto-
types. Through peak density metric, the high-level instances have more rep-
resentative power than other prototypes.

2 Related Work

MIL was first proposed in the study of drug activity prediction [7]. After that,
many MIL algorithms have been proposed. They are mainly divided into two cat-
egories: 1) Basic methods predict the bag label based on the structural charac-
teristics of bag [21] or instance [8] spaces; and 2) Embedding methods transform
MIL into SIL based on representative samples [3,17].

The basic methods mainly handle MIL problems by designing a bag-level
kernel. mi-SVM and MI-SVM [2] treat bags as samples and use support vec-
tor machines to handle problems. mi-SVM tries to identify the maximum edge
hyperplane for the instances. Its constraint is that at least one instance of each
positive bag is located in the positive half space. MI-SVM treats the edge of the
most positive instance as the edge of the bag. The purpose is to identify the max-
imum edge hyperplane of the bag. miGraph [21] proposes an effective bag-level
kernel through the affinity matrix. However, it only focuses on the relationship
between bags and fails to extract instance-level information.

The bag embedding methods deal with MIL problems by transforming the
space. DD-SVM [4] learns a set of instance prototypes by using Diverse Density.
Then the bags are embedded into the new feature space based on the instance
prototypes. MILES [3] uses a joint strategy based on all instances to implement
bag embedding. Bamic [22] selects the representative bags through unsupervised
learning. MIKI [19] first trains a weighted multi-class model to select instance
prototypes with high positiveness. Then the bag is converted into a vector with
instance prototype information. To narrow the gap between the training and test-
ing distribution, the weights of the instance prototypes are combined into the
converted bag vector. However, these algorithms directly select instance proto-
types in the entire feature space, ignoring the internal structure of the bag. As a
result, they may choose weakly representative instances and affect classification
performance. MIHI provides a solution for selecting high-level instances through
two techniques.
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3 The Proposed Algorithm

In this section, we first give the basic symbol definition of MIL. Then we describe
the proposed MIHI algorithm process. Furthermore, two key techniques of MIHI
are described in detail.

3.1 Algorithm Description

Algorithm 1 reports the detailed process of the proposed MIHI. Let T = {Bi}N
i=1

be the MIL data set with N bags, where Bi = {xij}ni
j=1 is a bag containing

ni instances. Let Y = {yi}N
i=1 be the label vector corresponding to T , where

yi ∈ {−1,+1} is the label of Bi. Lines 2–11 use two techniques to obtain high-
level instance set H. By analyzing the internal structure of each bag, at least one
instance can be selected to construct the instance prototype set C. Specifically,
Lines 4–5 calculate the representativeness of the instances in each bag Bi ∈ T .
Lines 6–7 select the top-ranked instances as the instance prototypes (IP). Next,
our goal is to generate the high-level instance set H by identifying C. Lines
9–11 select instances with peak density from C to construct H. We design an
embedding function to transform each bag into a single instance in the new
feature space. Lines 13–17 embed each bag Bi into a new feature vector V i

through H. Finally, Line 18 trains the SIL classifier F(·) through the new data
set {(V i, yi)}N

i=1.

3.2 The Fast Bag-Inside Instance Selection Technique

The common method for instance prototype (IP) generation is to select cluster
centers [15] or causal instances [18] in the entire feature space. However, these
methods have the following two problems: a) High time complexity; and b)
The selected instances have no bag structure information. The fast bag-inside
instance selection technique chooses instance prototypes of each bag through
using its internal structure. The density ρij and affinity lij metric of the instance
xij are computed as follows.

The Density of Instance. For each instance xij ∈ Bi, the density ρij is
defined as

ρij =
ni∑

k �=j

exp −(
djk

dc
)2, (1)

where dc is a cutoff distance and djk is the distance between xij and xik. High-
density instances mean that there are more adjacent instances within a given
neighborhood radius. Therefore, high-density instances can reflect the local fea-
ture distribution of the bag.

In addition, the instances in the bag are not completely independent and
distributed [21]. It is not enough to determine the representativeness only based
on the density of the instance. Therefore, we use cosine similarity to represent the
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Algorithm 1. Multi-instance embedding learning through high-level instance
selection.
Input:

The data set T ;
The label vector Y = {yi}N

i=1;
The proportion of instance prototypes rc;
The number of high-level instances nh;

Output:
The SIL classifier F(·);
The high-level instance set H ;

1: // Step 1. Select the high-level instances.
2: C = ∅; // Initialize instance prototype set.
3: for (Bi ∈ T ) do
4: k = �rc × ni�; // The number of instance prototypes of each bag.
5: Compute the score sij of xij ∈ Bi according to Eq. (3);
6: C ′ = the top-k score instances;
7: C = C ∪ C ′;
8: end for
9: H = ∅; // Initialize high-level instance set.

10: Compute the score λi for each prototype ci ∈ C according to Eq. (5);
11: H = the set of top-nh score prototypes;
12: // Step 2. Bag embedding.
13: for (Bi ∈ T ) do
14: Compute the embedding vector V i according to Eq. (7) or (8) with Bi;
15: Vil ← sign(Vil)

√
|Vil|, where Vil represents the l-th attribute of V i;

16: V i ← V i/ ‖ V i ‖2;
17: end for
18: Train the classifier F(·) with the new data set {(V i, yi)}N

i=1;
19: Output F(·) and H ;

affinity between instances. The closer the cosine similarity of the two instances
is to 1, the more similar they are.

The Affinity of Instance. For each instance xij ∈ Bi, the affinity lij is defined
as

lij =
∑

1≤k≤ni

xij · xik

‖xij‖‖xik‖ , (2)

where j, k ∈ [1..ni].
After obtaining the density and affinity of each instance in the bag, the

representativeness score sij of the instance can be computed as

sij = ρij × lij . (3)

According to the MIL assumption, the proportion of positive and negative
instances in each bag is different (e.g., tiger, grass and water in Fig. 1). There-
fore, we can chose the low/high score instances from the positive/negative bag
as the IP. Finally, we can obtain the instance prototype set C = {c1, · · · , cnc

},
where nc is the cardinality of C.
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By considering the solution interval of the optimization objective, we design
three types of instance prototypes selection modes as follows:

– Global (G) selects �rc × ni� instance prototypes from each bag.
– Positive (P) only selects from all positive bags.
– Negative (N) only selects from all negative bags.

The time complexity of the fast bag-inside instance selection technique is
O(dn), where d is the dimension and n is the number of all instances. The time
complexity of instance selection based on the entire space is O(dn2). In contrast,
our complexity is only linearly related to the number of instances rather than
square related.

3.3 High-level Instance Selection Technique

In order to explore the characteristics of the instance space, high-level instance
selection technique is proposed. Based on C = {c1, · · · , cnc

}, we can obtain
high-level instances (HI).

For each ci, we calculate two quantities: its local density δi and its minimum
distance βi from the higher density prototypes. The local density δi is computed
by Eq. (1). The difference is that the calculation interval is migrated from each
bag to C. The distance βi is measured by computing the minimum distance
between the ci and any other IP with higher density:

βi = min
j:δj>δi

(dij). (4)

Particularly, for the IP with highest density, its distance is βi = maxj(dij).
Finally the score λi of IP is calculated as

λi = δi × βi. (5)

With the scores of all IP calculated by Eq. (5), we select the top-nh IP as
the HI. Finally, we can obtain H = {h1, · · · ,hnh

}, where nh the cardinality of
H.

3.4 Embedding Technique via HI

After getting H, we design the following method to embed the bags into a new
feature space. Firstly, each instance xij ∈ Bi is assigned to its nearest hk,
denoted by NH(xij) = hk. Then, each bag Bi can be expressed by nh local
vectors vik:

vik =
∑

xij∈Ω

xij − hk, (6)

where Ω = {xij |NH(xij) = hk}. Finally, the embedding vector V i of bag Bi is
a D-dimensional vector composed of concatenated local vectors [15]:

V i =
nh∥∥

k=1

vik, (7)
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where D = nh × d and d is the dimension of instance xij . However, the above
embedding method will embed each bag into a high-dimensional space. There-
fore, we design the second embedding method, which superimposes all the local
vectors to get the embedding vector:

V i =
nh∑

k=1

vik. (8)

Furthermore, each element of V i is processed by Vil ← sign(Vil)
√

|Vil|, and
then the embedding vector is normalized by V i ← V i/ ‖ V i ‖2 [11]. After
getting the V i for each Bi, we can predict the bag label by processing V i with
any single-instance classifier F(·) (e.g., SVM).

4 Experiments

In this section, we conducted experiments on MIHI and 9 comparison algorithms
for six learning tasks. To ensure the validity of the experiment, we used 10 times
10-fold cross-validation to calculate the average accuracy. The averaged results
(mean) and standard deviation (std) of each algorithm is reported.

4.1 Comparison Algorithms

We compared MIHI with 9 state-of-the-art algorithms: a) MILES [3] embeds
bags based on the bag-instance similarity measure and all instances; b) BAMIC
[22] embeds bags by employing bag-level k-means, with the parameters includ-
ing average Hausdorff distance and the number of clustering centers (r ×
min{N, 100}, where r is enumerated in {0.1, · · · , 1.0}); c) MILFM [10] uses
AdaBoost to select the bag features embedded by instance prototypes, with
the parameters including the number of cluster centers (40); d) Simple-MI [1]
uses the arithmetic mean of instances in the bag as the representation of the
bag itself. e) miFV [15] extracts the instance information with the Gaussian
mixture model (GMM), with the parameters including the number of compo-
nents for GMM (enumerate in {1, 2, 3}); f) miVLAD [15] embeds bags based on
the instance-level k-means, with the parameters including the number of clus-
tering centers (enumerate in {1, 2}); g) MILDM [16] selects the discriminative
instances via instance evaluation criteria, with the parameters including the size
of discriminative instance pool (the number of bags); h) StabelMIL [18] embeds
bags based on causal instances, with the parameters including the scale variable
(0.25); and i) ELDB [17] selects more representative bags with the discriminative
analysis and reinforcement technique, and finally obtains more distinguishable
single vectors.

4.2 Experimental Data Sets

Six fields of learning tasks across 26 data sets are used to validate MIHI. We
briefly introduce the domain knowledge of these data sets: 1) Image retrieval:
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Content-based image retrieval problems include identifying the expected target
object in the image [2]. In our experiments, elephant, fox, and tiger data sets are
used; 2) Mutagenicity prediction: Mutagenesis is a drug activity prediction
problem. There are two versions, easy (1) and hard (2), of the data set [13]; 3)
Medical image: Messidor is a medical classification problem data set, which
consists of 1, 200 fundus images from 546 healthy and 654 diabetic patients [5];
4) Newsgroups: The newsgroups is a text categorization data set [21]. Posts
from different newsgroups form a bag. Each category has 50 positive bags and 50
negative bags; 5) Web recommendation: The question is whether to classify
web pages as interesting web pages [20]. There are a total of 9 users who rate
the web page this way, so there are 9 different data sets; A web page is a bag,
and the links on the web page are instances; and 6) Biocreative: Biocreative is
a large-scale text classification data set [12]. The task is to decide whether some
genetic ontology (GO) code should be used to annotate a given pair.

4.3 Performance Comparison

Table 1. Accuracy (%, mean±std) with standard deviations on 26 MIL data sets. The
highest average accuracy is marked with •.

Datasets (d) MILES BAMIC MILFM Simple-MI miFV miVLAD MILDM StableMIL ELDB MIHI

Elephant♣ (230) 81.2±2.36 75.8±0.12 81.7±0.23 80.2±0.08 84.2±0.09 84.1±0.13 76.1±0.29 84.2±4.23 75.8±3.21 90.4±0.93•
Fox♣ (230) 58.5±3.63 51.9±0.33 45.4±0.24 62.6±0.13 61.9±0.12 62.3±0.16 58.8±0.41 55.3±2.83 60.7±2.02 65.5±2.46•
Tiger ♣ (230) 77.1±2.65 69.2±0.14 73.3±3.09 79.3±0.07 77.2±0.06 84.8±0.12 64.3±0.14 60.7±2.24 72.2±2.00 85.7±1.10•
Mutagenesis1♦ (7) 88.3±2.11 75.8±0.09 84.8±0.21 66.6±0.06 79.2±0.08 77.6±0.13 81.1±0.28 88.3±2.11• 84.9±1.71 70.0±1.91

Mutagenesis2♦ (7) 84.2±1.60 82.8±0.17 83.5±0.12 68.8±0.17 79.0±0.17 78.8±0.32 81.7±0.34 85.3±0.02• 82.8±0.83 82.0±1.50

Messidor� (687) 50.3±3.33 62.0±0.05 54.5±0.00 55.9±0.03 71.5±0.05• 67.5±0.05 54.5±0.24 54.5±0.01 63.8±0.45 68.6±0.39

alt.atheism� (200) 50.9±0.30 84.9±0.05 52.9±0.07 83.4±0.11 82.4±0.17 85.6±0.18 53.9±0.50 52.5±5.37 85.6±2.01 88.5±1.22•
comp.graphics� (200) 49.4±1.28 80.7±0.10 52.7±0.15 77.3±0.05 80.1±0.11 78.8±0.12 52.0±0.49 51.4±2.97 81.1±1.02 83.5±1.76•
comp.os.ms� (200) 51.9±1.64 72.1±0.16 46.6±0.26 53.2±0.29 72.5±0.12 68.8±0.26 47.7±0.29 47.8±3.34 73.7±1.33• 73.0±4.24

comp.sys.mac� (200) 51.0±4.45 80.0±0.13 52.3±0.46 77.6±0.09 77.3±0.11 78.2±0.15 51.5±0.43 51.2±3.79 81.1±1.71• 80.5±1.73

comp.window.x� (200) 64.3±4.12 77.9±0.08 53.0±0.10 66.0±0.11 85.4±0.11• 82.1±0.14 58.2±0.55 53.4±2.91 79.7±1.41 83.9±0.94

misc.forsale� (200) 50.3±1.49 67.3±0.11 51.2±0.19 56.2±0.36 72.5±0.25• 71.8±0.23 45.5±0.53 49.3±5.51 70.2±0.63 68.5±1.86

rec.motorcycles� (200) 50.7±0.46 78.4±0.10 52.5±0.45 45.6±0.22 86.7±0.13• 81.2±0.12 53.8±0.41 55.4±3.99 79.7±2.40 83.3±1.49

rec.sport� (200) 52.9±4.09 83.1±0.05 50.0±0.00 74.8±0.12 85.1±0.10 82.9±0.16 48.5±0.50 49.5±3.93 82.2±1.01 90.2±1.17•
sci.crypt� (200) 51.4±0.66 76.8±0.07 51.1±0.10 73.4±0.08 75.6±0.14 81.1±0.16 47.7±0.35 50.7±5.24 77.1±1.02 89.6±1.36•
sci.med� (200) 53.7±3.82 82.5±0.05 55.0±0.57 71.1±0.09 83.1±0.08 82.2±0.15 50.9±0.36 50.4±3.85 82.7±0.83 89.9±0.83•
web1� (5, 863) 82.1±2.71 81.2±0.06 81.5±0.04 79.0±0.11 81.5±0.06 79.9±0.09 82.5±0.09• 82.4±1.15 82.5±2.04 81.2±1.22

web2� (6, 519) 81.5±0.58 81.4±0.06 82.4±0.15 79.4±0.12 81.5±0.06 80.2±0.07 83.1±0.08• 80.5±2.16 82.9±2.27 81.5±0.60

web3� (6, 306) 82.1±2.19 81.2±0.04 83.2±0.15• 79.5±0.17 81.6±0.08 81.2±0.08 82.9±0.04 81.2±0.82 81.4±0.68 81.7±1.43

web4� (6, 059) 78.9±2.75 77.7±0.07 79.5±0.17 78.1±0.08 77.7±0.06 81.7±0.14 79.3±0.16 77.6±0.45 79.8±1.31 83.9±0.91•
web5� (6, 407) 78.8±0.71 79.3±0.05 78.8±0.12 77.2±0.09 77.1±0.08 82.1±0.11 78.6±0.27 78.1±0.61 78.1±1.22 82.5±0.68•
web6� (6, 417) 81.7±2.71 77.3±0.15 81.8±0.23 79.6±0.07 77.7±0.06 82.5±0.14 83.6±0.20 73.3±0.34 80.9±2.33 84.1±1.30•
web7� (6, 450) 56.4±1.55 42.9±0.31 61.5±0.16 58.4±0.47 68.5±0.23 73.5±0.26 63.6±0.34 62.0±2.75 52.8±4.56 75.7±2.03•
web8� (5, 999) 56.4±2.86 48.5±0.44 61.5±0.37 58.0±0.52 71.0±0.33 73.8±0.28 57.0±0.37 59.0±3.19 50.5±3.57 78.4±1.56•
web9� (6, 279) 59.5±2.61 41.5±0.41 59.8±0.28 58.1±0.28 71.5±0.37 76.1±0.11 56.5±0.32 54.9±3.73 49.3±4.42 78.5±1.99•
component� (200) N/A 92.2±0.01 N/A 69.6±0.04 91.5±0.01 92.9±0.01 N/A N/A N/A 93.4±0.04•
function� (200) N/A 95.6±0.01 N/A 71.7±0.04 94.9±0.01 95.8±0.01 N/A N/A N/A 96.6±0.05•
process� (200) N/A 96.0±0.00 N/A 66.7±0.04 95.8±0.00 96.8±0.00 N/A N/A N/A 97.1±0.01•
Mean rank 6.43 6.57 5.89 7.21 4.79 4.43 6.21 6.64 4.11 2.71•
♣image retrieval, ♦mutagenicity prediction, �medical image, �newsgroups, �web
recommendation, �biocreative.

Table 1 shows the experimental results of MIHI and comparison algorithms. The
best performance value for each data set is highlighted with a small black bullet.
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Mean rank represents the ranking of the average performance of the current
algorithm on each data set [6]. The symbol “N/A” means that the algorithm
cannot get experimental results.

The experimental results show that the MIHI algorithm has achieved the
best experimental results on more than 70% of the data sets. And its mean rank
is 2.71, which is superior to 9 traditional algorithms. Specifically, the accuracy
of MIHI on some data sets is about 10% higher than other algorithms, such as
elephant, rec.sport.hockey and web4. The reason may be that the our instance
selection techniques can effectively select the instance with the largest amount
of information from each bag. On image retrieval data, MIHI performed well on
the three image data sets. However, MIHI performed poorly on the two muta-
genicity prediction data sets, which may be caused by the low dimensionality of
mutagenicity. StableMIL performs very well on mutagenicity. The reason may
be that StableMIL can obtain the most informative causal instance from the
super low-dimensional positive bag. From the performance of newsgroups, web
recommendation and large-scale data sets, MIHI can get better results whether
it is low-dimensional or high-dimensional data. We only compare MIHI with the
four algorithms on large-scale data sets, because the time complexity of MILES,
MILFM, MILDM, StableMIL and ELDB is relatively high.

Fig. 2. Comparison of MIHI with 9 comparison algorithms with Bonferroni-Dunn test.
Algorithms not connected to MIHI in the CD plot were considered to have significant
performance of the control algorithm (CD = 2.24, significance level 0.05).

We also applied the post hoc Bonferroni-Dunn test [6] to test whether MIHI
achieves competitive performance among the 9 compared algorithms. Figure 2
reports the critical difference (CD) plot at the 0.05 significance level. The mean
accuracy ranks for each algorithm are marked along the axis (lower grades on
the left). In addition, algorithms with an mean ranking within one CD of MIHI
are connected by thick lines. Otherwise, any MIHI-independent algorithm is
considered significantly different.

4.4 Parameter Analysis

Figure 3 shows the experimental results of parameter analysis on elephant data
set. The symbols “S” and “C” respectively represent the two modes of bag
embedding: superimpose and concatenate; “G”, “P” and “N” respectively rep-
resent three instance selection modes. For all these subgraphs, the abscissa indi-
cates the mode selected by the instance prototypes, and the ordinate indicates
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Fig. 3. Parameter analysis of MIHI with the number of instance prototype, three
instance selection modes, two bag embedding modes and three classifiers for elephant
data set. The best parameter settings of elephant are: 3 instance prototypes, instance
selection mode “G” and bag embedding mode “C”.

the number of instance prototypes. The three subgraphs show the classification
accuracy on the classifier Knn, Decision Tree (DTree) and SVM respectively.
The darkest colored table of the heat map indicates the highest accuracy. The
following summarizes the impact of parameters on MIHI:

– Bag embedding modes: The classification performance of the two bag
embedding modes is equivalent. However, since mode “C” embeds each bag
in a high-dimensional space, we choose mode “S” for bag embedding in sub-
sequent experiments.

– Instance selection modes: The results of the elephant in the classifier SVM
show that the classification performance of mode “G” is better than the other
two modes. However, in the other two classifiers, it is the best in mode “P”.

– The number of instance prototypes: MIHI can achieve the best perfor-
mance in most cases when the number of instance prototypes is 3–5.

– Classifier: SVM is more suitable for these data sets than DTree and Knn.

4.5 Efficiency Comparison

Table 2. The CPU runtime (in seconds) of one 10CV of the comparison algorithm on
the 4 MIL classification data set.

Data sets (d/n/N) MILES BAMIC MILFM Simple-MI miFV miVLAD MILDM StableMIL ELDB MIHI

Time complexity O(dn2) O(dN2) O(dn2) O(dN) O(dn) O(dn) O(dn2) O(dn2) O(dn2) O(dn)

Fox (230/1, 320/200) 2.378 1.512 8.514 0.151 4.202 1.284 5.425 13.959 3.712 1.034

alt.atheism (200/5, 443/100) 24.870 20.200 46.422 0.124 4.694 1.827 30.625 48.483 39.465 15.417

comp.graphics (200/3, 094/100) 8.939 6.651 25.217 0.104 3.520 1.533 11.635 43.796 13.543 5.526

web4 (6, 059/3, 423/113) 27.216 25.228 163.253 1.205 406.751 20.005 39.843 610.798 52.981 8.134

Mean rank 5.50 4.50 8.75 1.00 5.50 2.50 7.00 10.00 7.25 3.00

Table 2 shows the time complexity and runtime of MIHI compared with 9 com-
peting algorithms. For MIHI, the construction of the high-level instances cost
O(dn), where d is the dimension and n is the cardinality of instance space. Table 2
compares the CPU running time of these methods on four data sets. The mean
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rank shows that the speed of MIHI is slightly lower than that of Simple-MI and
miVLAD. This may be because Simple-MI does not need to consume a lot of
time to calculate the distance of instances. However, Simple-MI does not perform
well on these data sets. The k-means algorithm used by miVLAD has low time
complexity. Besides, even on the small scale data set, the runtime of MILFM
and StableMIL are relatively large.

5 Conclusion

In this paper, we proposed the MIHI algorithm to select high-level instances.
MIHI fully utilizes the structure information of the bag-inside and effectively
explores the characteristics of the instance space. The experiments were con-
ducted on 26 MIL data sets. According to Table 1, the MIHI algorithm has
achieved the best accuracy on more than 70% of the data sets. Its mean rank is
2.71, which is superior to 9 traditional algorithms. In addition, MIHI has linear
time complexity, and its efficiency is slightly lower than that of Simple-MI and
miVLAD.
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problem with axis-parallel rectangles. Artif. Intell. 89(1–2), 31–71 (1997)

8. Faria, A.W., et al.: MILKDE: a new approach for multiple instance learning based
on positive instance selection and kernel density estimation. Eng. Appl. Artif.
Intell. 59, 196–204 (2017)

9. He, C.K., Shao, J., Zhang, J.S., Zhou, X.M.: Clustering-based multiple instance
learning with multi-view feature. Expert Syst. Appl. 162, 113027 (2020)



Multi-instance Embedding Learning Through High-level Instance Selection 133

10. Hong, R.C., et al.: Image annotation by multiple-instance learning with discrimi-
native feature mapping and selection. IEEE Trans. Cybern. 44(5), 669–680 (2014)

11. Jorge, S., Florent, P., Thomas, M., Jakob, V.: Image classification with the fisher
vector: theory and practice. Int. J. Comput. Vis. 105(3), 222–245 (2013)

12. Ray, S., Craven, M.: Learning statistical models for annotating proteins with func-
tion information using biomedical text. BMC Bioinform. 6(1), 1–9 (2005)

13. Srinivasan, A., Muggleton, S., King, R.: Comparing the use of background knowl-
edge by inductive logic programming systems. In: ILP, pp. 199–230 (1995)
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Abstract. High Utility Itemset extraction algorithms are methods for
discovering knowledge in a database where the items are weighted. Their
usefulness has been widely demonstrated in many real world applications.
The traditional algorithms return the set of all patterns with a utility
above a minimum utility threshold which is difficult to fix, while top-k
algorithms tend to lack of diversity in the produced patterns. We propose
an algorithm named HAISampler to sample itemsets where each item-
set is drawn with a probability proportional to its average-utility in the
database and under length constraints to avoid the long and rare item-
sets with low weighted items. The originality of our method stems from
the fact that it combines length constraints with qualitative and quanti-
tative utilities. Experiments show that HAISampler extracts thousands
of high average-utility patterns in a few seconds from different databases.

1 Introduction

High Utility Itemset mining (HUIM) [21] is an extension of the frequent pattern
mining [1] which takes into account the quality and the quantity of an item in a
transaction (the price for instance). Its usefulness has been widely demonstrated
in many real life applications like user behavior analysis [17], marketing analysis
[14], mobile commerce [16], stream web clicks [6] and interactive pattern mining
[2]. Interactive pattern mining is a process that requires a short loop with rapid
interaction between the system and the user [13]. Indeed, the instant discovery
imposes a constraint on the response time of a few seconds to extract a represen-
tative set of patterns. Complete methods do not provide the relevant patterns
in such a short time. Methods based on a condensed representation [20] or on
top-k patterns [18] are also used to find the best patterns. Therefore, they often
focus on the same part which contains slightly different patterns and then leads
to a lack of diversity. The latter is crucial to present to the user a set of varied
patterns at each iteration in order to improve his/her view and help the system
to know his/her interest.

To solve this problem, we propose to benefit from the pattern sampling tech-
niques [3,4]. It consists in providing a representative sample of patterns according
to a distribution proportional to an interestingness measure chosen by the user
while ensuring good diversity between the sampled patterns. Weighted utilities
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13281, pp. 134–148, 2022.
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are proposed in [5,9], but independently of any transaction. In other words, these
methods do not work in our case where the utility of an occurrence of a pattern
depends on the transaction in which it appears and its length. To the best of our
knowledge, this paper is the first to address the problem of high average-utility
itemset sampling while integrating length constraints on the sampled patterns.

The rest of this paper is organized as follows: Sect. 2 presents a state-of-the-
art on HUIM and pattern sampling methods. Section 3 gives basic notions and
formalizes the problem. Section 4 presents HAISampler (High Average-utility
Itemset Sampler) and Sect. 5 evaluates its accuracy and complexity. Finally, we
present some experiments in Sect. 6 and conclude in Sect. 7.

2 Related Works

HUIM is one of the most difficult tasks to extract useful patterns in pattern
mining area. Two of its main challenges are the control of the returned can-
didate patterns and the time cost of computing the utility of each pattern of
the database. To solve these problems, many efficient methods are proposed
[16,18,21]. Unfortunately, the efficiency of the exhaustive HUIM often depends
on the size of the database on which they are applied. Nowadays, the used
databases are very large and contain information as rich as their variety. The
diversity of the information that a database contains is proportional to the car-
dinality of its pattern language. But, the more the number of pattern the more
it is difficult to explore the corresponding database. Another problem encoun-
tered by HUIM methods is the long tail where patterns containing low weighted
items have high utilities thanks to their length. In [15], the authors propose an
average-based utility measure to avoid the long tail problem. However, this one
favors itemsets of length 1, since they are not affected by the division, and there-
fore the returned patterns become obvious to the user. An alternative consists
in setting a minimum frequency threshold in order to avoid the long patterns.
However, it is very difficult for the user to set a minimum frequency threshold.

Pattern sampling [3] is a non-exhaustive method for discovering relevant pat-
terns while offering strong statistical guarantees thanks to its randomness. Its
usefulness has been widely demonstrated in many applications such as classifica-
tion [4,7], anomaly detection [9,11] and instant discovery [10,13]. It has also been
applied to many types of structured data like graphs [3], itemsets [4], numeri-
cal data [12] and sequences [8]. In [7] the authors weight each pattern with a
norm-based utility (regardless of any sequence) to avoid the long tail problem.
However, the output sampling is much more difficult in the case where the draw
of a pattern is not proportional to its frequency in the database, and even more
when length constraints are integrated.

In this paper, we propose an original method of output pattern sampling
to address the high average-utility itemsets under length constraints. Contrary
to the methods which are based on heuristic algorithms [19] to find the top-k
high utility itemsets, the sampling method that we propose is exact. It draws an
itemset proportionally to its average-utilities from the set of all patterns of the
database that respect the length constraints.
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3 Preliminaries and Problem Formulation

This section begins by presenting some basic notions and notations as well as
the necessary definitions for the understanding of the subject. It ends with a
formalization of the problem that we want to solve in this paper.

Let I = {e1, · · · , eN} be a finite set of literals called items with an arbitrary
total order >I between items : e1 >I · · · >I eN . An itemset or pattern, denoted
by ϕ = ei1 · · · ein

, with n ≤ N , is a none empty subset of I, ϕ ⊆ I. The pattern
language corresponds to L = 2|I|\∅ and the length of a pattern ϕ ∈ L denoted by
|ϕ|, is the number of items it contains (its cardinality). A transactional database
D corresponds to a set of couple (j, t) where j ∈ N is the unique identifier of
a transaction and t = e1 · · · en is an itemset of length |t| = n defined in I.
We denote by L(D) the set of all patterns that appear in D. In the rest of this
paper, a transaction identified by j is denoted by tj . In addition, for a transaction
tj = ej1 · · · ejn

, we denote by tij = eji+1 · · · ejn
an itemset formed by discarding

the i first items of t. So we have |tij | = |tj | − i. The ith item of the transaction tj
is tj [i] = eji

. In this paper, each item eji
of a transaction tj has a weight, a strict

positive real, which depends on this transaction, called its utility. For instance,
in the case of a transaction which represents the set of all items purchased by
a customer, the utility of an item ei in the transaction t can be the product of
its quantity q(ei, t) and its unit price p(ei). To be simpler on the rest of this
paper, we associate each item ei with its quantity in the transaction t that it
appears, ei : q(ei, t). Table 1 shows a database D with 5 transactions t1, t2, t3,
t4 and t5 defined on the set of items I = {A,B,C,D,E, F}. We suppose that
A >I B >I C >I D >I E >I F . In the database D, the unit prices are:
p(A) = 25, p(B) = 30, p(C) = 10, p(D) = 5, p(E) = 15 and p(F ) = 10. With
the transaction t1, we have the following quantities q(A, t1) = 2, q(B, t1) = 3
and q(C, t1) = 2.

Table 1. Example of database D with utilities on items

D
t1 A:2 B:3 C:2

t2 B:2 D:4

t3 A:1 C:1 D:1

t4 A:3 B:1

t5 A:1 B:2 D:1 E:1 F:1

Items Price

A 25

B 30

C 10

D 5

E 15

F 10

This toy database will be used in the rest of this paper to give illustrations. Since
items in the transaction t1 have not the same weight, then the occurrences of
patterns in t1 may not have the same utility in t1.
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Definition 1 (Occurrence of a pattern). Let ϕ be a pattern defined on a
language L of a database D. If it exists a transaction tj of D such that ϕ ⊆ tj,
then ϕj is an occurrence of the pattern ϕ in the transaction tj. The utility of the
pattern ϕ in the transaction tj, denoted by uOcc(ϕ, tj), is equal to 0 if ϕ �⊆ tj or
ϕ = ∅, else uOcc(ϕ, tj) =

∑
e∈ϕ (q(e, tj) × p(e)).

There are also utilities that are independent of any database such as length-
based utilities [9]. In the following, we consider the length-based utility defined
by uLen[m..M ](ϕ) = 1/|ϕ| if |ϕ| ∈ [m..M ] and 0 otherwise, with m and M two
positive integers. Thus, a pattern whose length is larger than M or smaller than
m will be deemed useless.

Definition 2 (Average-Utility of a pattern under length constraints).
Let D be a database, L its language, m and M two integers such that m ≤ M .
The average-utility of the pattern ϕ ∈ L in D under minimum m and maximum
M length constraints, denoted by uavg

[m..M ](ϕ,D), is the product of the sum of
utilities of its occurrences and its length-based utility. Formally, uavg

[m..M ](ϕ,D) =
(
∑

(j,t)∈D∧ϕ⊆t uOcc(ϕ, t)) × uLen[m..M ](ϕ).

It is important to note that uavg
[m..M ] is not a length-based utility.

Example 1. Let’s consider the database D in Table 1 and the length con-
straints m = 1 and M = 2. We note that the pattern AC belongs in t1
and t3 only. So, AC has only two occurrences in D: AC1 et AC3. We also
have uLen[m..M ](AC) = 1 because |AC| = 2 ∈ [1..2]. So, uavg

[1..2](AC,D) =
(uOcc(AC, t1)+uOcc(AC, t3))/2 = ((2×25+2×10)+(1×25+1×10))×1/2 =
(70 + 35)/2 = 52.5. By the same way, we have uavg

[1..2](ABEF,D) = 110 × 0 = 0.
Indeed, |ABEF | = 4 �∈ [1..2].

In this paper, we want to solve the problem formulated as follows:
Given D a transactional database with weighted items (quantity and/or quality),
two positive integers m and M such that m ≤ M , our main goal is to draw a
pattern ϕ from the language L with a probability exactly equal to:

P(ϕ,D) =
uavg
[m..M ](ϕ,D)

∑
ϕ′∈L(D) uavg

[m..M ](ϕ
′,D)

.

The notations of this paper are summarized in Table 2.

4 Two-Phase Sampling of High Average-Utility Itemsets

In this section, we will first present the basics of our method (detailing the
weighting phase and the drawing phase of a pattern) before presenting the
HAISampler algorithm that we propose to sample high average-utility itemsets
under length constraints.
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4.1 Basics of Our Sampling Method

The high average-utility itemset sampling method that we propose in this paper
uses a position-based length weighting system to weight each transaction. It is a
system which consists in weighting each item of a given transaction according to
the position it occupies there. The item weights are then used to draw a pattern
using a conditional probability.1

Table 2. Notations

Symbol Definition

uOcc(ϕ, t) Utility of the pattern ϕ in the transaction t

uLen[m..M](ϕ) Length-based utility of ϕ equal to 1/|ϕ| if |ϕ| ∈ [m..M ] and 0 otherwise

uavg
[m..M](ϕ, D) Average-utility of the pattern ϕ in D. It is equal to 0 if |ϕ| �∈ [m..M ]

ti Itemset formed by discarding the i first items of t, ti = t[i + 1] · · · t[n]

ω+
� (t[i], t) Sum of occurrences’ utilities of length � in ti−1 with item t[i]

ω−
� (t[i], t) Sum of occurrences’ utilities of length � in ti (without item t[i])

ωavgU
[m..M](t) Sum of average-utilities of all occurrences in t

P
t
�(t[i]|ϕ, �′) Probability to draw item t[i] in the transaction t after drawing � − �′

items and storing them in ϕ

Transaction Weighting: Let t be a transaction of length n defined on a set
of items I endowed with a total order relation >I , m and M maximum and
minimum length constraints respectively. The ith item of the transaction t, t[i],
is associated with two lists of values ω+

� (t[i], t) and ω−
� (t[i], t), for � ∈ [m..M ].

Definition 3. The weight ω+
� (t[i], t) is the sum of utilities of the occurrences of

length � − 1 in the transaction ti = t[i + 1] · · · t[n] to which we add the item t[i],
and the weight ω−

� (t[i], t) is that of occurrences of length � in ti.

ω+
� (t[i], t) =

∑

ϕ⊆ti∧|ϕ|=�−1

uOcc({t[i]}∪ϕ, t) and ω−
� (t[i], t) =

∑

ϕ⊆ti∧|ϕ|=�

uOcc(ϕ, t).

Property 1 gives a formalization of the weights based on Definition 3.

Property 1 (Item weights ω•
� (t[i], t)). The weights ω+

� (t[i], t) and ω−
� (t[i], t) of

the item t[i], for all � ∈ [m..M ], may be formally written as follows:2 ω+
� (t[i], t) =

ω+
1 (t[i], t)×( |ti|

�−1

)
+

∑
�∈{+,−} ω�

�−1(t[i+1], t) and ω−
� (t[i], t) =

∑
�∈{+,−} ω�

� (t[i+1], t),
with ω+

1 (t[i], t) = uOcc(t[i], t) for all i ∈ [1..|t|] and ω�
� (t[i], t) = 0 for all i > |t|.

Indeed, the weights of an item t[i] are deduced from those of t[i + 1]. Using
Property 1, we can easily compute the weight of a transaction under length
constraints. By definition, the average-utility of an occurrence ϕ ⊆ t is
uOcc(ϕ, t)/|ϕ|.
1 Proof of theoretical results are available in Sect. A.
2 By convention

(
n
k

)
= 0 if k>n and 1 if k = 0.
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Property 2 (Transaction weight). The weight of a transaction t under minimum
m and maximum M length constraints, denoted by ωavgU

[m..M ](t), is the sum of
average-utilities of the occurrences that it contains. Formally,

ωavgU
[m..M ](t) =

M∑

�=m

⎛

⎝1

�

|t|∑

i=1

ω+
� (t[i], t)

⎞

⎠ =
M∑

�=m

1

�

(
ω+

� (t[1], t) + ω−
� (t[1], t)

)
.

Example 2. Let’s consider transaction t1 = {A:2, B :3, C :2}. The prices of its
items are p(A) = 25, p(B) = 30 and p(C) = 10. Following the total order relation
>I , the occurrences that start with A are : {A,AB,AC,ABC}, those who start
with B are : {B,BC}, and finally only a pattern begins with C : {C}. The sum of
the utilities of the occurrences of length � ∈ [1..3] that start with t1[i], i ∈ [1..3],
in the transaction t1 is: ω+

1 (A, t1) = uOcc(A, t1) = 2 × 25 = 50. Using Property
2 we have: ω+

2 (A, t1) = uOcc(AB, t1) + uOcc(AC, t1) = (50 + 90) + (50 + 20) =
210. In an identical way, we have the following weights for the transaction t1:

From this weighting, we deduce the weight of the transaction t1 under the
minimum m = 1 and maximum M = 3 length constraints which is equal to:
ωavgU
[1..3] (t1) = (50 + 110)/1 + (210 + 110)/2 + (160 + 0)/3 = 373.33.

We are going to show how to draw an occurrence from our weighting system.

Drawing an Itemset from a Transaction: Drawing a pattern from a
position-based weighted transaction can be done using conditional probability.
Lemma 1 gives an idea on the computation of the probability of drawing a given
item knowing that we have already drawn (or not) higher items according to the
order relation >I introduced in Sect. 3.

Lemma 1. Let � be the length of the itemset to output and P
t
�(t[i]|ϕ, �′) the

probability to draw the item t[i] in the transaction t after drawing � − �′ items
and storing them in ϕ, with e >I t[i] for all e ∈ ϕ. The probability to draw t[i]
knowing ϕ and �′ can be formulated as follows:

P
t
�(t[i]|ϕ, �′) =

∑
ϕ′⊆ti∧|ϕ′|=�′−1 uOcc(ϕ ∪ {t[i]} ∪ ϕ′, t)

∑
ϕ′⊆ti−1∧|ϕ′|=�′ uOcc(ϕ ∪ ϕ′, t)

.

Property 3. The probability to draw the item t[i] in the transaction t knowing
the itemset ϕ and the length �′, with |ϕ| = � − �′, denoted by P

t
�(t[i]|ϕ, �′), is

given by the following formula:

P
t
�(t[i]|ϕ, �′) =

(∑
k<i∧t[k]∈ϕ ω1(t[k], t)

)
× ( |ti|

�′−1

)
+ ω+

�′ (t[i], t)
(∑

k<i∧t[k]∈ϕ ω1(t[k], t)
)

× (|ti−1|
�′

)
+

(∑
�∈{+,−} ω�

�′(t[i], t)
) .

The probability that the item t[i] is not drawn knowing ϕ and �′ is 1−P
t
�(t[i]|ϕ, �′).
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The proofs of these two formulas follow from the fact that the probability of
drawing t[i] depends on the utilities of the items already drawn and those of the
items which follow it to form a pattern of length �.

Example 3. Suppose we need to draw a pattern of length � = 2 from the trans-
action t1. The probability to draw ϕ = AC is computed as follow: Pt1(AC|�) =
P

t1
� (A|ϕ = ∅, �′ = 2) × (1 − P

t1
� (B|ϕ = A, �′ = 1)) × P

t1
� (C|ϕ = A, �′ = 1).

Which gives us P
t1(AC|�) = 0+210

0+320 × (1 − 50×( 1
1−1)+90

50×(21)+90+20
) × 50×( 0

1−1)+20

50×(11)+20
=

210
320 × (1 − 140

210 ) × 70
70 = 210

320 × 70
210 × 70

70 = 70
320 .

We are now going to formalize and present our two-phase approach for draw-
ing patterns from a transactional database whose items are weighted.

4.2 HAISAMPLER: High Average-utility Itemset Sampler Algorithm

As we described it in Sect. 4.1, our approach is done in two phases: preprocessing
and drawing. The phase of drawing an itemset is divided into several steps:
drawing a transaction t, drawing a length � and finally, drawing an itemset of
length � based on the conditional probability. This phase is repeated K times to
draw K patterns.

Algorithm 1. HAISampler (High Average-utility Itemset Sampler)
Input: A transactional database D having weighted items with a total order rela-
tion >I and minimum m and maximum M length constraints
Output: ϕ a pattern drawn proportionally to its average-utility: ϕ ∼ uavg

[m..M ](L, D)

//Phase 1: Preprocessing
1: Compute the weight of each transaction t in D: ωavgU

[m..M ](t)

//Phase 2: Drawing
2: Draw a transaction proportionally to its weight: t ∼ ωavgU

[m..M ](D)

3: Draw a length � according to its weight
∑

�∈{+,−} ω�
[�..�](t[1], t): � ∼ ωavgU

[m..M ](t)

4: ϕ ← ∅ � Empty initialization of the pattern to return
5: y ← 0
6: i ← 1
7: while � > 0 do
8: z ← y × (|ti|

�

)
+ ω+

� (t[i], t) + ω−
� (t[i], t)

9: x ← random() × z � Randomly draw a real number between 0 and z

10: if x ≤ y × ( |ti|
�−1

)
+ ω+

� (t[i], t) then
11: ϕ ← ϕ ∪ {t[i]}
12: y ← y + ω+

1 (t[i], t)
13: � ← � − 1

14: i ← i + 1

15: return ϕ � A pattern drawn proportionally to its average-utility in D

Algorithm 1 takes as input a transactional database defined over a set of
items with a total order relation >I and minimum m and maximum M length
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constraints. We start with a preprocessing phase which computes the weight of
each transaction (line 1) using Property 1 and Property 2. To draw a pattern,
we first draw a transaction t proportionally to its weight ωavgU

[m..M ](t) (line 2).
Second, we draw a length � proportionally to the sum of average-utilities of the
occurrences of length � that appear in the transaction t previously drawn (line
3). Lines 4 to 14 allow us to randomly draw an occurrence of length � with a
probability proportional to its utility in t. In line 8, we compute the total sum,
z, of the utilities of the itemsets that start with ϕ ∪ {t[i]} following the order
relation >I in the transaction t. Then, we randomly draw a real number between
0 and z (line 9). If the drawn number is smaller than the sum of utilities of the
ordered items, which starting with ϕ also contain the item t[i] of transaction t,
then we add t[i] in the set of items to output (lines 10 and 11). In that case, the
sum of utilities of the drawn items is updated in the variable y (line 12) and the
number of remaining items decrements (line 13). When � = 0, we return on line
15 an itemset ϕ drawn proportionally to its average-utility in the database D.

5 Theoretical Analysis of the Method

This section shows in Property 4 that HAISampler performs an exact draw of
a pattern and gives finally its time complexity.

Property 4 (Soundness). Let D be a transactional database having utilities on
items with a total order relation >I , and m and M two integers such that
m ≤ M . HAISampler randomly draws a pattern ϕ from the language L(D)
with a probability equal to uavg

[m..M ](ϕ,D)/Z where Z =
∑

ϕ′∈L(D) uavg
[m..M ](ϕ

′,D).

The complexity of our method, can be split into two parts: the complexity of
preprocessing and that of drawing a pattern. It is important to note that the
combination values are computed incrementally and stored in memory.

Preprocessing: To weight a transaction our method, HAISampler, spends a
time of O(|I| × (M − m) × 2). Consequently, it weights all the transactions of
the database in a complexity of O(|D| × |I| × (M − m)).

Drawing a Pattern: HAISampler starts by drawing a transaction with a
complexity in O(log(|D|)). After, it draws a pattern proportionally to its utility
in O(|I|). So, the complexity of drawing a pattern is O(log(|D|)+ |I|). The draw
of K patterns is then done in O(K × (log(|D|)+ |I|)), hence equal to that of [4].

6 Experiments

In this experimental section, we study the efficiency of our method and present
the dispersion of the average-utilities of the sampled patterns according to their
length. Finally, we give some memory storage cost of HAISampler. The exper-
iments3 were carried out on 6 datasets including 3 from the UCI: Adult, Chess
3 HAISampler (Python 3.8) https://github.com/HAISampler/haisampler-src.

https://github.com/HAISampler/haisampler-src
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and Mushroom with preprocessed versions4, and 3 real datasets from SPMF5: BMS,
Foodmart and Retail. Table 3 details the characteristics of the benchmarks. The
value of the minimum length constraint is fixed at m = 1 throughout the experi-
ments. All the experiments were performed on a 2.11 GHz 2 Core CPU PC with
32 GB memory.

Table 3. Characteristics of the benchmarks: the number of transactions, the number of
distinct items, the minimum, the maximum and the average length of the transactions,
the minimum, maximum and average weight of the items

D |D| |I| |t|min |t|max |t|avg p(e, t)min p(e, t)max p(e, t)avg

Adult 48,842 97 12 15 14.87 1.0 99.0 50.04

BMS 59,602 497 1 267 2.51 7.0 9,000.0 724.79

Chess 28,056 58 7 7 7.00 1.0 99.0 50.05

Foodmart 4,141 1,559 1 14 4.42 50.0 2,166.0 655.66

Mushroom 8,124 90 22 23 22.69 1.0 99.0 50.02

Retail 88,162 16470 1 76 10.31 1.0 140.0 16.41

Speed of the Method. The average execution times that we are going to
present were obtained by repeating the program 100 times for each case. The
standard deviations obtained are very low (mostly equal to 0 in the drawing
phase), that is why we have omitted them.
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Fig. 1. Preprocessing time (a) and the drawing time of a pattern (b) according to M

Preprocessing Time: Figure 1-(a) shows the preprocessing time according to the
maximal length constraint M ∈ [3..8] of the 6 datasets in Table 3. First, it shows
that the preprocessing time varies according to the maximum length constraint.
However, it remains less than 9 s in all our datasets with a maximum length
constraint M = 8, which is already too high if we want to avoid the long tail
phenomenon. It is also important to note that the time to preprocess the datasets
by HAISampler increases with the size of the database and the average length

4 Each item was associated with a utility taken randomly between 1 and 100.
5 http://www.philippe-fournier-viger.com/spmf.

http://www.philippe-fournier-viger.com/spmf
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of transactions. Finally, we can say that the method HAISampler consumes
low time for preprocessing datasets.

Drawing Time per Pattern: Figure 1-(b) shows the evolution of the drawing time
per pattern according to the maximum length constraint M ∈ [2..8]. First, we
note that the drawing times change slightly depending on the maximum length
constraint. Then, the curves show that the drawing time depends on the size of
the database and the maximum length of transactions. Indeed, longest transac-
tions consume a lot of time especially when the maximum length constraint is
high. Finally, the time to draw a pattern remains less than 0.15 ms on all datasets
we use here. It is less than 0.04 ms when M ≤ 8 except in BMS. This means that
HAISampler manages to draw thousands of patterns in a few seconds.

Fig. 2. Utility distribution of 10,000 sampled patterns

Impact of Length Constraints on the Sampled Patterns. We will show
how the maximum length constraint can impact the utility of the sampled pat-
terns from databases reaching the long tail curse. To do this, we have chosen
two real datasets BMS and Retail, and one synthetic dataset Mushroom. The
maximum length constraint M is tested with 5, 8 and ∞ (without constrained).
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Figure 2 shows the distribution of the average-utilities of the patterns accord-
ing to their length for the three chosen datasets (each dot represents a sampled
pattern). BMS and Retail clearly show that if the maximum length constraint is
very high or even unused, the drawn patterns are very long and formed by low
weighted items (this is the long tail phenomenon). Besides, none of the returned
patterns by the unconstrained method has a length smaller than 100 for BMS,
20 for Retail, and 4 for Mushroom. The latter is less impacted by the fact that
all of its transactions have almost the same length. So we can say that it is
very interesting to use length constraints to sample high utility patterns from
a database suffering from the long tail curse, which is often the case with real
data.

Memory Storage Cost. Someone may wonder about the memory storage cost
of our method since it adds information on the items of each transaction and
keeps the combination values

(
n
k

)
in memory. Table 4 shows some statistics com-

puted with the “asizeof”6 package for the different datasets used in this paper.

Table 4. Memory storage cost in Mega Byte (MB) of HAISampler with M ∈ {5, 7, 8}

Maximal length M D
Adult BMS Chess Foodmart Mushroom Retail

5 434.629 82.681 109.411 10.051 113.593 542.965

7 483.499 85.658 113.906 10.256 128.513 595.098

8 504.021 86.822 113.906 10.271 135.323 616.793

As expected, the memory storage cost increases slightly depending on the
maximum length constraint M , and it remains less than 1 GB with M = 8
(maximum 616.793 MB with Retail). This means that the weighting approach of
HAISampler is not expensive in storage. So it can be used with larger datasets
to sample high average-utility itemsets.

7 Conclusion

This paper presents the first method for sampling high average-utility itemsets
under length constraints. We have shown that HAISampler is exact and effi-
cient at drawing thousands of patterns in a few seconds on real and synthetic
datasets with reasonable preprocessing time. The experiments carried out show
the value of length constraints for sampling patterns that have good utilities.

6 https://code.activestate.com/recipes/546530-size-of-python-objects-revised/.

https://code.activestate.com/recipes/546530-size-of-python-objects-revised/
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Moreover, we can easily adapt our approach to situations where the utility
of an occurrence of a pattern in a transaction is the product of the utilities of
its items. In perspective, we would like to extend our approach to other complex
data structures such as sequences [7] and graphs [3]. In the short term, we intend
to show how our position-based length weighting system can be extended for
sampling high average-utility itemsets on data streams [6].

A Appendix (Proof of Theoretical Results)

Proof (Property 1). Let’s start by showing that ω−
� (t[i], t) =

∑
�∈{+,−} ω�

� (t[i+
1], t). By definition, ω−

� (t[i], t) is the sum of the utilities of the set of patterns of
length � in ti, ω−

� (t[i], t) =
∑

ϕ⊆ti∧|ϕ|=� uOcc(ϕ, t). This set can be split into two
parts: the one that contains the patterns starting with the item t[i + 1] whose
sum of their utilities is equal to ω+

� (t[i + 1], t) by definition, and the one that
contains the patterns not starting with t[i + 1] and whose sum of their utilities
is equal to ω−

� (t[i + 1], t). It implies that
∑

ϕ⊆ti∧|ϕ|=�
uOcc(ϕ, t) = ω+

� (t[i + 1], t) + ω−
� (t[i + 1], t) =

∑

�∈{+,−} ω�
� (t[i + 1], t).

(1)
Let’s show that ω+

� (t[i], t) = ω+
1 (t[i], t) × ( |ti|

�−1

)
+

∑
�∈{+,−} ω�

�−1(t[i + 1], t).
We know by definition that ω+

� (t[i], t) is the sum of utilities of item-
sets of length � in ti−1 which start with t[i] following the total order
relation >I . Formally, we have: ω+

� (t[i], t) =
∑

ϕ⊆ti∧|ϕ|=�−1 uOcc({t[i]} ∪
ϕ, t). But uOcc({t[i]} ∪ ϕ, t) = uOcc({t[i]}, t) + uOcc(ϕ, t) by definition.
Then, ω+

� (t[i], t) =
∑

ϕ⊆ti∧|ϕ|=�−1 (uOcc({t[i]}, t) + uOcc(ϕ, t)). This implies:
ω+

� (t[i], t) =
∑

ϕ⊆ti∧|ϕ|=�−1 uOcc({t[i]}, t) +
∑

ϕ⊆ti∧|ϕ|=�−1 uOcc(ϕ, t). How-
ever, we know on the one hand that

∑
ϕ⊆ti∧|ϕ|=�−1 uOcc({t[i]}, t) =

uOcc({t[i]}, t) × ( |ti|
�−1

)
and uOcc({t[i]}, t) = ω+

1 (t[i], t) by definition, so
∑

ϕ⊆ti∧|ϕ|=�−1 uOcc({t[i]}, t) = ω+
1 (t[i], t) × ( |ti|

�−1

)
. On the other hand,

∑
ϕ⊆ti∧|ϕ|=�−1 uOcc(ϕ, t) is the sum of utilities of the set of patterns of length �−

1 in the transaction ti. From (1), we can also say that
∑

ϕ⊆ti∧|ϕ|=�−1 uOcc(ϕ, t) =
∑

�∈{+,−} ω�
�−1(t[i + 1], t). Then we have: ω+

� (t[i], t) = ω1(t[i], t) × ( |ti|
�−1

)
+

∑
�∈{+,−} ω�

�−1(t[i + 1], t). Hence the result. �

Proof (Property 2). By definition, the weight of the transaction t is the sum of
the average-utilities of the pattern occurrences it contains. According to Prop-
erty 1, the weight of the transaction t under the minimum m and maximum
M length constraints is nothing more than the sum of the average-utilities of
pattern occurrences that start with the item t[1] and respect the imposed length
constraints,

∑M
�=m( 1� × ω+

� (t[1], t)), and that of the patterns that do not start
with the item t[1] but respect the length constraints,

∑M
�=m( 1� × ω−

� (t[1], t)).
However, we know that

∑M
�=m( 1� × ω+

� (t[1], t)) +
∑M

�=m( 1� × ω−
� (t[1], t)) =

∑M
�=m

1
� × (

ω+
� (t[1], t) + ω−

� (t[1], t)
)
. Hence the result. �
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Proof (Lemma 1). By definition, the probability to draw the item t[i] of the
transaction t after having drawing from it �−�′ items and store them in ϕ is noth-
ing more than the probability of drawing a pattern that begins with ϕ ∪ {t[i]},
according to the order relation >I , among the set of patterns that start with ϕ.
On the one hand, we know that the set of patterns of length � that start with
ϕ∪ t[i] is defined by {ϕ′′ ⊆ t : (ϕ′′ = ϕ∪{t[i]}∪ϕ′)(ϕ′ ⊆ ti)(|ϕ′| = �′ − 1)}. The
sum of utilities of the patterns of this set is equal to

∑
ϕ′⊆ti∧|ϕ′|=�′−1 uOcc(ϕ ∪

{t[i]}∪ϕ′, t). On the other hand, we know that the set of patterns of length � that
start with ϕ is defined by {ϕ′′ ⊆ t : (ϕ′′ = ϕ∪ϕ′)(ϕ′ ⊆ ti−1)(|ϕ′| = �′)}. The sum
of utilities of the patterns of this set is equal to

∑
ϕ′⊆ti−1∧|ϕ′|=�′ uOcc(ϕ ∪ ϕ′, t).

So P
t
�(t[i]|ϕ, �′) =

∑
ϕ′⊆ti∧|ϕ′|=�′−1 uOcc(ϕ∪{t[i]}∪ϕ′,t)
∑

ϕ′⊆ti−1∧|ϕ′|=�′ uOcc(ϕ∪ϕ′,t) . Hence the result. �

Proof (Property 3). From Lemma 1, we have:

P
t
�(t[i]|ϕ, �′) =

∑
ϕ′⊆ti∧|ϕ′|=�′−1 uOcc(ϕ∪{t[i]}∪ϕ′,t)

∑
ϕ′⊆ti−1∧|ϕ′|=�′ uOcc(ϕ∪ϕ′,t) . First, by definition we have uOcc(ϕ ∪

{t[i]} ∪ ϕ′, t) = uOcc(ϕ, t) + uOcc({t[i]} ∪ ϕ′, t). Let zi =
∑

ϕ′⊆ti∧|ϕ′|=�′−1 uOcc(ϕ ∪
{t[i]} ∪ ϕ′, t). It implies that zi =

∑
ϕ′⊆ti∧|ϕ′|=�′−1 (uOcc(ϕ, t) + uOcc({t[i]} ∪ ϕ′, t)).

Then we have: zi =
∑

ϕ′⊆ti∧|ϕ′|=�′−1 uOcc(ϕ, t) +
∑

ϕ′⊆ti∧|ϕ′|=�′−1 uOcc({t[i]} ∪ ϕ′, t).

But
∑

ϕ′⊆ti∧|ϕ′|=�′−1 uOcc(ϕ, t) = uOcc(ϕ, t)×( |ti|
�′−1

)
and

∑
ϕ′⊆ti∧|ϕ′|=�′−1 uOcc({t[i]}∪

ϕ′, t) = ω+
�′ (t[i], t) by definition. Then zi = uOcc(ϕ, t) × ( |ti|

�′−1

)
+ ω+

�′ (t[i], t). We also

know that uOcc(ϕ, t) =
∑

k<i∧t[k]∈ϕ ω+
1 (t[k], t). So, zi =

(∑
k<i∧t[k]∈ϕ ω+

1 (t[k], t)
)

×
( |ti|

�′−1

)
+ω+

�′ (t[i], t). Second, we have uOcc(ϕ∪ϕ′, t) = uOcc(ϕ, t)+uOcc(ϕ′, t). By setting

Zi =
∑

ϕ′⊆ti−1∧|ϕ′|=�′ uOcc(ϕ ∪ ϕ′, t), we get then Zi =
∑

ϕ′⊆ti−1∧|ϕ′|=�′ uOcc(ϕ, t) +
∑

ϕ′⊆ti−1∧|ϕ′|=�′ uOcc(ϕ
′, t). But

∑
ϕ′⊆ti−1∧|ϕ′|=�′ uOcc(ϕ, t) = uOcc(ϕ, t) × (|ti−1|

�′
)

=(∑
k<i∧t[k]∈ϕ ω+

1 (t[k], t)
)

× (|ti−1|
�′

)
et

∑
ϕ′⊆ti−1∧|ϕ′|=�′ uOcc(ϕ

′, t) =
∑

�∈{+,−} ω�
�′(t[i], t), so Zi =

(∑
k<i∧t[k]∈ϕ ω+

1 (t[k], t)
)

×(|ti−1|
�′

)
+

∑
�∈{+,−} ω�

�′(t[i], t).

Finally, Pt
�(t[i]|ϕ, �′) = zi

Zi
=

(
∑

k<i∧t[k]∈ϕ ω+
1 (t[k],t))×( |ti|

�′−1)+ω+
�′ (t[i],t)

(
∑

k<i∧t[k]∈ϕ ω+
1 (t[k],t))×(|ti−1|

�′ )+
∑

�∈{+,−} ω�
�′ (t[i],t)

. �

Proof (Property 4). Let m be the minimum and M the maximum length
constraints, the probability of drawing the pattern ϕ of length � in the
database D denoted by P[m..M ](ϕ,D), and Z a normalization constant
defined by Z =

∑
ϕ′∈L(D) uavg

[m..M ](ϕ
′,D). We know that : P[m..M ](ϕ,D) =

∑
(j,t)∈D

(
P[m..M ](tj ,D) × P[m..M ](ϕ, tj)

)
. But P[m..M ](tj ,D) =

ωavgU
[m..M](tj)

Z , then

P[m..M ](ϕ,D) =
∑

(j,t)∈D

(
ωavgU
[m..M ](tj)

Z
× P[m..M ](ϕ, tj)

)

. (2)

We also know that:

P[m..M ](ϕ, tj) = P[m..M ](�|tj) × P
tj

[m..M ](ϕ|�). (3)
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P[m..M ](�|tj) =
ωavgU

[�..�] (tj)

ωavgU
[m..M](tj)

and P
tj

[m..M ](ϕ|�) = uOcc(ϕ,tj)

ωavgU
[�..�] (tj)×�

then by substituting

the two terms in (3), P[m..M ](ϕ, tj) =
ωavgU

[�..�] (tj)

ωavgU
[m..M](tj)

× uOcc(ϕ,tj)

ωavgU
[�..�] (tj)×�

= uOcc(ϕ,tj)

ωavgU
[m..M](tj)×�

.

Now, if we replace P[m..M ](ϕ, tj) in (2) by its last expression, we get:

P[m..M ](ϕ, D) =
∑

(j,t)∈D

(
ω

avgU
[m..M](tj)

Z
× uOcc(ϕ,tj)

ω
avgU
[m..M](tj)×�

)
= 1

Z
×

∑
(j,t)∈D uOcc(ϕ,tj)

�
. But

by definition, we have
∑

(j,t)∈D uOcc(ϕ,tj)

�
= uavg

[m..M ](ϕ, D), so P[m..M ](ϕ, D) =
u

avg
[m..M](ϕ,D)

Z
. Hence the result. �
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Abstract. Machine Learning can help overcome human biases in deci-
sion making by focussing on purely logical conclusions based on the
training data. If the training data is biased, however, that bias will be
transferred to the model and remains undetected as the performance is
validated on a test set drawn from the same biased distribution. Existing
strategies for selection bias identification and mitigation generally rely
on some sort of knowledge of the bias or the ground-truth. An excep-
tion is the Imitate algorithm that assumes no knowledge but comes with
a strong limitation: It can only model datasets with one normally dis-
tributed cluster per class. In this paper, we introduce a novel algorithm,
Mimic, which uses Imitate as a building block but relaxes this limitation.
By allowing mixtures of multivariate Gaussians, our technique is able to
model multi-cluster datasets and provide solutions for a substantially
wider set of problems. Experiments confirm that Mimic not only iden-
tifies potential biases in multi-cluster datasets which can be corrected
early on but also improves classifier performance.

1 Introduction

Throughout the years, Machine Learning and Data Mining have gained influ-
ence into a wide variety of applications, typically under the assumption that
they ideally overcome conscious and unconscious human biases, prejudices, and
emotions in decision making. To overcome limitations of our own knowledge and
experience, Machine Learning learns concepts from – hopefully unbiased – data
and thereby discovers latent knowledge. As such, it has been applied to domains
with large amounts of data that are no longer humanly processable and require
us to rely, up to a certain degree, on the models trained in automated settings,
e.g., credit scoring [9], medical diagnoses [15], or crime risk assessment [7].

In reality, although these models improve in accuracy, the data is often flawed
and induces biases in the models that are largely overlooked since the perfor-
mance is evaluated against equally biased test data. Existing bias mitigation
strategies not only require the user to be aware of the bias but also to have a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Fig. 1. Decision Boundaries of Support Vector Machines trained on three different
datasets: a sample representative for the ground-truth (left), a biased subset (center),
and the biased subset augmented with our algorithm, Mimic (right).

certain knowledge of the ground-truth. But what if the user does not suspect
any bias? In this case they will use the data and train a biased model delivering
poor performance when applied to previously unseen or underrepresented cases
trusting in the quality of its predictions.

Biases are easily induced during the data gathering phase, for example in
clinical trials [15] where the data is collected from local volunteers that might
not represent the entire population. However, the resulting model will be used to
predict the reactions to treatments or drugs for the entire population. Knowledge
of the bias early in the development process cannot only help improve the data
quality, but can also mitigate its effect on the learned model.

In order to identify and mitigate selection biases where no additional infor-
mation is available, Dost et al. [5] proposed Imitate, a technique that, given
a biased dataset, aims to estimate the ground-truth distribution and generate
data points to augment the dataset accordingly. While the authors demonstrate
Imitate’s ability to improve model performance through pre-augmentation on
several examples, it is limited by a major assumption: the underlying ground-
truth is expected to be normally distributed. In practice, this strongly limits the
applicability of Imitate as it is neither flexible enough to model non-Gaussian
distributions nor can it capture datasets consisting of several clusters.

In this paper, we introduce Mimic (Multi -IMItate Bias Correction), a multi-
cluster solution for identification and mitigation of selection biases that exploits
Imitate as a building block. Modeling data as a mixture of possibly biased and
overlapping multivariate Gaussians, Mimic overcomes Imitate’s limitations and
greatly increases its applicability. The parameters of these Gaussians bridge
between the estimated and the present distribution and can indicate under-
represented regions in the data that are likely to correspond to a selection bias.
Generating points in these regions helps mitigate the effect of the bias and pushes
the decision boundary towards the ground-truth (see Fig. 1). Our contributions
are as follows:

– We propose Mimic, a novel selection bias identification and mitigation strat-
egy that does not require any knowledge of the bias or the ground-truth.

– In contrast to existing approaches, Mimic is able to function in a multi-cluster
setting and hence drastically increases the range of datasets and distributions
that can be modeled.
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– In a set of experiments, we demonstrate the shortcomings of existing tech-
niques and highlight the potential of Mimic in these scenarios. We made our
Python+sklearn [16] implementation publicly available1.

The remainder of this paper is organized as follows: Sections 2 and 3 review
the problem statement including the notation and the related research fields,
respectively. We introduce our proposed method in Sect. 4 before evaluating it
in Sect. 5. Section 6 concludes the paper.

2 Problem Statement

Assuming that we are facing a biased dataset, we aim to generate additional
data points that are able to mitigate the bias. Following the notation in [5], this
key idea can be formalized as the following problem statement:

Reconstruction Problem. Let D ⊂ Rn be an n-dimensional dataset (poten-
tially with class labels) that is representative of an underlying distribution which
we consider to be the ground-truth. Given only a biased subset B ⊂ D, the task
is to approximate I := D\B with a generated dataset Î such that a model trained
on the augmented dataset B ∪ Î is minimally different from one trained on D.

The problem was first introduced by Dost et al. [5] where D is required to be
normally distributed (when split into classes). This assumption is well motivated
due to two factors: First, Bareinboim et al. [2] prove theoretically that the true
class label distribution cannot be recovered from the biased dataset alone with-
out utilising additional data or assumptions, so some assumption is necessary.
Second, following the Central Limit Theorem2, numerical real-world observa-
tions frequently are approximately Gaussian which makes normal distributions
very common [13]. In this paper, however, we relax the requirement of normal
distributions and assume each class of D consists of a mixture of Gaussians. In
other words, we assume that each class of the dataset can be represented by a
set of possibly overlapping Gaussian clusters.

3 Related Work

Apart from Imitate, to the best of our knowledge, there does not exist any
research attempting to solve the problem defined in the previous section. How-
ever, methods have been proposed that solve the problem under additional
assumptions. This section provides an overview of related research areas.

Bias Mitigation Using Additional Information. If only a subset of the
variables is affected by a selection bias, Missing Value Imputation techniques
[17] can impute these values. For a dataset X with labels Y , however, they

1 Implementation and Supplementary Material: https://github.com/KatDost/Mimic.
2 The Central Limit Theorem states that a sequence of independent and identically

distributed (i.i.d.) random variables converges almost surely to a Gaussian [10]. Since
we can typically assume that real-world measurements are not perfectly i.i.d. but
rather combinations of different effects, we will often observe this effect.

https://github.com/KatDost/Mimic
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Fig. 2. When facing a biased sample (1st plot from left), the EM algorithm will fit one
(2nd) or multiple (3rd; here controlled by BIC) Gaussians to minimize the error on
the presented data. Imitate and Mimic (4th) instead use the histogram bin heights as
weights for the fitting procedure and capture the underlying ground-truth more closely.

operate under the assumption that P[X|Y ] and P[Y |X] are unchanged between
the training and the test set. The Selection Bias literature [14] widely assumes
that all data points in D are known (or at least their distribution), but only
a biased subset of the labels is available. More general is the field of Covariate
Shift Correction [18] where P[Y |X] is assumed to be shared whereas P[X|Y ]
can differ between the training and the test set and will be “shifted”. Methods
in both fields typically operate model-free and require an unbiased sample to
estimate the bias and assign more weight to data points in underrepresented
regions during training [20,21]. In the field of Fairness in Machine Learning,
different techniques to test for biases in models have been proposed, e.g., using
the AI Fairness 360 toolkit [3]. These methods require the user to decide which
attributes in the dataset might be critical and need to be protected, e.g., gender,
and the detected biases can be validated using additional data if possible [19].

If a researcher does not suspect a concrete bias or deals with a numerical
tabular dataset without ground-truth information, none of the above mentioned
approaches are feasible. Dataset visualization [12] can be considered here, but it
is either limited to simple biases or requires inherent bias detection mechanisms
to decide upon the kind of visualization, and it detects biases rather than miti-
gates them. Hence, in the situation of the Reconstruction Problem (see Sect. 2),
the Imitate algorithm is, to the best of our knowledge, the only option if neither
the ground-truth nor the bias are known.

Imitate. When facing a biased dataset B, Imitate [5] splits it into classes c ∈ C
and treats each resulting subset Bc separately. The dataset Bc is transformed
using Independent Component Analysis (ICA) [11] to obtain statistically inde-
pendent components that reveal non-Gaussian densities and allow individual
analysis. For each of these components d, the data is represented as a histogram
hd, or using kernel density estimators, and the bin heights are exploited as
weights for a least squares optimizer fitting a Gaussian gd to the histogram. Note
that this design puts more emphasis on the existing data points than potentially
missing ones and therefore yields fundamentally different results than typical
Expectation-Maximization fitting if a selection bias is present (see Fig. 2 for an
example). Once all components have been processed, additional data points are
generated such that the gaps between gd and hd are filled and the distributions gd

are preserved. Then the new points are back-transformed into the original data
space. These data points not only indicate a potential selection bias if focussed
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on certain areas in the space, but can also be used to augment Bc and mitigate
the effect the bias has on subsequent modeling tasks (see [5] for details). Due
to the particular design of Imitate that uses ICA for component-wise fitting of
one Gaussian, the algorithm is restricted to one normally distributed cluster per
class only. In this paper, we relax this restriction.

4 Proposed Method

Aiming to provide a bias mitigation strategy for a wide range of problems, in this
paper, we assume that ground-truth data consists of a mixture of multivariate
Gaussians. Although this is still a limiting assumption, it substantially widens
the range of datasets that can be modeled when compared to existing techniques,
i.e., the Imitate algorithm (see Sect. 2 for a discussion of that assumption). Before
analyzing each Gaussian for potential biases, we need to find a suitable mixture
model for the ground-truth based solely on the biased dataset.

If no bias is present in the dataset, Gaussian Mixture Models (GMMs) can
fulfill the task as they are able to identify the optimal Gaussians to describe a
presented dataset given suitable initial cluster centers. These centers (and the
number of clusters) could be found using, for example, the Bayesian information
criterion (BIC) [8]. In the case of a selection bias, however, one biased cluster
might be split into several Gaussian clusters as that mixture fits the presented
dataset better, as shown in Fig. 2. Assume a clinical study testing the impact
of a new drug on test and control groups. While GMM breaks the group of
participants into many small clusters as it models the presented datasets, we
need to find clusters that give an indication of where some data might be missing
and thereby indicating that, e.g., women below a certain age did not participate
due to safety concerns. Therefore, we need to develop a novel strategy to cluster
biased datasets into separate potentially overlapping Gaussians that capture the
ground-truth rather than the biased presented data.

The central idea for Mimicis simple: We start with a large number of clusters
and let Imitate indicate where data might be missing. In contrast to Agglomera-
tive Clustering, we operate on a point-basis rather than by subsequently merging
clusters. If data is available in another cluster to fill in the gap, we let the cluster
grow by assigning these data points until it is approximately normally distributed
or no suitable data points can be found. In this case, we found a potential selec-
tion bias and generate data points to mitigate it. Once all initial clusters have
been fully grown, a merging procedure purges duplicates and combines suitable
clusters to overcome locally optimal solutions. This process is carried out for
every class of the initial dataset (if any) separately, but we describe it for only
one class in the following in order to simplify. See Algorithm1 for an overview
and the following for a detailed discussion of the components.

Initialization [Algorithm 1; Lines 1–2]. Starting with only the biased dataset B,
the Initialization step divides it into a large number of initial clusters that Mimic
uses to search each of them for non-normality. It then uses this information to
“steal” data points from other clusters into this one and grow it. If the initial
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Algorithm 1. Mimic
Input: biased dataset B
Output: parameters θi = (μi, Σi) for each

cluster i; a set P of generated points to mit-
igate the bias
� remove outliers using LOF

1: B′ ← removeOutliers(B)
� initialize clustering using KMeans with
large K

2: l ← initializeClustering(B′)
3: θ ← ∅
4: L ← largestValidCluster(l)

� Grow every valid cluster. A cluster is valid
if it is large and dense enough and has nei-
ther been processed before nor subsumed by
a previous iteration

5: while L exists do
6: l, θL ← growCluster(L, B′, l)
7: θ ← θ ∪ θL

� select the largest valid cluster based on
the updated labels l (if possible)

8: L ← largestValidCluster(l)
� merge clusters if it improves normality

9: θ ← merge(θ, B′)
� generate data to mitigate the bias

10: P ← augment(θ, B)
11: return θ, P

Algorithm 2. growCluster
Input: label L to be grown, outlier-free dataset

B′ with labels l
Output: updated labels l, parameters θL for clus-

ter L
1: repeat
2: B′

L ← B′∣∣
l=L

� cluster L

� run Imitate on L to obtain GL (grid rep-
resenting where data might be missing), nL

(number of missing points), θL (parameters
of the fitted Gaussian)

3: GL, nL, θL ← Imitate(B′
L)

� score all remaining data points based on
if they are likely to help improve the fit of
the Gaussian

4: s ← score(B′ \ B′
L, GL, θL)

� identify nL suitable candidates in batches
bi; sample based on s

5: for batches bi with
∑

i bi = nL do

6: Ci ← sample(B′ \ B′
L, bi, s)

� assign a batch of candidates to the
cluster if it improves the likelihood of the
model fitting the data

7: if P[θL | B′
L ∪ Ci] > P[θL | B′

L] then
8: l(Ci) ← L � update l for accepted Ci

9: until l did not change
10: return l, θL

clusters are already sufficiently normal, no direction for growth can be identified.
Therefore, after pre-processing the data with Local Outlier Factor (LOF) [4] for
higher cluster quality, Mimic starts off with non-Gaussian initial clusters like
those obtained from KMeans. A high number of initial clusters increases the
probability that for each true cluster, a less overlapping part is captured in an
initial cluster that can later be grown, even if overlaps exist. In order to use a
sufficient number of initial clusters, we use twice the number that maximizes
the Silhouette score [8], and split further if we detect two density peaks in a
histogram instead of one. From here on, the outlier-free dataset is denoted as B′

and is passed on to the next step together with the initial labels l.

Identifying Valid Clusters [Algorithm 1; Lines 4, 8]. Once a large number of
initial clusters has been found, Mimic grows them into Gaussian clusters where
possible using points from B. Aiming to secure reliable performance during the
subsequent fitting of a multivariate normal distribution, we filter out all clusters
that are either (i) too small (fewer than 10 data points in our implementation)
or (ii) too widespread with low density (that is, if the cluster’s LOF lies below
the 3σ-interval of the average cluster LOF). Note that the latter is a necessary
measure as we can expect to obtain unreliable results when fitting a normal
distribution to a set of singletons. Additionally, we reduce the computational
burden by ensuring that no cluster is grown more than once and no cluster that
has been fully subsumed in previous iterations is processed. Thereby, we reduce
the number of duplicate clusters we obtain and focus on the most promising
ones. Each iteration selects the largest valid cluster and grows it as described
below, until no valid clusters remain.
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Adapting Imitate to Our Needs [Algorithm 2; Line 3]. Given a cluster L,
Imitate estimates a multivariate Gaussian (see Sect. 3) and indicates based on
a grid where (and how many) points need to be generated in order to smooth
out the cluster’s density and have it resemble the fitted Gaussian. Note that
the Imitate algorithm as described in the original paper continues to operate
on the grid representation which would result in a high complexity given our
repeated Imitate calls and does not allow for precise probability assignments,
hence we adjust: Assume we fitted one Gaussian (μi, σ

2
i ) per component i′ in

the ICA-transformed space. Since the components are independent, this results
in a multivariate Gaussian with mean μ = (μ1, . . . , μd) for d dimensions and the
covariance matrix Σ ∈ Rd×d with diagonal (σ2

1 , . . . , σ
2
d) and 0 elsewhere. Let

I ∈ Rd×d be the ICA transformation matrix. The multivariate Gaussian (μ,Σ)
can then be back-transformed into the original space and yields the Gaussian
(I−1μ, I−1Σ(I−1)T ). We refer to Suppl. A for the proofs of both claims.

Additionally, we adjusted Imitate’s method of selecting the grid granularity:
Instead of repeating the entire modeling and augmentation process and using
the results with the highest confidence score (see the original paper), we use the
corrected Akaike Information Criterion (AICc) [8] (see Suppl. C for additional
experiments justifying this choice) to select, for each dimension, the grid over
which a histogram represents the data best. This adjustment is necessary since
Mimic uses repeated calls of the Imitate fitting procedure and the inflicted
computational expense of the confidence-based strategy would be infeasible.

Growing Clusters [Algorithm 2]. For a cluster L, Imitate provides us with a
multivariate Gaussian θL, a grid GL indicating where and how much (nL) data
might be missing. As outlined in Algorithm2, both are passed on to a scoring
function that estimates for each point p outside L how well it contributes to
filling in the gap between the present (h) and fitted (f) density (first term), and
how likely it belongs to that distribution (second term):

s(p) = d log[max{f(p) − h(p), 0} + 1] + log[f(p) + 1]

where d denotes the number of features and puts more emphasis on filling the
gap for higher dimensions. Using the score, Mimic then searches for nL fitting
candidates in batches bi to overcome locally optimal solutions. A batch of can-
didates Ci is drawn randomly with probabilities based on the score values s
and added to the cluster if it fulfills P [θL | B′|l=L ∪ Ci] > P [θL | B′|l=L], that
is, if adding the candidates to the cluster improves the likelihood of the fitted
Gaussian given the assigned data points (see Suppl. for the calculations). In our
implementation, we restart the sampling (with replacement) of a rejected batch
twice in order to avoid “unlucky” choices. If points have been added, Mimic fits
another multivariate Gaussian and repeats the process until no further points
are added. The parameters of the last fitted Gaussian represent this cluster.

Merging [Algorithm 1; Line 9]. Once the parameters for all clusters have been
obtained, we make sure not to have duplicate clusters or those that are locally
optimally normal but can be combined into a better fit. Additionally, Mimic
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risks overgrowing clusters if the initial clustering was particularly poor, e.g., if it
captures the overlapping area of two clusters. Here, the point density is higher
and the Imitate procedure will demand to grow the cluster in all directions
simultaneously such that it never reaches a Gaussian-like shape and continues to
grow, absorbing more and more data. Such a cluster L is typically characterized
by a very wide probability distribution reaching low density values for all points,
such that the points p with L = arg maxi P[p | θi] exhibit a substantially larger
distance to each other than average and can be detected as such. We identify
and remove these overgrown clusters as a first step of the merging procedure.

The overlap of two clusters can be quantified by counting the points in the
dataset for which the cluster membership is not entirely clear and weighting them
using their probabilities. Mimic calculates the overlap between each combination
of two clusters and merges greedily until no further merge improves the fitting
of the Gaussians (see Suppl. A for details).

Data Augmentation [Algorithm 1; Line 10]. After receiving the final cluster
parameter sets from the merging step, Mimic probabilistically assigns the data
points to the clusters and generates points for each cluster separately to “fill in
the gap” between the found and the fitted distribution as in Imitate.

Assumptions and Expectations. Selection Biases cannot be reconstructed
without making some kind of assumption regarding the ground-truth and/or the
nature of the bias. Hence, Mimic assumes a ground-truth that can be modeled
by a mixture of (possibly overlapping) multivariate Gaussians which, in contrast
to existing techniques, requires neither a ground-truth sample nor knowledge
of the bias. This freedom, however, comes at a cost and forces some implicit
requirements: (i) The data cannot contain categorical, binary, or discrete fea-
tures with a very small number of values as fitting a Gaussian would not be
meaningful, (ii) B itself cannot consist only of Gaussian clusters or Mimic will
not be able to identify growth directions, (iii) several strongly overlapping biased
clusters might not be disentangled correctly, and (iv) the bias in each cluster is
expected to have a convex shape as our component-wise analysis fails otherwise.
Lastly, biases can be misleading pointing towards a different Gaussian than the
true one and causing Mimic to introduce new biases into the data. We aim to
suppress that behavior by refusing to take action if the Gaussians do not fit
reasonably well (see the Imitate paper for details). This, however, causes con-
servative results with bias reconstructions pointing towards the right locations
rather than correcting entirely which is the reason for only small improvements
in classification accuracy (as can be seen in the experimental results). In prac-
tice, however, this is enough to point a practitioner towards potential problems
in the data that can be corrected upon confirmation.

5 Experiments and Discussion

In order to investigate Mimic’s ability to improve classifier performance, we set
up all experiments similarly: we train three classifiers on a biased training set
B, the augmented biased training set B ∪ Î, and an unbiased training set D.



Divide and Imitate: Multi-cluster Identification and Mitigation 157

Fig. 3. For each classification method, we compare the impact of the dataset dimen-
sionality and the number of clusters on the performance.

The accuracy accB , accB∪Î , and accD of all three classifiers, respectively, is then
evaluated on an unbiased test set with the hope that accB∪Î > accB . After
providing details on the experimental setup, we assess the impact of different
characteristics of datasets on the performance.

Experimental Setup. In our experiments, we compare Mimic not only to the
biased accuracy as a baseline, but also for augmented biased datasets B∪Î where
Î is obtained using (i) augmentation with Imitate, (ii) clustering and augmenta-
tion with Mimic, and (iii) clustering with GMM and augmentation with Mimic
which we denote as “GMMimic”. GMM selects the number of clusters (from 1
to 20) that achieve the best BIC and initializes using KMeans. As classifiers,
we use Decision Trees (DT), Support Vector Machines with RBF-kernel (SVM),
and Random Forests (RF) with 100 trees. All parameters are kept at sklearn’s
default values. We use synthetic datasets since they allow us a high level of
control, and real-world datasets to demonstrate that Mimic is indeed applica-
ble in practice. Real-world datasets are taken from the UCI Machine Learning
Repository [1,6,22]. Semi-artificial biases are created as in [5] by splitting into
B and I using a decision stump (the larger subset is taken for B). This way, the
impact on the classification accuracy is guaranteed (see Suppl. B for details).
All synthetic experiments are repeated 30 times to compensate for the random-
ness in the dataset generation, and we report the median results. Experiments
on real-world datasets are repeated 10 times as there is no dataset generation
step involved. Here, we report the mean together with 90% confidence intervals.
We measure the performance as the improvement over the biased accuracy and
normalize using the unbiased accuracy, i.e., (accB∪Î − accB)/(accD − accB).

Unbiased Datasets. Being able to mitigate a selection bias is important, how-
ever, if Mimic is presented with an unbiased dataset, it should not “correct” it.
Experiments (Suppl. C) show that substantially fewer data points (none after
purging the noise) are generated for the unbiased datasets.

Dimensionality. The dimensionality of synthetic datasets is closely related to
their difficulty as higher dimensions naturally increase the distance between clus-
ters even while under the same cluster-to-center distances. Figure 3 demonstrates
this, as lower dimensionalities typically exhibit poorer performance than higher
ones, but this effect vanishes with larger numbers of clusters. GMMimic and
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Fig. 4. We compare the degree to which the classifier accuracy can improve when differ-
ent augmentation techniques are used. The baseline (red line) represents the accuracy
when the classifiers are trained on the biased dataset alone. 100% corresponds to train-
ing on a ground-truth sample. Note that we omit the y-axes labels and replace them
with the dashed line indicating the maximum improvement (maximum y-value) for each
plot. The bottom of the plots is cut off unless Mimic’s performance is displayed there
for an easier comparison. The black lines are 90% confidence intervals and indicate
significant differences from the baseline if they do not touch it. (Color figure online)

Mimic show similar performances for a larger number of clusters while Mimic
clearly dominates when only a small number of clusters is present, regardless
of the dimensionality. Imitate shows strong performance in this case too, but
decreases rapidly since it operates with only one cluster.

Cluster Overlap. The center-to-cluster distances directly affect the difficulty
of the clustering task as they control the overlap. In experiments (Suppl. C)
GMMimic and Mimic both show improvements even for a large number of clus-
ters and high overlaps. Mimic demonstrates its strength particularly for better
isolated clusters where it improves the classification accuracy by up to 50%.

Real-Life Datasets. Figure 4 summarizes the results on five real-world
datasets. For most datasets, we can see Mimic’s potential to improve the clas-
sifier accuracy substantially, in most cases more than its competitors. A few
observations are noteworthy: On the Wholesale dataset, Imitate performs well
since it consists of only one cluster per class. The Vertebral Column dataset
seems particularly hard for all methods as the semi-synthetic bias removes 70%
of the majority class points (which therefore cannot be reconstructed by any
method), leaving an almost balanced classification problem with full overlap
and an imbalanced test set. Here, the tree-based methods essentially select the
majority class, and Mimic is able to tip the scales favorably, but cannot help
the SVM. Overall, although GMMimic demonstrates solid performance on the
synthetic dataset, it does not seem to generalize well to the real-world datasets.

Discussion. Overall, the experiments show that application of an augmentation
technique can provide a meaningful improvement on a biased dataset. While Imi-
tate is designed for datasets with only one cluster per class, GMMimic and Mimic
can improve upon its performance when dealing with multi-cluster datasets. The
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experiments on synthetic datasets with artificial biases point towards a similar
performance of GMM- and Mimic-based data augmentation. On the real-world
datasets, however, we do not see this confirmed: Mimic can further improve the
classification performance. Further research will investigate where which method
tends to be superior and particularly if a symbiosis of both can be beneficial,
e.g., with GMM as an initial model and a Mimic-inspired merging strategy and
augmentation.

Mimic relaxes Imitate’s assumption that the ground-truth dataset consists
of only one Gaussian per class. Instead, it can model multiple Gaussian clusters
or even approximate non-Gaussian clusters with mixture models. This makes
Mimic applicable to a substantially wider range of datasets. However, not all
distributions can be approximated well as a mixture of Gaussians. Future exten-
sions should include an automated test of applicability as well as approaches
applicable to a wider range of distributions.

6 Conclusion
Machine Learning models inherit selection biases from datasets causing them
to predict inaccurately if the biases remain undetected. Existing bias mitigation
strategies require certain kinds of knowledge of the bias or the ground-truth.
In real-world scenarios, however, this requirement often cannot be met. A first
attempt to detect and mitigate selection biases in a “blind” setting has been
made with the Imitate algorithm, although it is limited to datasets with only
one Gaussian cluster per class.

In this paper, we introduced Mimic, a technique that uses Imitate as a
building block but overcomes these limitations and can model a wider range
of datasets exploiting mixtures of Gaussians. As such, multi-cluster modeling of
many non-normally distributed datasets is now possible.

Although limitations still exist as discussed in Sect. 5, we believe that Mimic
is a major step forward towards automated bias identification and mitigation in
the case that no knowledge of the bias or the ground-truth exists.
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Abstract. Neighborhood rough set (NRS) has been successfully applied
to attribute reduction for numeric data. Most existing algorithms have
a time complexity of at least O(MN2). In this paper, we propose a
hypersphere neighborhood rough set (HNRS) algorithm with a time com-
plexity of O(MN). HNRS adaptively generates the neighborhood radius
without manual setting. First, a set of hyperspheres is built to accurately
describe the decision boundary on the original data. Second, the hyper-
sphere radius serves as the neighborhood radius to obtain the positive
region. Therefore, we avoid the time-consuming grid searching of the
NRS algorithm for radius optimization. Third, according to the change
of objects within the positive region, the redundant attributes can be
reduced efficiently. Experimental results show that HNRS outperforms
state-of-the-art attribute reduction methods in terms of both efficiency
and classification accuracy.

Keywords: Neighborhood rough sets · Hypersphere · Support vector
data description · Attribute reduction · Decision boundary

1 Introduction

With the rapid increase of data dimension and volume, traditional data mining
algorithms are facing challenges from both the perspective of data storage and
computation. The attributes of these data are often correlated, redundant, or
even noisy, which can lead to adverse effects such as high computational complex-
ity and poor performance [3]. Attribute reduction is one of the most effective data
preprocessing strategies to deal with this issue [1]. It directly removes redundant
attributes from the original feature space for a compact and accurate represen-
tation. Additionally, attribute reduction helps build simpler learning models,
improve learning performance and data quality [18].
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Rough set theory was originally presented by Pawlak as an effective mathe-
matical tool to deal with uncertain information [10]. In recent years, this theory
has been widely applied to attribute reduction in the field of artificial intelligence
[9,13,15]. Rough set derives from the indiscernibility relation of the attribute
subset of the universe. The upper and lower approximations are defined accord-
ing to this relation. For a classification problem, the upper and lower approxima-
tion sets contain all elements that may and exactly belong to a class, respectively.
According to different definitions of the indiscernibility relation, various rough
set models have been proposed, such as the classical rough set [10], fuzzy rough
set [2], and other rough set models [7,19].

Neighborhood rough set (NRS) [4,16] is one of the most important rough set
models. From the extensions of the classical rough set, NRS uses neighborhood
relations to generate a family of neighborhood granules from the universe, and
then these neighborhood granules can be used to approximate decision classes
[5]. The neighborhood relation is characterized by the size of the neighborhood.
However, the size of the neighborhood is influenced by the distribution of the
dataset [6]. This will lead to changes in the results of the NRS. Therefore, the
neighborhood’s size is a parameter that is typically optimized by grid searching.
Moreover, the process of parameter optimization is very time-consuming, and
this is unacceptable when training on large-scale datasets.

To alleviate this issue, Liu et al. [17] proposed the FHARA algorithm with the
concept of hash bucket, which divides the data into different regions and only
calculates the neighborhood relations of objects in the same region. However,
this algorithm lacks the ability to optimize the neighborhood radius. In fact,
optimizing the neighborhood radius refers to automatically generating the ideal
radius for each dataset. This is very effective for the performance of attribute
reduction, especially when the scale of the provided dataset is large. Although the
GBNRS algorithm proposed by Xia et al. [14] attempts to solve this optimization
problem, the algorithm exhibits instability and requires multiple experiments to
obtain the best results. Thus, it is of vitally important for NRS to take an
effective strategy to generate the neighborhood radius adaptively and stably.

Motivated by the above observations, we propose to perform neighborhood
partition for each instance in an adaptive fashion. To be specific, we generate the
optimal neighborhood radius parameter adaptively rather than setting a fixed
value. An illustration of the proposed adaptive neighborhood partition is shown
in Fig. 1. In essence, we study (1) how to rapidly generate the optimal neigh-
borhood radius based on the different distribution of the dataset. (2) how to
perform attribute reduction stably and rapidly under the generated neighbor-
hood relation. To address these two research issues, we propose a new NRS model
for rapid attribute reduction in classification, called hypersphere neighborhood
rough set (HNRS). The main contributions are summarized as follows:

– We establish a novel model of the hypersphere neighborhood rough set by
introducing hypersphere computing into NRS, and the time complexity of
HNRS is only O(MN).
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(a) (b)

hypersphere
computing

Feature space

Fig. 1. Illustration of the hypersphere neighborhood rough set. (a) is the original dis-
tribution of a dataset with 15 classes. (b) is a set of hyperspheres built for the data in
(a) by hypersphere computing. The hypersphere contains the majority of equivalence
class instances while excluding outliers. The boundary points of the hypersphere are
support vectors. The radius r and center O of each hypersphere are calculated based
on support vectors.

– HNRS is a parameter-free model which adaptively generates the neighbor-
hood radius, making it more flexible and generalizable. Furthermore, HNRS
is quite stable and does not contain any randomness.

– We validated the effectiveness of the HNRS model on public benchmark
datasets in the domain.

2 Preliminaries

In this section, we simply review the mathematical foundations of the two the-
ories used, hypersphere computing and neighborhood rough sets.

2.1 Neighborhood Rough Set

In practical applications, a dataset is always given by a data decision table and
denoted as 〈U,A,D〉, where U = {x1, x2, . . . , xN} is a nonempty finite set of
objects, A = {a1, a2, . . . , am} is a condition attribute set in which the attributes
are real-valued and D is a decision attribute whose values are nominal. There
are many ways to define the neighborhood of an object. However, regardless of
the type of neighborhood, a metric is required to calculate the distance between
objects. The following is a description of the distance metric.

Let 〈U,A,D〉 be a decision table, let U = {x1, x2, . . . , xN} be a non-empty
finite set of real space, B ⊆ A is an attribute subset, SB : U ×U → R is a binary
function. SB is known as a metric, if it satisfies following conditions:
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(1) SB(x1, x2) ≥ 0,SB(x1, x2) = 0 iff x1 = x2,∀x1, x2 ∈ U ;
(2) SB(x1, x2) = SB(x2, x1),∀x1, x2 ∈ U ;
(3) SB(x1, x3) ≤ SB(x1, x2) + SB(x2, x3),∀x1, x2, x3 ∈ U .

Let 〈U,A,D〉 be a decision table, B ⊆ A, ∀xi ∈ U , the ε-neighborhood Rε
B

of xi is defined as [4]:

Rε
B(xi) = {x | x ∈ U,SB(x, xi) ≤ ε}, (1)

where neighborhood radius ε > 0, that is specified by users in advance.
Let 〈U,A,D〉 be a decision table, U is partitioned into r equivalence classes:

E1, E2, . . . , Er. ∀B ⊆ A, Rε
B is a neighborhood similarity relation on U induced

by B. The lower and the upper approximation of the decision attribute set D
with respect to the condition attribute set B are respectively defined as [13]:

Rε
B(D) =

r⋃

i=1

Rε
B(Ek), (2)

R
ε

B(D) =
r⋃

i=1

R
ε

B(Ek), (3)

where Rε
B(Ek) = {xk | Rε

B(xk) ⊆ Ek, xk ∈ U}, R
ε

B(Ek) = {xk | Rε
B(xk)

⋂
Ek 
=

∅, xk ∈ U}, POSε
B(D) = Rε

B(D) is the sample domain of consistent decisions
in all neighborhoods. The dependency function of D associated with B is for-
mulated as γε

B(D) = |POSε
B(D)|/|U |, where | · | indicates the cardinality of a

set.
Classical NRS calculates the neighborhood similarity relation between any

two objects within a given radius on a condition attribute set. Concretely, NRS
searches for neighbors in the given neighborhood of each object on a condition
attribute set. The object is added into the positive region if the neighbors has
the same label with the queried object. Therefore, the time complexity of NRS is
O(MN2). Unfortunately, the neighborhood radius must be provided by the user,
and the user does not know the optimal radius for the dataset in advance. Gener-
ally, the optimal neighborhood radius for each dataset is found by grid searching.
However, parameter optimization is a very time-consuming process that signif-
icantly affects the performance of model. To alleviate this issue, we introduce
hypersphere computing into NRS, which is a stable and adaptive method of
generating radius.

2.2 Hypersphere

The theoretical foundation of hypersphere computing is support vector data
description (SVDD) [12]. SVDD is a machine learning technique that is widely
used for single-class classification and outlier detection. Its purpose is to use a
set of support vectors to find the hypersphere with the minimum volume that
contains the most target objects. We suppose that {x1, x2, . . . , xn} is a set of
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target objects. Therefore, the mathematical formulation of the problem is to find
a nonnegative vector α that contains Lagrange multipliers for all data points to
maximize the optimization problem:

L =
∑

i

αi(xi · xi) −
∑

i,j

αiαj(xi · xj). (4)

The xi’s for which 0 < α < C for a preselected 0 < C < 1 lie on the boundary
are called support vectors.

Let 〈U,A,D〉 be a decision table, U/D = {E1, E2, . . . , Ek}, Ek = {x1, x2,
. . . , xn}, α is the Lagrange multipliers obtained by the quadratic planning,
‖α‖1 = 1. We generate a hypersphere H with O as its center and r as its radius
on Ek as follows [12]:

O =
∑

i

αixi, (5)

r =
√

(xk · xk) − 2
∑

i

αi(xk · xi) +
∑

i,j

αiαj(xi · xj), (6)

where xk is any support vector, (xi · xj) is the inner product of xi and xj .
Generally, the inner product (xi · xj) is replaced by the Gaussian kernel,
κ(xi, xj) = exp(−‖xi−xj‖2

2
2σ2 ). To be specific, it is to map the original data space

to a high-dimensional feature space by the Gaussian kernel.
In fact, most datasets have multiple equivalence classes, and we serve the

instances of each equivalence class as the target objects to generate its hyper-
sphere. Therefore, the dataset’s number of hyperspheres equals the number of
equivalence classes. Although each hypersphere covers many instances, it consists
of only two properties, the center and the radius. Consequently, the dataset’s
representation becomes quite simple. In addition, the decision boundary can
be accurately described by the hyperspheres generated by the support vectors
[12]. This not only ensures the hypersphere’s purity, but also efficiently elimi-
nates contentious instances. This can be seen directly in the hypersphere H in
Fig. 1(b). Fortunately, Jiang et al. [8] presented a fast method for obtaining sup-
port vectors (FISVDD). This allows us to swiftly construct hyperspheres from
large-scale datasets.

3 Hypersphere Neighborhood Rough Set

In this section, we will describe the details of the proposed hypersphere neigh-
borhood rough set.

3.1 Theory and Mathematical Models

We have shown the process of hypersphere neighborhood rough set in Fig. 1. The
multiple hyperspheres with different radii are adaptively generated by hyper-
sphere computing. Furthermore, we can ensure that all instances within a hyper-
sphere have the same label by generating a hypersphere for each equivalence
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class. In other words, the purity of the hypersphere is guaranteed to be 1. We
consider the centers of all hyperspheres as positive region for the following three
reasons:

1) The center of the hypersphere is far away from the boundary and completely
within the class. Therefore, it has no impact on the dataset’s decision bound-
ary;

2) There is no randomness in the process of generating the centers, which helps
to generate a stable positive region;

3) The instances inside a range at the center all have the same label with it,
which is identical to the definition of the positive region in NRS.

Since the hypersphere is the smallest hypersphere that contains the target
objects, and non-target objects or abnormal points are strictly excluded, the pos-
itive region has no risk of being contaminated. The following is the mathematical
definition of our hypersphere neighborhood rough set.

Definition 1 (Neighborhood). Let 〈U,A,D〉 be a decision table, U/D = {E1,
E2, . . . , Ek}, B ⊆ A, and let the generated hyperspheres cover the entire U . The
hypersphere generated by the Ek is Hk, it’s center and radius are Ok and rk,
respectively. For xi ∈ Hk, we define the neighborhood of xi as:

Rrk

B (xi) = {x | ∀x ∈ Hk,SB(x,Ok) ≤ rk}, (7)

where SB(x,Ok) is the distance from x to Ok under the condition attribute set
B, and

SB(x,Ok)2 = κ(x · x) − 2
∑

i

αiκ(x · xi) +
∑

ij

αiαjκ(xi · xj). (8)

Definition 2 (Lower approximation). Let 〈U,A,D〉 be a decision table,
U/D = {E1, E2, . . . , Ek}, B ⊆ A, Rrk

B (xi) is the neighborhood of xi on U induced
by B, and let the generated hyperspheres cover the entire U . The k-th hypersphere
under the condition attribute set is Hk(B). The lower approximation set of Ek

with respect to a attribute set B is defined as:

Rrk

B (Ek) = {x =
∑

i

αixi | xi ∈ Hk(B), Rrk

B (x) ⊆ Ek}. (9)

Definition 3 (Positive region). Let 〈U,A,D〉 be a decision table, B ⊆ A,
U/D = {E1, E2, . . . , Ek}, and let the generated hyperspheres cover the entire U .
The positive region is defined as:

HPosB(D) =
k⋃

i=1

Rrk

B (Ek). (10)
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Definition 4 (Relative redundancy attribute). Let 〈U,A,D〉 be a decision
table. For a condition attribute set B ⊆ A, a ∈ B,B 
= ∅. a is a relative redun-
dancy attribute of C if a satisfies:

HPosB−{a}(D) = HPosB(D) (11)

Due to the dependency function in NRS only considers the lower approxi-
mation, we introduce the lower approximation and the positive region of HNRS
in Definition 2 and in Definition 3, respectively. As described in Definition 2, the
lower approximation of each equivalence class is composed of its corresponding
hypersphere center. Therefore, the generated positive region is composed of the
center of each hypersphere. In particular, the center of the hypersphere is a vir-
tual point, which is generated rather than selected. In Definition 4, redundant
attributes are accurately removed by positive region changes.

3.2 Algorithm Design

The proposed HNRS algorithm is mainly divided into two stages. First, the pos-
itive region on the entire dataset is generated. Second, the relative redundancy
attributes are deleted by the positive region.

In the first stage, we adopt FISVDD to rapidly obtain the support vectors of
each equivalence class to generate hyperspheres. The center and radius of each
hypersphere are generated adaptively. Additionally, the hypersphere radius is
served as the neighborhood radius to generate the neighborhood of the instance,
and then the lower approximation and the positive region are obtained. Con-
cretely, the positive region consists of the centers of all hyperspheres.

In the second stage, we calculate the distance between each instance and each
hypersphere’s center after removing an attribute, and partition these instances
into their nearest hypersphere. In particular, the center belongs to the generated
positive region and the distance is calculated according to Eq. (8). This parti-
tion will generate new hyperspheres. If the purity of these new hyperspheres
is all 1, the removed attribute is a relative redundancy attribute that can be
deleted; otherwise, it should be retained. Additionally, the hyperspheres need
to be reconstructed after deleting an attribute. As a reminder, the purity of a
hypersphere is the percentage of the majority instance in the hypersphere. All
conditional attributes are checked in turn, and finally a reduct set is generated.
Algorithm 1. With the above description, the pseudo code of the proposed
HNRS framework is summarized in Algorithm1. From steps 2 to 4, the initial
positive region on the original data is generated. From steps 5 to 6, the instances
are repartitioned into the nearest hypersphere after removing an attribute. From
steps 7 to 17, we determine whether the removed attribute is redundant by
whether the positive region has changed. In particular, the change in the posi-
tive region is assessed by the purity of the hyperspheres. When an attribute is
removed, the support vector describing the decision boundary is affected. As a
result, the hyperspheres will need to be rebuilt.
Time Complexity. The support vectors describing the decision boundary can
be found rapidly with FISVDD, and the time complexity is O(N). Specifically,
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Algorithm 1: Hypershpere Neighborhood Rough Set (HNRS)
input : A decision table 〈U,A,D〉, A = {a1, a2, . . . , am};
output: A reduced attribute set B;

1 Initialization: B = A;
2 Generate a hyperspheres for each equivalence class on B by FISVDD [8];
3 Generate the center and the radius of each hypersphere on B by Eq. (5) and

Eq. (6), respectively;
4 Generate the positive region of U on B by Eq. (10);
5 Remove a condition attribute ai in B;
6 Partition each instance into the nearest hypersphere on B by Eq. (8) based on

the positive region in step 4;
7 Calculate the purity of the newly generated hyperspheres;
8 if the purity of each hypersphere is 1 then
9 Go to step 2; // ai is a relative redundancy attribute of B

10 else
11 Add the condition attribute ai to B; // ai should be retained
12 if all attributes in B have been checked then
13 Return B;
14 else
15 Remove a new condition attribute in B and go to step 6;
16 end

17 end

the time complexity of a hypersphere with a center and a radius constructed
by the support vectors is O(N). Therefore, HNRS is substantially more efficient
than NRS at generating positive region. This can be intuitively understood as:
NRS needs to search the neighborhood of each object when generating a positive
region. In contrast, HNRS merely needs to traverse the center of each hyper-
sphere. Although the number of hyperspheres is small, they are generated by
adaptive dataset distribution and can accurately describe the decision bound-
ary. Due to we need to check all conditional attributes, the time complexity of
HNRS is O(MN). As a result, HNRS performs better, as we have demonstrated
in experiments.

4 Experiments

In this section, we conduct a series of experiments to evaluate the performance
of the algorithm of HNRS. The first experiment aims to validate the effectiveness
of HNRS in removing redundant attributes. Then, six representative datasts are
used to verify the efficiency of HNRS. All the code for the experiment is available
at https://github.com/diadai/HNRS.

4.1 Experimental Setup

To illustrate the effectiveness and superiority of HNRS, it is compared with
classical NRS [16] and the current state-of-the-art NRS algorithms, including fast

https://github.com/diadai/HNRS
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hash attribute reduct algorithm (FHARA) [17], and granular ball neighborhood
rough sets (GBNRS) [14].

For a fair comparison, the neighborhood radius of NRS and FHARA is tuned
from {0.025, 0.05, . . . , 1} by grid searching, GBNRS runs ten times to avoid ran-
domness, and Gaussian kernel parameter σ ∈ [0.6, 1, 4] for HNRS. Specifically,
we set σ in three cases based on experience: a) when N ≤ 1000, σ = 0.6; b) when
1000 < N ≤ 50000, σ = 1; c) when N > 50000, σ = 4, where N is the number
of instances in the dataset. For each comparing algorithm, we report their best
classification accuracies on the reduct set.

Table 1. Properties of datasets.

Datasets Number Number Number Datasets Number Number Number

of attributes of instances of classes of attributes of instances of classes

Hepatiti 19 155 2 Ring 20 7,400 2

Wine 13 178 3 Pendigits 16 10,992 10

Ionoshpere 35 351 2 Online 17 12,330 2

Derm 34 366 6 Dry-Bean 17 13,611 7

Vote 16 436 2 Letter 15 20,000 16

Wdbc 30 569 2 Bank 17 45,211 2

Australian 14 690 2 Adult 14 45,222 2

Crx 15 690 2 Sensorless 48 58,509 11

Vehicle 18 846 4 Miniboone 50 130,064 2

Segmentation 18 2,310 7 Har 18 165,632 5

4.2 Effectiveness

The first experiment aims to validate the effectiveness of HNRS in removing
redundant attributes. We use 20 datasets from UCI (http://archive.ics.uci.edu/
ml/datasets.php) to conduct experiments, and these datasets are summarized
in Table 1. For each dataset, the following things were reported: a) The average
accuracy of ten times 10-fold cross validation (10CV); b) The standard devia-
tion of 10CV (the value with ±). Additionally, the mean rank was obtained by
applying the Friedman test, which is the most well-known non-parametric test
[11]. The Friedman test analyzes whether there are significant differences among
the algorithms.

Table 2 shows the accuracy comparison of HNRS and rival attribute reduction
algorithms. The black dots highlight the best results, and the original denotes the
classification result of the original data on kNN. From Table 2, we observe that
our algorithm outperforms other algorithms on 12 out of 20 datasets and also
achieves very competitive accuracy on the remaining datasets in comparison with
the state-of-the-art algorithms. Furthermore, HNRS can efficiently improve the
overall stability of the classifier. On the other hand, these comparison algorithms

http://archive.ics.uci.edu/ml/datasets.php
http://archive.ics.uci.edu/ml/datasets.php
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Table 2. Comparison of experimental accuracy on kNN

Datasets Original HNRS NRS FHARA GBNRS

Hepatiti 56.67±13.74 64.00±7.42• 60.67±5.54 63.33±8.56 60.67±10.52

Wine 95.88±5.91 97.65±3.90• 97.65±3.95• 97.65±3.90• 94.12±5.26

Ionoshpere 86.29±5.08 92.29±4.44• 91.43±4.04 90.57±4.44 88.29±6.32

Derm 97.50±2.31 97.50±2.62• 97.22±2.78 93.33±4.84 95.00±2.72

Vote 91.86±2.80 95.35±1.80• 92.09±3.15 ∗ 93.95±3.32

Wdbc 96.96±1.96 97.32±1.65• 97.32±1.83• 96.96±2.53 94.64±2.88

Australian 82.75±5.00 84.64±4.06 84.20±4.65 84.20±4.65 85.36±3.07•
Crx 85.65±5.59 85.51±4.20 85.36±4.87 85.36±4.87 85.07±4.81

Vehicle 70.48±5.32 73.33±5.89• 70.83±4.94 70.71±5.79 68.57±5.14

Segmentation 96.15±1.09 96.15±1.09• 96.15±0.68• 96.10±1.02 96.06±1.10

Ring 71.89±2.41 77.39±2.30 84.69±1.54• 84.47±1.21 71.89±2.41

Pendigits 99.34±0.24 99.33±0.21 99.31±0.15 97.82±0.42 99.34±0.24•
Online 84.36±1.20 85.95±0.94• 85.95±1.19• 84.62±1.46 84.51±1.15

Dry-Bean 91.54±0.63 91.83±0.58 91.93±0.46 91.95±0.56• 91.64±0.48

Letter 65.73±0.86 67.52±0.43• ∗ 65.73±0.86 65.73±0.86

Bank 88.58±0.31 88.34±0.42 ∗ 88.58±0.30• 88.58±0.30•
Adult 81.42±0.49 81.95±0.55• ∗ 81.01±0.47 81.42±0.49

Sensorless 99.02±0.09 99.02±0.09 ∗ 99.30±0.10• 99.01±0.06

Miniboone 87.90±0.15 87.42±0.14 ∗ ∗ ∗
Har 99.47±0.04 99.47±0.04• ∗ ∗ ∗
Meanrank 2.6 1.55• 2.55 2.55 2.85

Win/Tie/Lost 4/4/12 − 2/4/14 4/1/15 3/0/17

* indicates that the experiment results cannot be obtained.

are unable to get classification results for large-scale data sets such as miniboone
in a reasonable amount of time and memory. Consequently, HNRS is an efficient
attribute reduction method that can be applied to many domains, especially to
large-scale datasets.

4.3 Efficiency

To evaluate the efficiency of the proposed Hypersphere neighborhood rough set
algorithm, 6 large-scale datasets in Table 2 are used, including Online, Dry Bean,
Letter, Adult, Sensorless and Har. In these experiments, we gradually increased
the number of instances from 10% to 100% of a dataset. Because NRS and
FHARA are very slow for large-scale datasets, the neighborhood radius in this
experiment is fixed at 0.01 and no grid searching is performed. The attribute
reduction time consumption variation curves are illustrated in Fig. 2. As shown
in Fig. 2, comparison algorithms trend to achieve a significant increase in time
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consumption with the increase of instances in data, and HNRS can consistently
outperform the state-of-the-art.

Furthermore, the partially incomplete curve in Fig. 2 indicates that the cor-
responding algorithm was unable to obtain the reduct set due to memory con-
straints. On the six large-scale datasets, HNRS not only runs normally, but also
has the best performance. However, the rival algorithms cannot be executed
when the number of instances reaches a certain level. For example, in the largest
experimental dataset, Har in Fig. 2(f), NRS can not run normally at all. Addi-
tionally, on 80% of Har’s data instances, FHARA and GBNRS take more than
10, 000 and 1, 000 s, respectively; In contrast, HNRS only takes 34 s, a more than
95% improvement. The results in Fig. 2 demonstrate the significant superiority
of HNRS in terms of processing large-scale data.

(a) Online (b) Dry_Bean (c) Letter

(d) Adult (e) Sensorless (f) Har

Fig. 2. Efficiency comparison. The y-axis is the computational time (s), and the x-axis
is the number of instances.
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5 Conclusion

In this paper, we proposed a novel rough set algorithm with O(MN) time com-
plexity, called HNRS. HNRS is a parameter-free algorithm that introduces hyper-
sphere computing into NRS. Furthermore, HNRS adaptively generates neighbor-
hood radius, which solves the problem of optimizing radius for grid searching in
NRS. We conduct experiments on different datasets, and compare HNRS with
the state-of-the-art attribute reduction algorithms. The results demonstrate the
superiority of HNRS over others in terms of effectiveness and efficiency.
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Abstract. Clustering has been widely used in visual analysis, pattern
recognition, privacy protection and other fields. In recent years, numer-
ous clustering methods have received increasing attention. However, dis-
covering arbitrarily shaped clusters, determining the location and num-
ber of clustering cores and dealing with fuzzy boundaries is tough for
most algorithms. We propose a novel clustering algorithm with dynamic
boundary extraction strategy based on local gravitation (DBELG) which
extracts boundary in a natural way, rather than mechanically defining
a few core points. In order to identify fuzzy boundaries, a novel grav-
ity model that makes use of three significant information about the data
objects is proposed. The structure of the reserved core groups is clear and
easy to cluster. On this basis, the core group clustering (CGC) is further
proposed to cluster the core points. The experimental results show that
DBELG achieves better performance than existing methods in handling
datasets with fuzzy boundaries and complex structures.

Keywords: Clustering · Natural neighbor · Boundary extraction ·
Fuzzy boundaries · Local gravitation

1 Introduction

As one of the essential techniques for mining and describing the intrinsic proper-
ties of data [1], cluster analysis has been widely used in document clustering [2],
image segmentation [3], medical services [4,5], etc.

K-means [6] and K-medoids [7] are typical center-based algorithms. This type
of algorithm works by randomly selecting or finding the densest points as cluster
cores and assigning the remaining data objects according to heuristic rules. Most
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of the above methods can cluster the data with Gaussian distribution effectively,
but they are not suitable for non-spherical clusters. In addition, predetermining
the number of clusters is also an unavoidable problem. Some methods attempt
to solve the above problems.

DBSCAN [8] is one of representative examples due to several advantages: (a)
it is not necessary to specify the number of clusters, (b) it is less susceptible to
interference from outliers, (c) clusters of arbitrary shapes can be found. However,
the shortcomings of difficult parameter tuning and sensitivity to fuzzy bound-
aries cannot be ignored. HDBSCAN [9] expands DBSCAN by converting it into
a hierarchical clustering algorithm so that the algorithm is no longer sensitive
to radius Eps. However, the issue of fuzzy border sensitivity remains.

DPC [10] is an algorithm that has been proposed in recent years and has
attracted extensive research interest. DPC not only automatically determines
the number of clusters, but also detects outliers. However, it requires setting a
fixed cutoff distance dc, which is predefined by the user. In addition, DPC does
not have the ability to distinguish clusters of arbitrary shapes. SNN-DPC [11]
addresses the effect of the cutoff distance dc, but SNN-DPC also requires a
decision graph to select the clustering centers. In addition, the number of shared
nearest neighbors k must be set manually.

The above algorithms are not applicable to complex patterns of manifold
structures. DCore [12] is a new algorithm that can detect complex patterns.
DCore is based on the assumption that each cluster has a density core that does
not include outliers, boundaries and edges. Nevertheless, Dcore requires setting
five global parameters. It is time-consuming to find five suitable values at the
same time. In addition, the core of a cluster is often not one or several points
but some sets of points without a clear shape and structure. Therefore, it is
unnatural to simply define several cluster cores.

In recent years, some innovative clustering algorithms have been proposed
to solve these problems, one of which is Border-Peeling Clustering (BP for
short) [13]. BP not only correctly identifies the true structure of most clusters,
but also automatically detects outliers. Although BP exhibits strong modeling
capabilities, it also has some shortcomings. The input parameter k, i.e., the
number of neighbors, is difficult to determine, especially when the shape of the
clusters is complex.

Unlike SNN-DPC and BP, FSNN [14] and HCLCS [15] introduce the state-
of-the-art concept of neighbors, natural neighbors (NaN) [16]. Due to the intro-
duction of NaN, which is parameter-free and effective, the clustering strategies
proposed in [14] and [15] are able to identify both spherical and manifold clus-
ters. Nevertheless, both HCLCS and FSNN struggle to maintain satisfactory
performance on clusters with outliers and fuzzy boundaries. Obviously, the clear
border between clusters is used as the implied condition in numerous algorithms.
However, more or less data are often distributed among different clusters in the
actual situation, if some sparse data points are exactly between two clusters,
they may serve as bridges between clusters and bind them together (leading to
redundant merging of clusters).

In summary, determining the location and number of clustering cores, dis-
covering arbitrarily shaped clusters and dealing with fuzzy boundaries is tough
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formost algorithms. To address the issues discussed above, we propose a bound-
ary extraction strategy. Unlike previous work, our method does not directly
define the cluster core but continuously peels the border points and explores the
cluster center naturally, thereby avoiding the assumption of the location and
number of cluster cores. Secondly, the border of after-peeled cluster is clear,
and the clusters formed by the remaining points are easily distinguished and
aggregated. The contributions of this research are as follows:

– A novel gravity model is proposed which makes use of three significant infor-
mation about the data objects in dense and sparse regions to estimate the
local density of data objects. Local density estimation has advantages in
avoiding over-segmentation of clusters.

– Unlike algorithms based on knn-neighbourhoods, and unlike algorithms with
ε-neighbourhoods, our algorithm uses state-of-the-art natural neighbor and
therefore does not require the specification of neighbor parameters.

– A new clustering framework is proposed. There are no strong assumptions
about the structure and density distribution of the data points, such as a
single density peak. We focus on extracting boundary in a natural way. Unlike
previous work, such as DPC [10], Dcore [12], this is a reverse and natural
strategy. In addition, our core points are not defined globally, but through an
iterative process of sensing the gravity of the data.

The rest of this paper is organized as follows. In the second section, the con-
cept of natural neighbor is introduced. The third section describes the bound-
ary extraction clustering algorithm based on data gravity (DBELG for short).
Experimental results are reported in the next section, followed by conclusions
and future work in the last section.

2 Natural Neighbor

The Natural Neighbor (NaN) [16] is a widely used [17,18] and effective neighbor
concept. The formal definition of the natural neighbor can be given as follows.

Natural Neighbor: Given a set of n data points X = {x1, x2, · · · , xn} in R and
xi, xj ∈ X. If xi belongs to the supk-th nearest neighbors of xj and xj belongs
to the supk-th nearest neighbors of point xi, then xi and xj are considered to
be Natural Nearest Neighbor of each other.

xj ∈ NaN(xi) ⇔ (xi ∈ NNsupk (xj)) ∧ (xj ∈ NNsupk (xi)) (1)

where NNsupk (xi) is the set of supk nearest neighbors of xi. The objective of
natural neighbor searching is to achieve a natural stable state, where each data
object has at least one mutual neighbor. The number of reverse nearest neighbors
nb(xi) of each point xi is calculated in each iteration. Before the searching state
is stable, the natural neighbor of each data point is searched by continuously
expanding the neighbor searching round r, that is, the k value in KNN. The
more detail of NaN-Searching is described in Algorithm 1 of [16]. Specially, we
use kd-tree to speed up the NaN searching process.
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Table 1. Description of notations.

Notation Description

X The set of all data

X
(t)
p The set of peeled data at the t-th iteration

X
(t)
up The core groups at the t-th iteration

F̂ij Local gravitation between xi and xj

mi The mass of data object xi

F̂ k
i The local resultant force of data object xi

NaNLGF
(t)
i The local gravitation fluctuation of xi

∇NaNLGFmax(t) The fluctuation truncation value

B
(t)
i The border classification value

3 Methodology

The main process of DBELG is visually shown in Fig. 1. First, as shown in
Fig. 1(a), the border points (red points in the figure) are peeled from the data
set by the proposed NaNLGF, thereby the interior points (gray points in the
figure) are preserved. At the same time, the relationship between border points
and interior points is recorded. Next, as shown in Fig. 1(b), the interior points
are used to construct the initial cluster. Finally, according to the connection rela-
tionship between border points and interior points, the previously peeled points
are assigned to the cluster where the associated points are located. Detailed steps
of the proposed DBELG are described in Algorithm1. For ease of understand-
ing, we list the important notation used in this paper and their corresponding
descriptions are listed in Table 1.

Fig. 1. Illustration of the main processes of DBELG. (Color figure online)

3.1 Dynamic Boundary Extraction

In order to extract the border points, we define a novel density influence value
called local gravitation fluctuation based on natural neighbor (NaNLGF). This
notion is originate from three significant differences between the neighbors of
dense region and sparse region.
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Algorithm 1. DBELG
Require: X: A set of points X = {x1, x2, · · · , xn} ∈ R.
Ensure: Cluster indices C = {C1, C2, · · · , Cm}.
1: Initializing X(1)

up ← X.

2: for peeling iteration 1 ≤ t ≤ T do

3: for each point xi ∈ X(t)
up do

4: λ, nb, NaN=NaN-searching(X(t)
up );

5: NaNLGF
(t)
i =

max(nb)∑

k=1

∣
∣
∣
∣
∣
∣F̂k

i

∣
∣
∣ −

∣
∣
∣F̂

k+1
i

∣
∣
∣
∣
∣
∣;

6: end for
7: Compute ∇NaNLGFmax(t);

8: X(t)
p ←

{
xi : B

(t)
i = 1 ∧ xi ∈ X(t−1)

up

}
; //dynamic boundary extraction, see Sect. 3.1

9: X(t)
up ← X(t−1)

up \X(t)
p ;

10: for each peeled point xi ∈ X(t)
p do

11: γi ← Association
(

xi, X(t)
up , NaN

)
; // association strategy, see Sect. 3.2

12: end for
13: end for

14: C̃ ← CGC
(

X(t)
up

)
; // core group clustering, see Sect. 3.3

15: C ← ComputeFinalResult
(

Xp, C̃, γ
)
. // linking border points to interior points

– The sum of distances between a point in sparse region (outliers and border
points) and its nearest neighbors is usually larger than that in dense region.

– The number of natural neighbors of the sparse area is usually less than the
point of the dense area.

– The distribution of neighbors in intensive region is more uniform than points
in sparse area.

Like Newton’s law of universal gravitation, in our model, each object is regarded
as point with mass in the data space. Two different objects are attracted to
each other, and the magnitude of the attraction is proportional to the mass
and inversely proportional to the square of the distance. Therefore, the data
gravitation can be computed as follows:

F̂ij = mimjh(ξ (i, j))2ûij (2)

where ξ (i, j) > 0 and xi, xj ∈ X
(t)
up . Moreover, xj is a natural neighbor of xi.

F̂ij represents the interactive force between data objects xi and xj . mi and mj

are the masses of xi and xj in data space respectively. The proximity between
data points is represented by ξ (i, j), which is generally Euclidean distance. h (·)
denotes an inverse proportion function and ûij is the unit vector from xi to xj .
In our method, the mass is calculated as follow:

mi = h(
k∑

j=1

ξ(i, j))nb(xi) (3)

According to formula 3, the value of mass is large for points in dense region and
small in sparse region. As previously mentioned, in a dense area, the distance
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between data objects and its neighbor is small, which means that the sum of the

distances between point xi and its k nearest neighbors (expressed by
k∑

j=1

ξ(i, j))

is small. Therefore, the value of h(
k∑

j=1

ξ(i, j)) is large. The data in sparse areas is

the opposite. In addition, nb(xi) is used as the weight factor to further enlarge
the difference of mass between the border points and the data objects in the core
area. nb(xi), the number of reverse nearest neighbors of xi in the stable state
of natural neighbor search, is obtained by NaN-searching algorithm described in
Sect. 2. nb in sparse areas is significantly less than that in dense areas. This is
consistent with the scale-free characteristics of natural neighbors [16].

Unlike Newton’s law of universal gravitation, we assume that data objects are
attracted only by neighbors in a local region. In general, the distance between a
point and its neighbors does not change significantly. Thus, the local gravitation
of point xi with its natural neighbors can be computed as:

F̂ k
i =

k∑

j=1

F̂ij = h(mi)
k∑

j=1

ûij (4)

F̂ k
i reveals the resultant force of k natural neighbors of xi and encapsulates

the three significant differences mentioned earlier. Based on the above analy-
sis, NaNLGF defined to quantify the local density. It is noteworthy that our
method does not require parameters, which is substantially different from the
density influence value defined by BP [13]. Mathematically, the local gravitation
fluctuation of point xi can be expressed as:

NaNLGF
(t)
i =

max(nb)∑

k=1

∣∣∣
∣∣∣F̂ k

i

∣∣∣ −
∣∣∣F̂ k+1

i

∣∣∣
∣∣∣ (5)

For each data point xi ∈ X
(t)
up , B

(t)
i is used to represent the border classification

value of xi. If xi is a border point, the value is 1, otherwise 0.

B
(t)
i =

{
1, ifNaNLGF

(t)
i > ∇NaNLGFmax(t)

0, otherwise.
(6)

The cutoff values ∇NaNLGFmax(t) can be specified manually, or as we describe
below. If the maximum difference of adjacent numbers after descending sorting
of NaNLGF

(t)
i is recorded as NaNLGFmax, and the difference comes from

point p and point q, then ∇NaNLGFmax(t) can be set as NaNLGF
(t)
q .

As for the number of the iteration of peeling, denoted as T , can be speci-
fied manually, or following the strategy: in each iteration t, we tracks the value
set of border points to be peeled:

{
NaNLGF

(t)
i

∣∣∣xi ∈ X
(t)
p

}
, and measure the

mean value of that set, denoted by NaNLGF
(t)
p . The termination condition is

NaNLGF (t)
p

NaNLGF
(t−1)
p

− NaNLGF (t−1)
p

NaNLGF
(t−2)
p

> 0.15.
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3.2 Association Strategy

While recognizing the border points at the t-th iteration, we associate each
identified point with a non-border point according to the following rules.

γi =
{

xj , xj ∈ NaN(xi) and xj ∈ X
(t)
up

γm , otherwise
(7)

where xi ∈ X
(t)
p and γi represents the combination point of xi. If xj is the

natural neighbor to xi, and xj in the set of X
(t)
up , then γi = xj . In the other

case, there are no natural neighbors of xi in the set of X
(t)
up , that means, all

points in NaN(xi) are identified as border points, then xi is combination with
the association point of the closest point xm (γm = xj), so γi = γm = xj .

Fig. 2. The combination process of border points. (Color figure online)

Obviously, Fig. 2 visually illustrates this process. Such an association forms a
transfer relationship. The figure on the left shows the correlation between border
points (indicated in red) and non-border points (indicated in green) identified
in the t-th iteration. The two subgraphs illustrate two cases of γi. The figure on
the right shows the relationship formed in the next iteration. The peeled points
are ignored in the next peeling. Finally, each of the peeled points has the same
label as the point they are associated with. In particular, to identify outliers, we
extract outliers from the X

(1)
p . The NaNLRF of outliers is in top β percent.

3.3 Core Group Clustering

Aiming at clustering the points of core groups automatically, we designed a novel
method Core group clustering, denoted as CGC, see Algorithm 2 for pseudo code.
To make it easier to understand, we give the formal definition as follows:

Extended Natural Neighbor: For each point xi ∈ X
(T )
up , the extended natural

neighborhood of xi is composed of the natural neighbors of xi and the reverse
neighbors, denoted as ENN (xi).

ENN (xi) = NaN (xi) ∪ RNN (xi) (8)

Reachable Extended Natural Neighbor: If there is a path 〈x0, x1, x2, · · · xk〉
from the interior core xi to the point xj , where x0 = xi, xk = xj , and
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Algorithm 2. CGC
Require: X: A set of points X = {x1, x2, · · · , xn} ∈ R.
Ensure: Interior cluster indices C = {C1, C2, · · · , Cm}.
1: Initializing X′ ← X, C ← Cr = ∅, label(xi) ← unvisited, xi ∈ X.
2: while X′ 	= ∅ do
3: for each point xi ∈ X′ do
4: if label(xi) = unvisited and nb(xi) = max( nb

j∈X′(xj)) then

5: Inp(r) = xi

6: Cr ← {Inp(r)}
7: label(xi) = visited
8: for each reachable extended natural neighbors of Inp(r) xre do
9: if label(xre) = unvisited then
10: Cr ← Cr ∪ {xre}
11: label(xre) = visited
12: end if
13: end for
14: end if
15: end for
16: C ← C ∪ Cr

17: X′ ← X′ − Cr

18: r = r + 1
19: end while

i = 0, 1, · · · k − 1, xi+1 ∈ ENN(xi), then xj is the reachable extended natu-
ral neighbor of the interior core xi.

Interior Core: If the number of neighbors in the reachable extended neighbor
of point xi is the largest, xi ∈ X

(T )
up , then xi is an interior core, abbreviated as

Inp(i).
The CGC is an inside-out diffusion method. Moreover, CGC explore each

data point of the reachable extended natural neighbor of interior core. First, an
interior core Inp(1) is selected as the start point, where Inp(1) ∈ X

(T )
up . Next,

visit all the neighbors x2, x3, ..., xr from the ENN(Inp(1)) in turn, and then
visit all the reachable extended natural neighbors of Inp(1) and x2, x3, ..., xr that
have not been visited before. Repeat this process until all reachable extended
neighbors of Inp(1) have been visited, then the construction of an initial cluster
is completed. Next, select the next interior core Inp(2) from the set of remaining
unvisited points, and repeat the above process until all interior points are visited.
Finally, the number of interior cores is the number of clusters, and an interior
core and its reachable extended neighbors are an initial cluster.

3.4 The Complexity Analysis

DBELG mainly includes the following parts: (a) border points extraction; (b)
clustering of core groups; and (c) the distribution of border points. The calcula-
tion of NaNLGF is the key of border points recognition, which mainly depends on
NaN-searching. Since we introduced kd-tree, the time complexity is O(n∗log(n)).
Suppose that the number of non-border points is m, the complexity of core
group clustering is O(m). The relation between each border point and an inte-
rior point will be recorded in the identification stage, so the complexity of the
distribution of border points is O(n − m). Therefore, the complexity of DBELG
is O(n ∗ log(n)).
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4 Experimental Evaluation

In order to evaluate the performance of DBELG, we compare DBELG with
six benchmark algorithms including one classic algorithms (K-means) and five
excellent methods (HDBSCAN, DPC, Dcore, SNN-DPC, BP) proposed recently.
Besides, we use two popular criteria: Accuracy (ACC) and Adjusted Rand Index
(ARI). They are well known external criteria, a larger value represents a better
clustering result. All experiments are run on a PC with an AMD R7 37000X,
24 G memory, 3.60 GHz CPU, Windows 10, and Python 3.8.

Table 2. Data characteristics of 8 synthetic datasets.

Datasets Instances Dimensions Clusters Source

Dataset 1 622 2 4 [19]

Dataset 2 1064 2 2 [19]

Dataset 3 1427 2 4 [19]

Dataset 4 1916 2 6 [19]

Dataset 5 8000 2 6 [19]

Dataset 6 8000 2 6 [19]

Dataset 7 8533 2 7 [19]

Dataset 8 10000 2 9 [19]

(a) Dataset 1 (b) Dataset 2 (c) Dataset 3 (d) Dataset 4

(e) Dataset 5 (f) Dataset 6 (g) Dataset 7 (h) Dataset 8

Fig. 3. Clustering results of DBELG on 8 synthetic datasets. The values of β are (20%,
8%, 10%, 13%, 17%, 20%, 6%, 27%) respectively

4.1 Experiment on Synthetic Datasets

In this section, we discuss the experimental results of 6 benchmark algorithms
and DBELG on 8 synthetic datasets. All datasets have different shapes, densities,
and overlapping degrees of fuzzy boundaries. Figure 3 shows the clustering results
of DBELG on the eight datasets. One color represents one cluster, and the
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Table 3. Performances of 7 algorithms on 8 synthetic datasets.

Datasets Metric K-means HDBSCAN DPC DCore SNN-DPC BP DBELG

Dataset 1 ACC 0.720 0.906 0.906 0.720 0.907 0.915 0.978

ARI 0.649 0.910 0.786 0.650 0.789 0.911 0.983

Dataset 2 ACC 0.005 0.823 0.767 0.008 0.830 0.529 0.904

ARI 0.007 0.887 0.792 0.011 0.800 0.514 0.948

Dataset 3 ACC 0.414 0.926 0.215 0.860 0.330 0.489 0.980

ARI 0.178 0.965 0.212 0.917 0.100 0.109 0.997

Dataset 4 ACC 0.476 0.957 0.672 0.836 0.726 0.663 0.946

ARI 0.285 0.979 0.546 0.836 0.539 0.328 0.969

Dataset 5 ACC 0.611 0.927 0.746 0.868 0.892 0.739 0.956

ARI 0.521 0.952 0.588 0.865 0.820 0.625 0.970

Dataset 6 ACC 0.821 0.916 0.697 0.835 0.881 0.789 0.941

ARI 0.727 0.910 0.516 0.832 0.745 0.744 0.946

Dataset 7 ACC 0.653 0.952 0.730 0.847 0.936 0.785 0.990

ARI 0.555 0.965 0.629 0.712 0.895 0.643 0.993

Dataset 8 ACC 0.595 0.926 0.719 0.865 0.879 0.631 0.938

ARI 0.381 0.913 0.449 0.857 0.837 0.484 0.947

number of different colors corresponds to the number of clusters. In particular,
outlier points are indicated in gray. The detailed characteristics of the data are
listed in the Table 2.

As for Kmeans, we provide all correct number of clusters. For BP, we tune the
major parameter k (i.e., the number of neighbors), and the value of k varies from
15 to 25. HDBSCAN has two major parameters, k (i.e., the number of neighbors)
and Nc (i.e., smallest size to be considered a cluster). We select the parameter
Nc from 5 to 20. In DPC and SNN-DPC, density peaks are manually selected
from the decision graph. DPC has one parameter dc (i.e., a cutoff distance), the
dc is 2%. SNN-DPC must set the number of iterations k, we set the parameter of
SNN-DPC varies from 5 to 30 in 1 increments. The results of DCore are affected
by five parameters, we attempt to use different parameter settings to ensure
better results.

The experimental results of DBELG on 8 synthetic datasets are shown in
Fig. 3. The scores of evaluation metric are listed in Table 3. As shown in Table 3
and Fig. 3, DBELG performs well on datasets with fuzzy boundaries. Besides, It
can also handle both spherical and non-spherical datasets with outliers. DBELG
performs better than other algorithms on seven datasets. It is slightly inferior
to HDBSCAN on Dataset 4, but all outperform the other five algorithms. In
summary, DBELG has advantages over other advanced algorithms.
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4.2 Experiment on Real-World Datasets

To further test the effectiveness of DBELG, we design experiments on 8 real-
world datasets. The comparison algorithms are the same as in the previous part.

The evaluation scores of each algorithm on different datasets are listed in
Table 4. DBELG performs well on six real datasets (Iris, Seeds, Glass, Ecoli,
Inosphere, Dermatology) in terms of two criteria, and its score on two datasets
(Wine, Segmentation) is slightly lower than that of other algorithms. For Seeds
dataset, the scores of SNN-DPC and DBELG are the same. In terms of Ecoli
dataset, the performance of BP and DBELG achieve the same score, which is
higher than other algorithms. Due to the completely different calculation meth-
ods of ACC and ARI, they do not always consistent. On the Wine dataset,
DBELG works best in ACC, SNN-DPC obtains the highest score in terms of
ARI. However, DBELG scores higher than other algorithms. As for Segmenta-
tion, the score of ARI, DBELG is higher than other algorithms, but SNN-DPC
is the best in ACC.

The running time of each algorithm on the 8 datasets is listed in Table 5.
The running time of DBELG is not the fastest, but it is not the slowest either.
Overall, DBELG is competitive with the other 6 algorithms. In summary, it can
be concluded that DBELG is more effective than the one classic algorithms (K-
means), more competitive than the four novel algorithms (HDBSCAN, DPC,
Dcore, SNN-DPC), and better than the original border peeling algorithm (BP).

Table 4. Performances of 7 algorithms on 8 real-world datasets.

Datasets Metric K-means HDBSCAN DPC Rcore SNN-DPC BP DBELG

Iris ACC 0.758 0.734 0.653 0.462 0.900 0.723 0.907

ARI 0.730 0.568 0.453 0.298 0.904 0.556 0.913

Wine ACC 0.430 0.384 0.565 0.356 0.893 0.412 0.944

ARI 0.371 0.242 0.505 0.403 0.915 0.375 0.837

Seeds ACC 0.695 0.443 0.719 0.417 0.768 0.671 0.768

ARI 0.717 0.280 0.745 0.160 0.811 0.688 0.811

Glass ACC 0.322 0.380 0.313 0.312 0.313 0.321 0.724

ARI 0.166 0.252 0.212 0.177 0.161 0.235 0.651

Segmentation ACC 0.571 0.541 0.668 0.465 0.691 0.355 0.653

ARI 0.399 0.268 0.537 0.035 0.535 0.101 0.687

Ecoli ACC 0.616 0.426 0.587 0.636 0.671 0.712 0.712

ARI 0.426 0.413 0.437 0.497 0.732 0.753 0.753

Iononsphere ACC 0.135 0.272 0.134 0.256 0.405 0.376 0.897

ARI 0.178 0.135 0.213 0.253 0.520 0.367 0.832

Dermatology ACC 0.103 0.522 0.659 0.438 0.761 0.157 0.855

ARI 0.027 0.322 0.602 0.166 0.540 0.049 0.836
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Table 5. Running time of 7 algorithms on 8 real-world datasets.

Datasets K-means HDBSCAN DPC DCore SNN-DPC BP DBELG

Iris 0.023 0.007 0.016 0.152 0.031 0.099 0.018

Wine 0.024 0.006 0.006 0.060 0.033 0.055 0.027

Seeds 0.025 0.010 0.017 0.021 0.030 0.109 0.023

Glass 0.027 0.105 0.003 0.026 0.084 0.079 0.044

Segmentation 0.034 0.045 0.005 0.080 0.031 0.089 0.033

Ecoli 0.044 0.018 0.008 0.325 0.061 0.171 0.084

Ionosphere 0.028 0.022 0.015 0.381 0.065 0.131 0.188

Dermatology 0.040 0.018 0.010 0.023 0.107 0.176 0.115

5 Conclusions

In this paper, a new clustering algorithm DBELG has been proposed. The key
of DBELG is to iteratively identify and peel the border points according to
proposed NaNLGF to eliminate the border points. At the same time, the core
of the cluster is revealed. And then, we cluster the points of core groups by
proposed CGC and assign the border points to the clusters. The preponderance
of DBELG is that DBELG does not require the assumptions about the location
and the number of cluster centers and not affected by fuzzy boundaries because
of the peeling of border points. In addition, due to the introduction of natural
neighbors, DBELG does not need to preset the neighbor parameter. Numerous
experiments on synthetic and real-world datasets demonstrate that DBELG can
not only recognize spherical clusters and manifold clusters effectively, but also
is not easily disturbed by fuzzy boundaries. Our future work focus on apply
DBELG into some practical applications.
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Abstract. Blockmodelling is the process of determining community structure in
a graph. Real graphs contain noise and so it is up to the blockmodelling method
to allow for this noise and reconstruct the most likely role memberships and role
relationships. Relationships are encoded in a graph using the absence and pres-
ence of edges. Two objects are considered similar if they each have edges to a
third object. However, the information provided by missing edges is ambiguous
and therefore can be measured in different ways. In this article, we examine the
effect of the choice of block metric on blockmodelling accuracy and find that
data relationships can be position based or set based. We hypothesise that this is
due to the data containing either Hamming noise or Jaccard noise. Experiments
performed on simulated data show that when no noise is present, the accuracy is
independent of the choice of metric. But when noise is introduced, high accuracy
results are obtained when the choice of metric matches the type of noise.

1 Introduction

Relationships between objects can be represented as a graph, where the graph vertices
represent the objects and the edges represent the relationships between the objects.
Many algorithms have been proposed for clustering/partitioning graph vertices based on
their relationships (e.g. Spectral Clustering [9]). These algorithms allow us to identify
clusters of objects that are closely related and are useful for tasks such as identifying a
group of employees who work in the same department, a group of people who attended
the same school, or a set of video games that are made by the same company.

Graphs also contain a deeper level of information that allows us to identify the roles
of the objects. Roles are not identified by the similarity of objects, but they are identified
by the relationships that the objects share with others. For example a set of employees
within a department might have the role of Manager. Each manager is not likely to be
connected to each other, but their relationships to others in the department are likely to
be similar (each is likely to be acting as gateway between senior management and the
other employees within the department).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13281, pp. 187–198, 2022.
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Blockmodelling allows us to discover clusters of objects that have the same or sim-
ilar role in the graph. The name comes from its process of revealing blocks within the
graph adjacency matrix, where a block is a set of objects that share the same links to
other objects in the graph. It is not clear, however, if the similarity between two objects
should be stronger if they have missing edges in common.

In this article, we examine the effect of the chosen block metric on blockmodelling
accuracy. Experiments show that high accuracy is obtained using position based block
metrics on some data and set based block metrics on other data. We hypothesise that
these results are due to the noise within the data being either Hamming or Jaccard noise
and run simulations examine this hypothesis.

The contributions of this article are:

– A presentation of a seriation based approach for blockbodelling, allowing block met-
ric selection (Sect. 2).

– An analysis of the effect of Hamming and Jaccard noise when using each metric
on specific block structures, and their interaction with the number of observations,
number of roles and noise level (Sect. 3).

We also identify that block metrics from the same category behave similarly, and there-
fore, we conjecture that relational data can be either position based or set based, and
that the block metric should be chosen to match the data noise type.

The article is organised as follows: Sect. 2 describes the initial investigation in to the
effect of block metric on blockmodel accuracy. Section 3 continues the investigation by
examining if the effect of the metrics are due to the type of noise. Section 4 examines
the results.

2 Blockmodelling with a Chosen Block Metric

A graph G with vertices V and edges E, can be represented by its adjacency matrix A,
where each element aij ∈ A depicts the weight of the edge directed from vertex j to i.
If many vertices have the same in or out edges, they form a block in A, where the block
represents a role (a set of objects that have similar relationships to the remainder of the
graph). If the rows and columns of A are ordered correctly, we are able to visualise the
block, unfortunately identifying the correct permutation is difficult and so the existence
of a particular block may not be obvious.

Both Stochastic [5] and Spectral [8] forms of blockmodels exist, where the stochas-
tic form allows us to identify the underlying sampling distribution, while the spectral
form provides a hard or soft clustering of objects into roles. We focus on the spectral
form. The adjacency matrix A ∈ {0, 1}n×n of a blockmodel with k roles, by definition,
can be decomposed into A = CMC ′ where M ∈ {0, 1}k×k contains the blockmodel
structure and C ∈ {0, 1}n×k contains the membership of each of n objects to one of the
k roles (such that the rows contain one 1 and the rest 0). Many methods of approximat-
ing this decomposition have been derived as gradient based optimisation problems that
compute C and M by minimising a function of the error [10]. But the optimisation is
difficult due to the binary nature of the problem [2]. Current methods in Spectral Block-
modelling [1] encourage sparsity by separately weighting errors on absent and present
edges.
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2.1 Blockmodelling Metric

Blockmodelling can be thought of as clustering based on secondary relationships; two
objects are found in the same block if they have the same relationship to a third object.
If the relationships between objects are binary, then the associated graph provides an
edge for a weight of 1 and no edge for a weight of 0. If we find that objects x1 and x2

both have edges to x3, then the similarity between x1 and x2 should increase. If both
x1 and x2 don’t have edges to x3, it is not clear if that information should increase or
decrease their similarity. For example if the edge to x3 represents if an object likes x3,
then no edge from both x1 and x2 show that they both don’t like x3, which increases
their similarity. On the other hand, if an edge to x3 represents if an object knows x3,
then it is unclear how both x1 and x2 not knowing the person (having no edge to x3)
influences their similarity.

To examine this problem, we will investigate the effect of block metric choice on
blockmodelling accuracy. This requires us to easily change the block metric without
effecting the blockmodelling algorithm. Therefore we will perform blockmodelling
using Seriation, taking inspiration from the cluster visualisation family xVAT [6], which
permute the rows and columns of a relational matrix to visualise clustering and identify
the number of clusters.

The structural matrix M shows association between roles. The membership matrix
C simply replicates and permutes the structure inM to form the graph adjacency matrix
A. If the rows of the membership matrix were ordered such that objects with the same
role membership are placed together, we would see the shape of the structural matrix
in A. Unfortunately, C is not likely to be ordered, and so the structure is difficult to
observe in A. But this implies that if we apply the correct permutation π to the rows of
C to obtain πC, or equivalently, the rows and columns of A to obtain πAπt, then we
can easily recover M and πC from the visible block structure and hence C. Discovery
of this permutation π is a seriation problem [3].

Seriation is the process of computing a permutation for a set of objects, such that the
similarity between each object and its neighbours is maximised. Given an appropriate
measure of similarity, we are able to reveal the block structure and expose roles using
seriation. Unfortunately, seriation only provides the permutation of the objects; further
processing of the adjacency matrix is required to cluster the objects, but we know that
the clustering can be performed by partitioning the ordered set of objects.

A common method for seriation is to use hierarchical clustering with optimal leaf
ordering [4]. This is a two stage process, where 1) hierarchical clustering is applied
to the dissimilarity matrix (based on a given metric), then 2) the permutation provided
by the dendrogram is optimised by maximising the similarity between each pair of
neighbouring objects. This reordering process is performed by swapping the children
at nodes of the dendrogram, ensuring that all objects remain in the clusters they were
assigned to. For example, the hierarchical clustering {{{1, 2}, {3}}, {4, 5}} can be per-
muted to {{4, 5}, {{2, 1}, {3}}}, where the clustering has not changed, but the simi-
larity between each point and its neighbour has changed. To obtain the set of block
clusters, the process is:

1. Create a dissimilarity matrix of the objects, where the dissimilarity is measured in
terms of the object connectivity,
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2. Apply hierarchical clustering to the dissimilarity matrix to obtain a dendrogram,
3. Reorder the dendrogram leaves using optimal leaf ordering,
4. Partition the dendrogram leaves into clusters.

We must decide upon a metric for our data; candidates are presented in the following
section.

2.2 Candidate Block Metrics

To perform blockmodelling, we cluster objects that have similar roles, implying similar
in and out links in the graph. Therefore, a blockmodelling metric must compare the in
and out links of a pair of objects. We define the blockmodelling distance between vertex
vx and vy as

Δ(vx, vy) = d(�e·,x, �e·,y) + d(�ex,·, �ey,·)

where �e·,x = [e1,x e2,x . . . eN,x] (the xth column of the adjacency matrix) is the vector
of edge weights ei,x directed from vertex vx to vertex vi, and �ex,· = [ex,1 ex,2 . . . ex,N ]
(the xth row of the adjacency matrix) is the vector of edge weights ex,i directed from
vertex vi to vertex vx (if no edge exists, the weight is zero).

The graphs we will be examining are unweighted, therefore �e·,x and �ex,· will be
binary vectors, or set membership vectors. We will examine the position based met-
rics Hamming and Euclidean, and the set based metrics Cosine, Jaccard and Dice, as
candidates for d(·, ·).

Position based Set based

dHam(�x, �y) =
1
N

‖�x − �y‖1 dJac(�x, �y) =
‖�x − �y‖1

N − (�1 − �x)′(�1 − �y)

dEuc(�x, �y) = ‖�x − �y‖2 dCos(�x, �y) = 1 − �x′�y
‖�x‖2‖�y‖2

dDic(�x, �y) =
‖�x − �y‖1

N − (�1 − �x)′(�1 − �y) + �x′�y

where �x and �y ∈ {0, 1}N are binary vectors (containing either 0 or 1), N is the vector
length, ‖�x‖1 is the l1 norm of �x, and ‖�x‖2 is the l2 norm of �x. Note that both Hamming
and Euclidean metrics treat vectors as positions, where Cosine, Jaccard and Dice treat
the vectors as representing sets. The major difference between these two categories is
how they treat zeros.

2.3 Effect of Blockmodelling Metric on Real Data

We begin our investigation by examining how the choice of block metric effects the
blockmodelling accuracy on real data commonly used in assessing community structure
algorithms. The data used in this experiment (Sampson: n = 18, k = 4; Polbooks: n =
105, k = 2; Polblogs: n = 1490, k = 2; Karate: n = 34, k = 2; Football: n = 115,
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Sampson

Fig. 1. NMI accuracy for blockmodel clustering using seriation with the given metric (x axis) and
data set. The grey region is the 95% confidence interval for mean Coord NMI.

k = 12; Baboons: n = 14, k = 2; Adjnoun: n = 112, k = 2) are found on Mark
Newman’s homepage and the Pajek repository.1 Initial experiments were performed to
identify the effect of the hierarchical clustering merging method, and we found that
Weighted merging consistently provided high accuracy results, so we focus on that
merging method in this paper to reduce the number of variables in each experiment.

Baseline results were computed using Projected Gradient Descent (Grad) and Coor-
dinate Descent (Coord) [1]. Note that the baseline methods are dependent on their ini-
tialisation, so we repeated the baseline clustering 10 times for each graph, using random
initialisation. The clustering accuracy is presented in Fig. 1 containing the NMI when
blockmodelling using each metric on each data set. The greyed out region in each plot
shows the 95% confidence interval for the Coord mean. The 95% confidence interval
for the Grad mean was also computed but it was lower than the interval for Coord, and
so left off the plot.

The results in Fig. 1 show that the five metrics can be placed in two groups; the
position based metrics (Hamming and Euclidean metrics) provide similar NMI for each
data set, and the set based metrics (Jaccard, Dice and Cosine metrics) provide similar
results for each data set. The data where set based metrics are preferred, show significant
improvement over the state-of-the-art. The results for the position based metrics are
generally equivalent in accuracy to the state-of-the-art. It is known that the Football
data contains little noise, while the Adjnoun data contains large amounts of noise, and
so we see that the accuracy of each are independent of the metric. It is likely that the
difference in results is due to the different noise distributions in each network. This
leads us to the definitions:

1 www-personal.umich.edu/∼mejn/ vlado.fmf.uni-lj.si/pub/networks/pajek/.

www-personal.umich.edu/~mejn/
http://vlado.fmf.uni-lj.si/pub/networks/pajek/
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– We call data position based data when it obtains greater NMI when using the posi-
tion based metrics (Euclidean and Hamming). We hypothesise that this is likely due
to the data containing Hamming noise.

– We call data set based data when it obtains greater NMI when using the set based
metrics (Cosine, Jaccard and Dice). We hypothesise that this is likely due to the data
containing Jaccard noise.

We can see from the results that Karate, Polbooks and Sampson are set based data and
that using a set based metric provides a huge increase over the baseline. It is interesting
to see that the blockmodelling when using Hamming and Euclidean metrics are very
similar to the confidence interval provided by the state-of-the-art, implying that the
state-of-the-art is designed for position based data.

3 Simulated Data with Hamming and Jaccard Noise

The previous experiment revealed that there were two types of network data and stated
that the difference is likely due to the noise distribution being different. In this section
we will examine the validity of this assumption by simulating the noise and examining
the effect of a set of parameters on the blockmodelling results. By simulating data, we
are able to control the data parameters and hence examine the effect of seriation on the
accuracy, given the block structure and noise type. To begin, we first describe the basic
block structures, and then present an analysis using simulated data with Hamming and
Jaccard noise.

3.1 Simulated Block Structures

When simulating data for this experiment, we use ring, star and tree block structures
for the structure matrix M . A ring structure arranges the roles so that each is connected
to exactly two other roles, forming a ring. A star structure assigns one role as a hub to
which all remaining roles are connected. Finally, the tree structure requires that each
role has a parent role, and at most two children roles, where one role (the root), has no
parent role.

Simulated data was generated using the following parameters: typewas chosen from
Ring, Star or Tree; the number of objectswas 50, 100, 200, 500, or 1000; and the number
of roles (clusters) was 2, 4, 8, 16, or 32. We also generated three replicates of graphs
using each parameter combination, providing 1,125 random graphs. An initial baseline
experiment was run to examine the use of seriation on data with no noise. Experiments
were then run to examine the effect of increasing Hamming and Jaccard noise in the
data.

3.2 Generating Noise

Hamming noise is simple to generate, and so more likely to be used in blockmodel
simulations. For a given binary vector of length n we can generate Hamming noise
with expected Hamming distance of np by flipping each 0 or 1 value to a 1 or 0 value
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Fig. 2. Clustering accuracy versus cluster count (zero noise) for Ring, Star and Tree graphs. The
results on the first row cover seriation using each metric, implying that the choice of metric has no
effect on accuracy when no noise is present. The second and third rows contain baseline results.

with probability p. The probability of k flips is a Binomial distribution with n trials and
probability of success p. Therefore, we can obtain the expected number and standard
deviation number of flips from the Binomial distribution. For a graph, n is the number
of vertices and so the noise level is controlled by the proportion p.

On the other hand, Jaccard noise applied to a vector of length n is dependent on
the number of 1s in the vector. The Jaccard coefficient is the size of the intersection
divided by the size of the union. When applying noise, the size of the intersection can
only reduce (when a 1 is flipped to a 0). The size of the union can only increase (when
a 0 is flipped to a 1). If we let q be the probability of a flip, we find that the change in
intersection and union are independent of each other [7]. If we were to flip edges of �x
with probability q to obtain �x�, the expected Jaccard coefficient between binary vectors
�x and �x� is:
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E[dJac(�x, �x�)] =
n−l∑

b=0

P (Xu = b)
(1 − q)l
n − b

where n is the length of the vector, l is the number of 1s in �x, and Xu is Binomial with
probability of success 1− q and with n − l trials. The (1− q)l term is associated to the
number of 1s that don’t flip to 0 (the intersection) and the remainder is n minus the 0s
that don’t flip (the union).

To obtain a given expected Jaccard noise level, we must compute q for each vertex
in the graph. We can see that if q = 1, then E[dJac(�x, �x�)] = 0, and also if q = 0 then
E[dJac(�x, �x�)] = 1, therefore for any n and l, we can find a q that provides the desired
Jaccard distance in expectation.

3.3 Analysis of Simulated Data

Using the simulated data, we examine if there is interaction between the seriation
parameters and the number of objects, number of roles, structure of the graph and
level of noise. Our hypothesis is that the choice of metric is dependent only on the
noise type. Our first experiment examines the effect of each data parameter while hold-
ing the noise at zero (no noise) on the blockmodelling accuracy using each metric.
The results are shown in Fig. 2 with a comparison to the existing Projected Gradient
Descent (Grad) and Coordinate Descent (Coord) [1] methods. Note that the baseline
methods are dependent on their initialisation, so we repeated the baseline clustering 10
times for each graph, using random initialisation. Cluster accuracy is measured using
Normalised Mutual Information (NMI).

The box plots in Fig. 2 show the variation due to each of the experimental param-
eters, while holding the noise at 0. Individual results for each seriation metric are not
shown because the variance between each method was minimal or zero. It is surpris-
ing to see that each of the seriation methods provides perfect results for each graph
containing identifiable clusters, independent of the metric, number of objects and roles.
The unidentifiable graphs lead to lower accuracy at 4 clusters for the Ring data, and
8, 16, and 32 clusters for the tree data. The baselines show higher variation and lower
mean accuracy. This shows that there is no interaction between the seriation metric and
the data parameters when there is no data noise, except for the slight interaction with
the number of roles in the tree data due to the leaf unidentifiable roles.

The small variance in the seriation method, with respect to each non-noise param-
eter, is ideal for examining the effects of noise. Therefore, we focus on the seriation
blockmodelling method for the remainder of the article.

Our second experiment examines the robustness of blockmodelling using each met-
ric, to Hamming noise (using all simulated 1,125 graphs). The results for seriation are
shown in Fig. 3. To make the plots more visually appealing, we limited the data to
graphs containing 16 clusters; results for the other cluster sizes have a similar trend.
As expected, we find that increasing the Hamming noise reduces the accuracy of each
blockmodelling method. It can be seen that results can be grouped in terms of position
based and set based metrics; for each block structure, set based metrics are less tolerant
of Hamming noise.
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Fig. 3. Clustering accuracy versus Hamming noise level for seriation using each metric on tree,
star and ring block structured data. Each data set contained 16 clusters.

Our third experiment examines the robustness of each blockmodelling method to
Jaccard noise (using all simulated 1,125 graphs). The results for the seriation model
are shown in Fig. 4. We find that the set based metrics provide a partitioning that is
very robust to Jaccard noise (even when the expected Jaccard noise is 0.5), while the
accuracy when using position based metrics drops as the noise level increases.

To identify the effect of Hamming and Jaccard noise on blockmodelling with each
metric, we have computed the NMI decay rate (the expected drop in NMI when the
data noise increases by 0.1). An NMI decay rate of 0 implies that noise has no effect on
NMI, while a large NMI decay rate means that an increase in noise causes a large drop
in NMI. The set of NMI decay rates are provided in Table 1. We find that the NMI noise
decay rate is lowest for the position based metrics when the data contains Hamming
noise, and for the set based metrics when the data contains Jaccard noise.
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Fig. 4. Clustering accuracy versus Jaccard noise level for seriation using each metric on tree, star
and ring block structured data. Each data set contained 16 clusters.

A paired difference permutation significance test was performed to compare the
NMI noise decay rate between set based and position based metrics for each type of
data. The results showed a significant difference in each case.

4 Discussion

The major difference between position and set based metrics, and the associated Ham-
ming and Jaccard noise, are their treatment of True Negatives (missing edges remain-
ing missing edges). Position based metrics use true negatives as evidence of similar-
ity between the two items; if two vertices are both not connected to a third vertex, it
means that the two are similar since they both have a poor relationship with the third.
While set based metrics ignore true negatives. This distinction is important when miss-
ing edges have different meanings. For social networks, a missing edge might represent
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Table 1. The NMI noise decay rate (expected drop in NMI when the noise increases by 0.1)
using data with Hamming and Jaccard noise for blockmodelling with each metric. A value of zero
implies that the noise level has no effect on the accuracy. The bolded set provide a statistically
significant difference to the unbolded set for each network type.

Euclid Hamming Jaccard Cosine Dice

Hamming noise

Tree 0.0534 0.0532 0.0913 0.1007 0.0902

Ring 0.0298 0.0295 0.0616 0.0561 0.0624

Star 0.0339 0.0342 0.0589 0.0570 0.0564

Jaccard noise

Tree 0.8427 0.8235 0.0057 0.0129 0.0111

Ring 0.2321 0.2271 0.0777 0.0782 0.0786

Star 0.5436 0.5437 0.0000 0.0292 0.0000

a poor relationship between the two items, or it might mean that the relationship was not
measured (missing information). For these cases, the missing edges should be treated
differently.

This leads us to investigate the meaning of the edges in the network data where set
based metrics provided high accuracy. We found that of the seven network data sets
from Fig. 1, three provided greater NMI when using set based metrics. Further investi-
gation of these three data sets showed: Sampson: only the top three and bottom three
relationships between monks were provided, so a missing edge represents an unknown
relationship. Polbooks: an edge represents if the associated books were bought together.
A missing edge does not mean that the books are not related. Karate: an edge repre-
sents interaction of the members outside of the club. A missing edge does not imply
a poor relationship. So for each of these network data sets, a missing edge represents
unknown information, not a poor relationship, hence set based metrics are ideal for
these particular network data.

Simulations using Hamming noise showed that the position based metrics were
more robust to the noise, while simulations using Jaccard noise showed that set based
metrics were more robust to the noise. These results reinforced our belief that the net-
work data contained either Hamming or Jaccard noise. We also found that the number
of objects, number of roles, and basic structure of the data has little effect on NMI when
using seriation for blockmodelling. Therefore there is a direct link to the robustness for
a given metric and the noise type.

Based on our results and observations, we conjecture that if network data missing
edges represent a poor relationship, then it is likely that it contains Hamming noise, and
so position based metrics should be used. If missing edges represent missing informa-
tion, then the noise is likely to be Jaccard and so set based metrics should be used.

Finally, the experiments showed that when there is little to no noise in the data
(regardless of the type), that all metrics performed equally well when using seriation.
When a sufficient noise level was reached, there was a difference in accuracy when
using the different metrics. The Football data from Fig. 1 exhibits that same behaviour
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(high accuracy, with no difference in metrics). An edge in that data represents that a
game was held between two teams and since most games in the season are held within
a conference, there are only few inter conference labels, and hence little noise. This
supports our simulation result.

5 Conclusion

Blockmodelling is the process of clustering similar roles within a graph, which are
visualised as blocks in the graph adjacency matrix. Edges in the graph increase the
strength of block relationships, but it is unclear if missing edges in common should
increase or decrease the strength of a relationship. In this article, we examined the effect
of the choice of block metric on blockmodelling accuracy. We found that block metrics
can be categorised into position based and set based metrics. Experiments on simulated
data showed that the blockmodelling accuracy is independent of the block metric when
no noise is present, but when noise was introduced, high accuracy results are obtained
when the choice of block metric matched the noise type.
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Abstract. Neural network (NN) has demonstrated its astonishing
power in many data mining tasks. Recently, NN is adapted to the boolean
satisfiability (SAT) problem as a solver, which is trained on a dataset
containing the satisfiable annotation of a series of logical expressions. In
SAT problem, each expression is composed of the conjunction of logical
variables. The effectiveness of NN as a solver to SAT has been verified
empirically when the training and test data contain the same group of
logical variables. However, when the test set contains more logical vari-
ables, test performance significantly degenerates; that is, the generaliza-
tion performance on the test set containing more logical variables is far
below expected. In this paper, we conjecture that the degeneration may
be due to that a non-trivial way is requested to calibrate the continuous
output by NN. Based on the conjecture, we design a generalized frame-
work that is expected to improve the NN solver’s performance when
the test data include much more variables. Specifically, a Temperature-
Scaled Neural Network SAT solver (TenSAT) adds a special calibration
component to the message-passing NN. Experiments demonstrate the
correctness of the conjecture, i.e., TenSAT can stop the test performance
from degrading when the test set contains new variables as much as ten
folds of the training ones.

Keywords: Neural network · SAT · Generalization · TenSAT

1 Introduction

Neural Networks (NN) [10] offers great promises in data mining tasks, and it is
well-recognized for learning a strong model from training data to predict unseen
test data. Recently, NN has also shown to be powerful on the NP-complete
Boolean satisfiability problem (SAT) which is to determine whether a Boolean
formula composed of logic variables in conjunctive normal form (CNF) is satis-
fiable [16]. NN solvers for the SAT problem has been exploited in data analytic
tasks including identifying deterministic finite automata [8,19] and circuit design
evaluation [17,20].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Traditional SAT solvers are typically based on backtracking algorithms [4,5],
which have difficulty on processing more complex problems efficiently and cannot
benefit from advanced machine learning models. The pioneer work [16] proposed
the first NN-based SAT solver, namely NeuroSAT, which constructs a bipartite
message-passing graph between variables and clauses to consider the permuta-
tion invariance and negation invariance required by SAT solver [6,12]. NeuroSAT
trains on a training set composed of annotated propositional logical expression.
After it has been trained by a recurrent neural network (RNN), test results are
given by running the trained model for several iterations over the input test
data. Along with the prediction, the model also outputs a continuous probabil-
ity value for each variable which could then be clipped to discrete value and give
the assignment leading to a true expression. Based on NeuroSAT, a series of NN-
based SAT solvers are then proposed to further enhance the performance [1,23].

NN-based SAT solvers are efficient and accurate in finding solutions when
logical variables in training and testing are identical. However, in real-world
applications, such as context-free grammar (CFG) analyzing [2,3], deterministic
finite automata (DFA) identifying [8,19], and circuit design evaluation [17,20],
unseen logical variables are frequently encountered in test phase. For example, in
circuit design, an evaluation model needs to learn from a basic circuit structure
which contains less logical gates than a complex circuit. Note that current NN-
based SAT solvers’ performance significantly degenerates when unseen logical
variables appear frequently in the testing phase. That is to say, the generaliza-
tion performance on the test set containing more logical variables is far below
expected. According to our empirical studies, the NeuroSAT degenerate signifi-
cantly when 500% unseen logical variables are added in the testing phase. The
problem may be attributed to its clipping of continuous values to discrete ones,
when predicting satisfiability on a continuous spectrum with a cut-off point that
distinguishes only two classifications.

To address the aforementioned generalization issue, in this paper, we pro-
posed Temperature scaling neural network SAT solver (TenSAT), a general
framework for any NN-based SAT solver. The purpose of temperature scaling is
to mitigate the neural network calibration, i.e., the predicted probability by neu-
ral networks may not represent the true correctness likelihood [7]. To tackle the
poor calibration, we develop a Temperature-Scaled styled Neural Network SAT
solver (TenSAT) which adds a special calibration component to the message-
passing graph. It endows NN-based SAT solvers with the ability to learn and
set the optimum threshold for satisfiability on this continuous scale and improve
the generalization. Empirical studies on both manually-constructed and real-
world data validate the effectiveness of TenSAT when integrated with a series of
NN-based SAT solvers. We summarize our contributions by the following.

– We propose a general framework, namely TenSAT, which can be adopted
with any existing NN-based SAT solver.

– A temperature scaling component is designed to improve the generalisation
of NN-based SAT solvers to tackle unseen logical variables in testing phase.
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– The performance of TenSAT is verified on a real-world data set, and we will
release the data to facilitate future research in this area upon acceptance.

2 Background and Related Works

2.1 SAT Problem

Satisfiability problems are boolean formulas, and Eq. 1 shows an example.

f = (x1 ∨ x2) ∧ (¬x1 ∨ x2) (1)

The formula contains logic variables xi or their negations, which are also called
literals. The operations permitted are limited to conjunctions (logical AND)
and disjunctions (logical OR). Here, f exploits the convenient property that all
SAT problems have an equivalent representation called conjunctive normal form
(CNF) where disjunctions are grouped into clauses and each clause is separated
by conjunctions. Like all SAT problems, f is said to be satisfiable if and only if
there exists an assignment of values to the literals such that f is evaluated to be
true. Conversely, f is said to be unsatisfiable if no assignment could enable the
formula to be true. In the example Eq. (1), it is easy to see that f is satisfiable if
and only if both clauses of f can be satisfied. One possible assignment to satisfy
f is x1 = F, x2 = T .

2.2 Neural Network Based SAT Solvers

Existing SAT solvers such as Z3 [12] are mostly deterministic and typically
subtle variants of the Conflict-Drive-Clause-Learning (CDCL [11]) backtracking
algorithms. They follow the philosophy of traversing a decision tree and thus
suffer from an exponential time complexity.

Given the power of deep learning in solving various traditionally complex
tasks, bridging deep learning and logic reasoning has become increasingly popu-
lar. A landmark study in 2019 proposes a message passing neural network called
NeuroSAT [16] that learns to solve SAT problems. In the NeuroSAT, using bipar-
tite graphs to represent problems instead of sequences, the model can tolerate
the permutation invariance of SAT problems. The study also shows that neural
networks excel in receiving SAT problem instances where only a single literal
is negated and the truth evaluation of the entire instance changes. Therefore,
by randomly generating SAT problems in this fashion, NeuroSAT is able to
learn general “knowledge” from the training dataset as well as learn the subtle
difference between a satisfiable and an unsatisfiable problem.

NeuroSAT’s success has sparked a considerable increase in attention towards
developing various neural network architectures and analyzing their performance
on problems across separate domains such as the decision variant of the travelling
salesman problem [14]. Instead of requiring all clauses to be satisfiable as Neu-
roSAT, MAXSAT [21] focuses on maximizing the number of satisfied clauses. In
MAXSAT, logical reasoning and deep learning architecture are integrated into
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an end-to-end network architecture to efficiently compute the forward and back-
ward passes in training, and also be applied to learn the logical structure and
rules of a 9 × 9 Sudoku puzzle.

Not only the groundbreaking creation of NeuroSAT but also its adaptation
to the traveling salesman problem (TSP) (also NP-compete) [14] and pseudo-
boolean problem [9] are all examples of applying NN to complex combinatorial
problems. Classically, deterministic solvers are used to solve SAT problems; yet
their inefficiency significantly prevents their ability to solve SAT problems with
a large number of variables. Neural networks have shown to be a semi-reliable
solver for small NP-complete problem such as the SAT problem. However, if
applying an NN based SAT solver trained on small number of variables to solve
problems with large number of variables, their generalization ability is not sat-
isfactory, as we will show in Sect. 4.

2.3 SAT Applications

The SAT problem is of central importance in computer science, especially in some
fundamental areas of computer science. Compilers of a programming languages
and HTTP messages handlers need to parse programs and messages from plain
text files. Some parser aims to parse restricted context-free language which is
a kind of language generated by a context-free grammar (CFG) [3], which can
be converted to CNF and analyzed with SAT solver [2]. In addition, if we treat
programs’ compiling and HTTP message analyzing progress as deterministic
finite automata (DFA), such DFAs can also be analyzed by SAT solvers. Heule
et al. [8] and Ulyantsev et al. [19] tried to translate DFA to CNF and then
identify DFA by using SAT solver. Besides the above mentioned applications,
in circuit designing, logic gates can naturally be expressed in CNF. Tseytin
transformation [18] is a method to translate combinatorial logic circuits to CNF.
Based on this transformation, more analysis of circuit problems [17,20] can be
performed by SAT methods. Roy et al. [15] even tried to reconstruct circuit from
CNF to verify if structure of circuit is lost when translate a circuit to CNF. Note
that in all these applications, new logical variables may exist in the latter phase
of testing the SAT solver. Considering such applications, we may require the
generalization of the SAT solver to more logical variables.

3 Method

Consider a SAT problem P with n variables xi (i ∈ {1, ..., n}), and m clauses cj

(j ∈ {1, ...,m}). We define T to denote whether a P is satisfiable. T (P ) is true
if and only if P is satisfiable. That is, there exists a valuation of xi = vi where
vi ∈ {T, F} (i ∈ {1, ..., n}), such that

∨
({vk|xk ∈ S+

j } ∪ {¬vk|xk ∈ S−
j }) = T for any cj , (2)

where S+
j and S−

j denote the set of variables and negated variables respectively
in the jth clause cj .
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For any problem P ∈ P, the relationship between literals and clauses are
encoded in a matrix A ∈ {0, 1}2n×m. Aij = 1 means that the ith literal is in the
jth clause if i ≤ n, or otherwise the negation of the (i − n)th literal is in the
jth clause. Based on the problem-specific matrix A, encoding of all literals and
clauses are learned and used to determine whether a given P is satisfiable.

Fig. 1. TenSAT’s Architecture. Left: the whole framework of the algorithm; middle:
structure of the Message Passing Layer; right: structure of the MLP.

The whole framework is described in Fig. 1 left. To solve the SAT problem,
two components are required in existing works: Message Passing Layer and MLP
Vote Layer. In the Message Passing Layer (Fig. 1 middle), both LP and CP are
initialized to be all ones. The output of MLPL is then multiplied with the
associate matrix AT to form the input to the component UPDATEC which
is a neuron of a recurrent neural network. For UPDATEC , the hidden layer
output is CP

t+1, which is further encoded by MLPC , multiplied by A, and used
as input to another recurrent neural network neuron UPDATEL whose hidden
layer input is LP

t and will output LP
t+1. The output LP

t+1 will be further inputted
into MLPL for another round of embedding. After the iteration continues for τ
times, the final output is Lτ which will be further inputted into the MLP Vote
Layer. The MLP Vote Layer (Fig. 1 right) is used to compute a scalar for each
literal which is then averaged to encode a prediction of satisfiability.

Besides these two components existed in classical works such as Neu-
roSAT [16], another component called Temperature scaling is performed as uni-
form division on these literal scalars for each problem in each batch during
training process. On each problem, the Temperature Scaling is used to calculate
the prediction with whom we could further calculate the loss function as

Loss =
∑

P∈P
BCE

(
h(P,L, C,W)

Tscal
, T (P )

)
. (3)
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where Loss is the loss function, indicating the difference between the predicted
satisfiability h(P,L, C,W) and the true satisfiability T (P ) for each instance. In
optimization, the parameters W of the neural networks and Tscal are optimized
alternatively. Specially, we first fix the neural network and optimize Tscal and
then fix Tscal and optimize the neural networks. The whole process of the algo-
rithm is shown in Algorithm 1, in which Flip denotes the function that swaps
each row of LP with the row corresponding to the literal’s negation.

Algorithm 1. TenSAT
1: Initialize: Tscal = 1, (WMLPL , WMLPC , WMLPv , WUPDATEL , WUPDATEC )
2: for mini-batch P in all batches do
3: Initialize: LP

0 and CP
0 with ones, LP

h and CP
h with zeros, prediction list h

4: for P ∈ P do
5: for t from 0 to τ do
6: Lmsg ← MLPL(LP

t )
7:

(CP
t+1, CP

t+1,h

) ← UPDATEC(CP
t,h, ATLmsg)

8: Cmsg ← MLPC(CP
t+1)

9:
(LP

t+1, LP
t+1,h

) ← UPDATEL(LP
t,h,

[
Flip(LP

t ), ACmsg

]
)

10: end for
11: end for
12: Loss =

∑
BCE(h, T (P ))

13: Tscal ← ADAM(Loss)
14: (WMLPL , WMLPC , WMLPv , WUPDATEL , WUPDATEC ) ← ADAM(Loss)
15: end for

4 Experiments

4.1 Setting

Data. We create a problem sets with an arbitrary number of problems for any
number of variables with the same setting suggested by the NeuroSAT [16]. We
use SR(n) to denote the distribution of pairs of random SAT problems on n
variables, and SR(U(n1, n2)) to denote the distribution of problems on n1 to
n2 variables. Given the number of variables n, NeuroSAT’s problem generator
samples k ≤ n uniformly distributed literals from the entire 2n selection of
literals into a clause.

Experiment-Setting. To evaluate the performance of the TenSAT, we are
comparing the proposed method with two SOTA SAT solvers, including Neu-
roSAT [16] and NLocalSAT [23], on predicting satisfiability and satisfying assign-
ments problems. In addition, to further analyse the contribution of temperature
scaling factor Tscal in TenSAT, we investigate the performance of TenSAT under
different Tscal setting during the test stage.



Towards Better Generalization for Neural Network-Based SAT Solvers 205

Training. In this work, we use the terms “round” or “iteration” to repre-
sent the round number of message passing, and use the term “epoch” to rep-
resent training epoch. We train TenSAT with various recurrent components,
including RNN, GRU, and LSTM. We use TenSAT (N,rn) and TenSAT (G,rn)

to denote the application of Tscal to NeuroSAT and GGCN respectively, where
rn ∈ {RNN,GRU,LSTM}. We train each model using 10,000 pairs of prob-
lems on SR(U(5, 10)) with 24 rounds (iteration) of message passing and 25
epochs. We perform our experiments on Intel Xeon Platinum 8163 CPU and
Tesla V100 GPU (16Gi). All methods are constructed using Pytorch and are
publicly available on GitHub1.

4.2 Results

Predicting Satisfiability. We first conduct a coarse interval granularity exper-
iment. Comparing NeuroSAT(LSTM) (baseline) and TenSAT (N,LSTM) trained
with SR(U(5, 10)), we found that the performances between these two mod-
els are similar on SR(10), SR(20) and SR(160), while obvious difference
can be seen on SR(40) and SR(80), as shown in Fig. 2. This is because for
small-scale problems (e.g., SR(10) and SR(20)), both NeuroSAT(LSTM) and
TenSAT (N,LSTM) can handle them very well with no difference, while too big
problems (e.g., SR(160)) are complex under this training condition. We then
zoom into SR(nf ) where nf ∈ {30, 40, 50, 60, 70, 80}. We observe that the accu-
racy of predicting satisfiability stops increasing when the number of iterations
are larger than 64. We list the details in Table 1. In light of this, we restrict the
iteration time to tf ∈ {10, 20, 30, 40, 50, 60} in the rest of our experiments.

Table 1. Accuracy for compared methods in iterations {60, 70, 80, 90} with SR in
{30, 40, 50, 60}, where NS represents NeuroSAT and TS represents TenSAT.

Iters SR30 SR40 SR50 SR60

NS TS NS TS NS TS NS TS

60 0.742 0.792 0.656 0.709 0.602 0.652 0.567 0.608

70 0.741 0.793 0.657 0.707 0.602 0.653 0.569 0.615

80 0.733 0.799 0.654 0.710 0.604 0.654 0.572 0.615

90 0.733 0.801 0.654 0.715 0.603 0.656 0.576 0.616

After narrowing down the SR(n) and iteration time, fine interval gran-
ularity experiments for all 12 models are performed on SR(nf ) and with
tf ∈ {10, 20, 30, 40, 50, 60}. Results are shown in Figs. 3 and 4. In general, Ten-
SAT outperforms NeuroSAT and GGCN, especially when the LSTM is used as
their recurrent network component (Figs. 3a and 4a). In addition, due to LSTM’s
capacity in remembering longer sequence, TenSAT with LSTM (as the recurrent
component) also outperforms that with RNN and GRU.

1 https://github.com/ChildEden/TenSAT.

https://github.com/ChildEden/TenSAT
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(a) (b)

Fig. 2. Results on the coarse interval granularity problem sets, where x axis is the
number of iterations. (a) Neuro-SAT vs TenSAT on LSTM; (b) Stable accuracy when
iteration time larger than 60.

(a) LSTM (b) RNN (c) GRU

Fig. 3. Predicting satisfiability results (NeuroSAT v.s. TenSAT) on the fine interval
granularity problem sets.

For results of GGCN with RNN and GRU as its recurrent network compo-
nent, the best performances appear when iteration time is 20 because this is the
nearest from what they are trained with (24 iteration). Since the GGCN uses the
symmetrical normalized adjacency matrix and each element in this matrix is in
the range from 0 to 1, some gradient issues may happen and weaken the perfor-
mance when iteration time is larger than 20. Nonetheless, we can still observe the
improvement brought by temperature scaling factor Tscal when iteration time is
20. When iteration time is 20, GGCN performs better than TenSAT on SR(30)
and SR(40), and as the problems become more complex, TenSAT outperforms
the GGCN (Fig. 4c).

Since models with LSTM perform stable and better than others, we sum-
marize TenSAT’s improvement by calculating the average accuracy difference
between TenSAT and baselines in the condition of taking the LSTM as their
recurrent component. The improvement brought by TenSAT on NeuroSAT is
3.9%, and 2.1% on GGCN.

Satisfying Assignments. According to Selsam et al. [16], literal votes, which
are outputs of the network, can be decoded and get assignment solutions
of SAT problems by doing clustering on these votes. In this experiment, we
try to decode satisfying assignments for satisfiable problems, and compare
such performances of trained models NeuroSAT(rn) and TenSAT (N,rn) where
rn ∈ {RNN,GRU,LSTM}. It is clear to see that the model trained with tem-
perature scaling factor performs better than original model in Fig. 5a, and their
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(a) LSTM (b) RNN (c) GRU

Fig. 4. Predicting satisfiability results (GGCN v.s. TenSAT) on the fine interval gran-
ularity problem sets.

difference becomes large as iteration time increases. When the recurrent com-
ponent is replaced by RNN, as shown in Fig. 5b, the NeuroSAT performs better
than TenSAT. This may be because the lack of gated units in the RNN makes
the gradient unstable during training and the under-training Tscal may amplify
such instability. But their performance difference becomes small as iteration
time increases. Same as in the predicting satisfiability experiment, we summarize
TenSAT’s improvement by calculating the average accuracy difference between
TenSAT and NeuroSAT in the condition of taking the LSTM as their recurrent
component. The improvement brought by TenSAT is 3.5%.

(a) LSTM (b) RNN (c) GRU

Fig. 5. Satisfying assignments results where x axis is the number of iterations.

4.3 Influence of Temperature Scaling Factor

By implementing Tscal as a simple learned scalar in training, we can achieve
consistent results for larger problem sets. However, this invites the question
whether this can be further improved with the optimization of the scaling factor
so that a model trained on n variables can achieve relatively low decrease of
accuracy for problems with variables more than n. We train models with Tscal

start from 1, and as training progresses, the temperature scaling factor decreases,
as shown in Table 2.
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(a) LSTM (b) RNN (c) GRU

Fig. 6. Accuracy vs. Tscal. Each figure shows the relation between accuracy and Tscal

in test stage at iteration 20, where the x axis is Tscal.

Table 2. Tscal in different training epochs, where TS represents TenSAT.

Epoch TS -LSTM TS -RNN TS -GRU Epoch TS -LSTM TS -RNN TS -GRU

1 1.005 1.002 0.996 30 0.782 0.860 0.797

10 0.851 0.879 0.832 40 0.776 0.857 0.795

20 0.800 0.863 0.806 50 0.770 0.854 0.793

To find out influence of the temperature scaling factor on performance of
model, we fix the message passing times at 20 and solve for the optimum scal-
ing factor for each size dataset by computing the maximum accuracy for each
scaling factor iterating in steps of 0.5, as shown in Fig. 6. And tests on TenSAT
with optimized Tscal show further enhancement brought by temperature scaling
factor, the optimum accuracy as listed in Table 3.

Table 3. Compared methods’ accuracy at Optimized Tscal and different SR.

SR LSTM RNN GRU

Opt Tscal NeuroSAT TenSAT Opt Tscal NeuroSAT TenSAT Opt Tscal NeuroSAT TenSAT

30 3.0 0.605 0.701 4.0 0.679 0.707 3.5 0.659 0.698

40 3.0 0.566 0.643 4.5 0.622 0.647 3.0 0.614 0.638

50 3.0 0.543 0.612 3.0 0.591 0.615 2.5 0.582 0.609

60 3.0 0.532 0.590 5.0 0.579 0.592 3.5 0.572 0.586

70 3.0 0.523 0.582 3.5 0.563 0.577 3.0 0.557 0.576

80 2.5 0.516 0.575 3.5 0.549 0.568 2.5 0.548 0.570

5 Case Study-Circuit Design Evaluation

Experiment Setup. We also evaluate the performance of TenSAT against cir-
cuits design evaluation applications. To do this, we use circuit designs from
EvoApproxLib [13] and convert these circuit from Verilog files to SAT problems
in CNF by Yosys [22], then such SAT problems can be used as input data.

In this experiment, NeuroSAT and TenSAT are still trained with
SR(U(5, 10)), the same as that in previous simulation experiment, and test
is performed on distribution S(nf ), which is converted from circuit design data,
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where nf ∈ {30, 40, 50, 60, 70, 80}. And in this study case, only the LSTM recur-
rent component is applied.

Results. The experimental results are listed in Table 4. TenSAT outperforms
NeuroSAT generally. Since limitation of the number of use cases (less than 10
case included in each SR(n)), the accuracy is not stable. Nevertheless, TenSAT
still outperforms NeuroSAT in same conditions.

Table 4. Results of experiment on circuit design evaluation, where NS represents
NeuroSAT and TS represents TenSAT.

Iter SR30 SR40 SR50 SR60 SR70 SR80

NS TS NS TS NS TS NS TS NS TS NS TS

10 0.556 0.556 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500

20 0.778 0.833 0.400 0.400 0.357 0.429 0.250 0.500 0.375 0.375 0.071 0.143

30 0.722 0.833 0.500 0.600 0.500 0.714 0.875 0.750 0.500 0.500 0.429 0.571

40 0.889 0.889 0.400 0.700 0.643 0.786 0.625 0.625 0.500 0.750 0.571 0.571

50 0.833 0.833 0.700 0.900 0.714 0.643 0.625 0.625 0.625 0.750 0.429 0.571

60 0.778 0.833 0.700 0.900 0.643 0.643 0.750 0.625 0.625 0.625 0.429 0.500

6 Conclusion and Discussion

In this work, we propose to use temperature scaling to enhance the generaliza-
tion of neural networks in solving an typical NP-Complete problem, the SAT
problem. Experiments show that our framework with the LSTM as its recurrent
component performs more stable and better than that with RNN and GRU.
TenSAT outperforms baselines, especially when solving larger SAT problems.
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Abstract. In this work, we improve upon the guarantees for sparse ran-
dom embeddings, as they were recently provided and analyzed by Frek-
sen at al. (NIPS’18) and Jagadeesan (NIPS’19). Specifically, we show
that (a) our bounds are explicit as opposed to the asymptotic guarantees
provided previously, and (b) our bounds are guaranteed to be sharper
by practically significant constants across a wide range of parameters,
including the dimensionality, sparsity and dispersion of the data. More-
over, we empirically demonstrate that our bounds significantly outper-
form prior works on a wide range of real-world datasets, such as col-
lections of images, text documents represented as bags-of-words, and
text sequences vectorized by neural embeddings. Behind our numerical
improvements are techniques of broader interest, which improve upon
key steps of previous analyses in terms of (c) tighter estimates for certain
types of quadratic chaos, (d) establishing extreme properties of sparse lin-
ear forms, and (e) improvements on bounds for the estimation of sums
of independent random variables.

Keywords: Sparse random embeddings · Johnson-Lindenstrauss
lemma

1 Introduction

1.1 Background: Random Embeddings

The seminal result of Johnson and Lindenstrauss [14] states that random lin-
ear mappings have nearly isometric properties, and hence are well-suited for
embeddings: they nearly preserve distances when projecting high-dimensional
data into a lower-dimensional space. Formally, for an error parameter ε > 0, an
m×n matrix A appropriately sampled (e.g., using appropriately scaled Gaussian
entries), and any input vector x ∈ R

n, it holds that

1 − ε � ‖Ax‖2/‖x‖2 � 1 + ε with probability 1 − δ (1)

if the embedding dimension is m = Θ
(

1
ε2 log 1

δ

)
.
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This bound on the dimension m has been shown to be asymptotically opti-
mal [13], while the assumptions made on the Gaussian distribution of matrix A
can be further replaced by the Rademacher distribution, or relaxed even further
by only requiring the sub-Gaussian condition to hold for the construction of the
projection matrix A.

The result is a typical dimension-distortion tradeoff : one aims to minimize
m � n, while keeping ε and δ possibly small. Smaller dimensions m allow for
efficient processing of large, high-dimensional datasets, while a small distortion
guarantees that analytical tasks can be performed with a similar effect over the
embedded data as it is the case for the original data.

Over the past years, variants of the aforementioned Johnson-Lindenstrauss
Lemma have found important applications to text mining and image process-
ing [2], approximate nearest-neighbor search [1,11], approximation algorithms
for clustering high-dimensional data [26], and many others. The focus of this
paper is on linear sparse random embeddings, where A in Eq. (1) has at most
s non-zero entries in each column, which allows for faster computation of the
embedded vectors. This setup has been covered by a substantial line of recent
research [1,15,24], which established that, for the optimal dimension m, one may
set s = Θ(m ε), thereby gaining a factor of ε in matrix sparsity1. This can be
further improved by exploiting structural properties of the input data: as shown
in recent works [9,12,15], with v � ‖x‖∞/‖x‖2, one may set the sparsity to

s = Θ

(
v2

ε
max

(

log
1
δ
,
log2 1

δ

log 1
ε )

))

(2)

while keeping the optimal choice of dimension m = Θ
(

1
ε2 log 1

δ

)
. This shows that

a better sparsity s is feasible when the data-dependent parameter v is small. The
parameter v should thus be understood as the dispersion of the input vector x,
i.e., v is small when the components of x are of comparable magnitude, and it is
larger when there are dominating components. Empirically, random embeddings
work much better than predicted by their theoretical bounds. The main goal
of this work thus is to bridge this frequently observed gap between theory and
practice and thereby develop both robust and provable guarantees for sparse
random embeddings.

Recent state-of-the-art analyses [9,12] provide only asymptotic bounds which
tend to disguise dependencies on rather large constants [9]. In practice, they
often yield trivial results which however limits their usability. Moreover, real-
data evaluations from prior works are mostly of qualitative nature: they analyze
trends in parameter tradeoffs [12] rather than provable guarantees. Regarding
the dispersion measure v = ‖x‖∞/‖x‖2, which is the key ingredient of recent
improvements, no study has evaluated its typical behavior on real-world data to
our knowledge so far. The typical value of the dispersion v may also depend on
the type of the data (text, images, etc.), which in turn makes the findings harder
to generalize.
1 One may in fact further reduce the sparsity s by a factor of B > 1, however at the

cost of increasing the dimension m by a factor of 2Θ(B) (i.e., exponentially).
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To date, the literature offers no satisfactory treatment of this prevalent gap
between provable and practically meaningful guarantees. Some authors [9,33]
suggested that very good empirical performance may be an evidence for small
constants, but it may well be the case that sparse random embeddings work
better than predicted by the underlying theory due to other data properties, not
present in any of the analyses. Indeed, while one can expect a low data dispersion
to help increasing sparsity, the proposed dispersion measure v is very crude and
does not capture this aspect well in a quantitative sense.

1.2 Contributions

We summarize the novel contributions of our work as follows.

Explicit and Efficient Analysis. We re-analyze sparse random embeddings,
following the setup of recent state-of-the-art works [9,12], which provide guar-
antees depending on the data dispersion v = ‖x‖∞/‖x‖2. Our novel bound is
a combinatorial expression that is also computationally fast to evaluate. More
precisely, our expression on the error term ε can be evaluated in nearly constant
time of O(log4(1/δ) log(m/δ)) operations.

Robust and Provable Guarantees. We demonstrate that our bounds are very
robust and accurate over a large variety of practical use-cases as well as over a wide
range of dispersion values v and error bounds ε. In particular, we give an exhaustive
evaluation over both a synthetic benchmark and no less than 10 real-world datasets
concerning text in different representations, images of various sizes, and sparse
matrices which arise in typical scientific computations. We see improvements by
a factor of more than one order of magnitude in the projected dimension m and
sparsity s of A, and even more in the confidence 1 − δ.

Improved Estimation of Quadratic Chaos. Virtually all analyses of random
embeddings need to estimate quadratic forms in symmetric random variables,
which arise due to considering the Euclidean distance of the projected vector. To
solve this problem, we develop a novel bound for the quadratic form in terms of its
linear analogue, with a very good numerical constant. This improves upon direct
estimation from prior work [12], as well as (in this context) general-purpose tools
such as variants of the Hanson-Wright Lemma [10] and decoupling inequalities.

Extremal Properties of Sparse Linear Chaos. The reduction from a
quadratic form leaves us with the task of understanding stochastic properties
of certain random sums, namely the inner product of the given weight vector
(our input x) and a random vector with entries −1, 1 or 0 (i.e., one row of the
matrix A). This problem is related to, but more general than the well-known
Khintchine Inequality [17]. In our context (providing bounds based on data dis-
persion), we explicitly find the worst-performing set of weights, as opposed to
prior work where only overestimates were obtained [12].

Estimation of Sums of I.I.D. Random Variables. To derive accurate
bounds, we rely on a precise estimation of sums of independent random vari-
ables which goes beyond what is offered by classical Chernoff-Heoffding bounds.
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Remarkably, we are able to numerically improve the state-of-the-art bounds due to
Latala [22], which further adds to the success of our approach on real-world data.

1.3 Related Work

Due to space constraints, we here only provide a very brief related-work discus-
sion. We refer the reader to [31] for a detailed listed of references.

Theory of Sparse Random Embeddings. Our work improves directly upon
[9] (case s = 1) and [12] (general s). These works determine the relation between
sparsity and data dispersion, thereby building on a long line of earlier works on
variants of the Johnson-Lindenstrauss Lemma [1,15,24]. The provided bounds,
albeit proven to be asymptotically optimal, suffer from a lack of explicit constants
which cannot be easily extracted from the previous estimates.

Empirical Evaluation of Random Embeddings. The good empirical per-
formance of random linear embeddings, including sparse variants, has been con-
firmed many times (cf. [2,33]). These works point out the gap between provable
and observed performance, which we are addressing in this work.

Estimation of Quadratic Chaos. Technically speaking, the analysis of errors
in random projections can be reduced to the more general problem of estimat-
ing quadratic forms of random variables, also called quadratic chaos. The liter-
ature offers a variety of tools, from variants of the well-known Hanson-Wright
Lemma [10,34] to more specialized bounds [3]. However, they would produce
worse constants than our direct approach.

Embeddings of Large Collections/Subspaces. Orthogonal to obtaining
bounds for a single vector x is the question of how to extend such bounds to hold
simultaneously for all x from a finite collection or an entire subspace of input
data. This can be done by a black-box reduction using ε-net arguments and is
solved by a reduction to the single vector case by means of ε-net arguments.
Such bounds can be also obtained in our case.

2 Robust Guarantees for Sparse Random Projections

We next briefly discuss a number of preliminary concepts, mainly to fixate the
notation before we move on to present the main results of our work.

2.1 Preliminaries and Notation

The d-th norm of a vector x and a random variable X, respectively, are defined
as ‖x‖d = (

∑
i |xi|d) 1

d and ‖X‖d =
(
E

[|X|d])
1
d ; we also define ‖x‖∞ = maxi |xi|

as usual. Bern(p) denotes the Bernoulli distribution with success probability p,
while Binom(n, p) denotes the binomial distribution with n trials and success
probability p. The Rademacher distribution takes values 1 and −1 with equal
probabilities. Moreover, a random variable X is called symmetric when it has
the same distribution as −X. For two vectors x, y ∈ R

n, we say that x majorizes
y, denoted by x � y, when

∑k
i=1 x↓

i �
∑k

i=1 y↓
i , for k = 1 . . . n. Finally, Schur-

concave functions f are those that satisfy f(x) � f(y) whenever x � y.
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2.2 Construction of the Embeddings

Let A be an m × n matrix which is sampled as follows:

(1) Fix a positive integer s � m, the column sparsity of A.
(2) For each column, select s row positions at random (without replace-

ment), place ±1 uniform-randomly at these positions and 0 at the
remaining positions.

(3) Finally, scale all entries of A by 1√
s
.

Remark 1 (Alternative Constructions). The above construction of A is as in [9,
12], but our analysis works also when sampling is done with replacement.

To analyze the error obtained from the respective projection of x by A, we define
as in [12]

E(x) � ‖Ax‖22 − ‖x‖22 =
m∑

r=1

∑

1�i�=j�n

Ar,i Ar,j xi xj (3)

which is then analyzed by looking into individual “row” contributions, namely
E(x) = 1

s

∑m
r=1 Er(x) with

Er(x) � s
∑

1�i�=j�n

Ar,i Ar,j xi xj . (4)

The goal is to identify conditions, such that PrA[|E(x)| > ε‖x‖22] � δ, as this
implies Eq. (1). By scaling, we can assume ‖x‖2 = 1. Throughout the paper, we
denote p = s

m .

2.3 Key Techniques for the Analysis

For the following steps, we leverage two techniques which were not used in prior
work, namely (a) careful use of symmetry properties and (b) majorization.

Quadratic Chaos Estimation. Studying the error E(x), due to pairwise
terms, requires the estimation of quadratic forms

∑
i�=j Zi Zj , with Zi = Ar,i xi.

To this end, we develop a useful general inequality, which reduces the problem
to (simpler) linear forms.

Lemma 1. For symmetric and independent random variables Zi and any posi-
tive even d, we have:

‖
∑

i�=j

Zi Zj‖d � 4 ‖
∑

i

Zi‖2d (5)
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Remark 2. The proof (see [31]) establishes more, namely that for a positive
integer d (odd or even), we have ‖∑

i�=j Zi Zj‖d � 4 ‖∑
i�=j ZiZ

′
j‖d where Z ′

i are
independent copies of Zi.

The constant C = 4 in Lemma 1 can be further improved. For example, it is
easily seen that for d = 2 one may choose C =

√
2. For a general d, the use of

hypercontractive inequalities may give furthers refinements.

Extremal Properties of Linear Chaos. We now move on to deriving bounds
for linear forms of symmetric random variables, which bound quadratic forms.
The following lemma gives a geometric insight into their behavior with respect
to the input weights.

Lemma 2. For x ∈ R
n, define S(x) =

∑
i xi Yi where Yi ∼i.i.d. Y with Y ∈

{−1, 0, 1} taking values ±1 each with probability p/2 and 0 with probability 1−p.
Then, for every pair of vectors x, x′, such that (x2

i )i � (x′
i
2)i, and positive even

integer d, the following inequality holds:

‖S(x)‖d � ‖S(x′)‖d (6)

The lemma yields the following corollary.

Corollary 1. Let Yi be as in Lemma 2. For v ∈ (0, 1), consider all vectors
x ∈ R

n, such that ‖x‖2 = 1 and ‖x‖∞ = v. Then, ‖∑
i xi Yi‖d for an even d > 0

is maximized at x = x∗ where:

x∗
i =

{
v i = 1√

1−v2

n−1 i = 2 . . . n
(7)

Estimation of I.I.D. Sums. The techniques outlined above allow us to bound
the row-wise error contributions Er(x). In order to assemble them into a bound
on the overall error E(x), we prove the following lemma.

Lemma 3. Let Z1, . . . , Zm ∼i.i.d. Z, where Z is symmetric, and let d be positive
and even. Then:

‖
m∑

i=1

Zi‖d � min
{

t > 0 : E(1 + Z/t)d � e
d

2m

}
(8)

This improves the constant provided in the seminal result of [22] by a factor of
e1/2.

2.4 Bounds Based on Error Moments

We first bound the row-wise error contributions Er(x), defined in Eq. (4), as
follows.
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Lemma 4. Suppose that ‖x‖2 = 1 and ‖x‖∞ = v, then we have ‖Er(x)‖d �
Tn,p,d(v) for any positive and even d, where we define

Tn,p,d(v) � 4

( d
2∑

k=0

(
d

2k

)
pI(k>0) v2k(1 − v2)

d−2k
2 · E(B′ − B′′)d−2k

) 2
d

(9)

and B′, B′′ ∼i.i.d. 1√
n−1

· Binom(n − 1, 1−√
1−2p
2

).

To show this result, we combine Lemma 1 and Lemma 2. When explicitly eval-
uating ‖∑

i x∗
i Yi‖d, we thereby arrive at the expression given by Eq. (9).

The following theorem is the main result of our work.

Theorem 1 (Error Moments). If ‖x‖2 = 1 and ‖x‖∞ = v, then for any
positive even d, we have that

‖E(x)‖d � s−1 · Qn,p,d(v),

where Q = Qn,p,d(v) solves the equation

d
2∑

k=0

(
d

2k

)
(Tn,p,2k(v)/Q)2k = e

d
2m (10)

and Tn,p,2k is as in Lemma 4 (with d replaced by 2k).

The detailed proof (see [31]) starts with E(x) = 1
s

∑m
r=1 Er(x), applies Lemma 3

with Zr = Er(x), and finally uses Lemma 4 (similarly to [12]). The subtle points
of the proof are summarized below.

• Correlation of Er(x) for different r: fortunately (due to sampling without
replacement), this is a negative dependency. Thus, the same moment bounds
as for independent random variables can be applied also here [30].

• Non-symmetric distribution of Er(x) : we compare the moments of Er(x)
with the moments of a random variable which is symmetric; this allows for
applying moment bounds for the sums of symmetric random variables. We
remark that this argument also fills a gap in [12].

Corollary 2 (Error Confidence). For the error

ε = e s−1 · Qn,p,	log(1/δ)
(v),

we have Pr[|E(x)| > ε] � 1 − δ and (1) holds.

The corollary is a direct application of Markov’s inequality Pr[|E(x)| > ε] �
(s−1Qn,p,d(v)/ε)d.
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2.5 Discussion

Remark 3 (Computational Efficiency). The time of evaluating the distortion ε
in Corollary 2 is in

TIME = O(log4(1/δ) log(m log(1/δ))). (11)

This is because Tn,p,d(v) can be evaluated with O(d3) operations, utilizing the
combinatorial formulas for binomial moments [19]. In turn, Qn,p,d(v) inverts a
monotone function which can be computed by bisection in O(log(m d)) steps.

Remark 4 (Comparison to State-of-the-Art). The approach of [12] follows the
same roadmap, but the critical steps in that work are estimated in a weaker way
than in our approach, namely:

1. a weaker analogue of our Lemma 1 is used,
2. in place of our sharp Corollary 1, an overestimation of ‖∑

i xiYi‖d is obtained,
3. bounds on Er(x) are assembled to bound E(x) via a weaker variant of [22],

which is further weaker than our Lemma 3.

Thus, our bounds are guaranteed to be tighter for all parameter regimes.

Remark 5 (Dependency on n). Although our dependency on n is only asymp-
totically bounded, we find that—interestingly—it indeed helps improving the
bounds on real-world datasets and use-cases, as shown in the next section.

3 Empirical Evaluation

In this section, the present the detailed results of our experimental evaluation.
We implemented the bound provided by Theorem 1 in Python 3.6 and tested it
in the Google Colab environment using an Intel(R) Xeon(R) CPU @ 2.20 GHz
and the default RAM configuration of 13 GB.

Best Bounds in Prior Works. To give a clear and fair comparison, we analyze
the best constants in the previous asymptotic analysis [12]. The in-depth analysis
gives the value of “optimistic” constants necessary to avoid breaking down the
proof (while the actual constants are likely worse).

Remark 6 (Optimistic Constants in Prior Works). The bound of [12] uses the
better of the following two lemmas (Lemmas D.1 and D.2, respectively):

1. ‖Er(x)‖d � 2C1 ·
(
sup1�t� d

2

[
dv
t

(
p

dv2

) 1
2t

])2

2. ‖Er(x)‖d � 2C2 · d
log(1/p) ,

where d is assumed positive and even.

Here, the extra factor of 2 appears as the effect of symmetrization (the ran-
dom variable Er(x) must be dominated by a symmetric random variable to
conclude the bound on E(x)). The best constants satisfy C1 � 4e and C2 � 8,
as it is implied by the analysis of their proof technique.
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3.1 Synthetic Benchmark

Setup. The key ingredient of our improvements is the sharper bound on the row-
wise error contributions Er(x) from Lemma 4. In this experiment, we compare
this bound (referred to as Tnew) with its analogue from [12] with the “optimistic”
constants as discussed in Remark 6 (referred to as Told). Figures 1 and 2 illustrate
the respective ratios of Tnew and Told with respect to the error contributions
Er(x) for n = 104 and various ranges of d, v and p = s

m . Points with non-even
d are interpolated.

Results. Our bounds are better by up to an order of magnitude across a wide
range of parameters. Therefore, we should expect similar improvements for our
bounds on the overall error E(x) (recall that Er(x) are aggregated into E(x)
using Lemma 3).

Fig. 1. Tnew/Told for n = 104, p = 10−3 Fig. 2. Tnew/Told for n = 104, v = 10−2

3.2 Real-World Datasets

Setup. We next consider various real-world datasets of different content types,
sizes and numbers of features—as summarized in Table 1.

Table 1. Summary of real-world datasets used in our experiments

Dataset Content Comments

NIPS Text 13,000 words

Word2Vec/Wiki Text 5M lines/48M words of English Wikipedia articles

News20 Text 20,000 documents/34,000 words of English news [16]

MNIST Images 60,000 images with 28 × 28 pixels [23]

CIFAR100 Images 60,000 images with 32 × 32 pixels [21]

SVHN Images 600,000 images with 32 × 32 pixels [27]

Caltech101 Images 9,000 images with 300 × 200 pixels [7]

Cars Images 16,000 images with 500 × 500 pixels [5]

Goodwin040 Fluid dynamics 18,000 columns/18,000 rows [4]

Mycieliskian17 Undir. graph 98,000 columns/98,000 rows [4]
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Dispersion. Since sparsity s depends on the data-dependent dispersion v,
results obtained in prior work may be of limited applicability in practice when
v is not small. To understand the behavior of v, we evaluate its distribution on
our datasets. We conclude that, indeed, the value of v may be quite large, even
when n is big; in such cases, using a very small sparsity s is not theoretically
justified. Density plots on Figs. 3, 4, 5, and 6 illustrate the distribution of the
dispersion v = ‖x‖∞/‖x‖2 for vectors x = x1 − x2 over all pairs x1, x2 ∈ X
from a subsample X of the dataset. Evaluating the dispersion on pairwise dif-
ferences corresponds to the intended usage of random projections: preserving
pairwise distances within a dataset. We used |X | = 250, such that v is estimated
based on ≈ 5 · 104 samples. We generally find that, for each dataset, v is sharply
concentrated around a “typical” value, whose magnitude is data-dependent.

Fig. 3. Dispersion v on text data Fig. 4. Dispersion v on sparse-matrix

Fig. 5. Dispersion v on small images Fig. 6. Dispersion v on large images

Distortion. The next experiment analyzes the confidence 1 − δ as a function
of the distortion ε of our and previous bounds. We assume m

n = 0.1, s
m = 0.01.

The dispersion v is chosen at the typical most likely value for each dataset.
The confidence follows from Theorem 1 by Markov’s inequality. The results are
illustrated on Fig. 7. Our bounds produce very good results for all datasets with
large n, thus outperforming the previous approach by several orders of magnitude
in terms of confidence. Remarkably, we also obtain non-trivial bounds when n
is small as opposed to the bounds from previous works.
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Fig. 7. Confidence 1 − δ vs. distortion ε Fig. 8. Sparsity s vs. distortion ε

Sparsity. In this experiment, we evaluate the critical value of distortion ε, which
allows for using non-trivial sparsity s < m such that the confidence 1 − δ is at
least 3

4 . For each dataset, we choose as before its typical value v and fix the
dimension reduction factor m

n = 0.1. The results are summarized in Fig. 8. Note
that, for smaller values of ε, no s < m can work, which produces flat segments
s = m. Our bounds offer a non-trivial sparsity s for much smaller distortions,
and quickly achieve s = 1.

Dimensionality. In the last experiment, we evaluate the minimal non-trivial
dimension m. We again consider a fixed sparsity of s

m = 0.1 and choose the
typical dispersion v for each dataset. Then, for various values of ε, we compute
the smallest m which still yields a confidence of 1−δ of 3

4 . The results, illustrated
in Fig. 9, show that our bounds are better by 10 times or more.

Multiple Data Points. So far the experiments covered the performance on
one input vector at a time only; the case of multiple data points reduces to the
former one by scaling the confidence accordingly (union bound), where we again
compute the smallest m which still yields a confidence 1− δ of 3

4 over all points.
The result shows the expected logarithmic dependency of the dimensionality m
with respect to the data size, as shown in Fig. 10.

Fig. 9. Dimensionality m vs. distortion Fig. 10. Dimensionality m vs. data size
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4 Conclusions

We presented a framework for sparse random projections which provides provable
guarantees with empirically significant numerical improvements over previous
approaches. Our gain in comparison to previous approaches has been demon-
strated on a large variety of (both synthetic and real-world) datasets. Moreover,
we believe that the novel inequalities behind our improvements are of broader
interest for a variety of statistical-inference applications.

Acknowledgements. We thank the NVIDIA AI Technology Center (NVAITC) for
the fruitful discussion.
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17. Khintchine, A.: Über dyadische Brüche. Math. Zeitsch. 18(1), 109–116 (1923)



Robust and Provable Guarantees for Sparse Random Embeddings 223

18. Klartag, B., Mendelson, S.: Empirical processes and random projections. J. Funct.
Anal. 225(1), 229–245 (2005)

19. Knoblauch, A.: Closed-form expressions for the moments of the binomial proba-
bility distribution. SIAM J. Appl. Math. 69(1), 197–204 (2008)

20. Kolesko, K., Lata�la, R.: Moment estimates for Chaoses generated by symmetric
random variables with logarithmically convex tails. Statist. Prob. Lett. 107, 210–
214 (2015)

21. Krizhevsky, A.: Learning multiple layers of features from tiny images. University
of Toronto (Technical Report) (2012)

22. Lata�la, R., et al.: Estimation of moments of sums of independent real random
variables. Ann. Prob. 25(3), 1502–1513 (1997)

23. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010)
24. Li, P., Hastie, T.J., Church, K.W.: Very sparse random projections. In: SIGKDD,

pp. 287–296 (2006)
25. Lugosi, G., Mendelson, S.: Mean estimation and regression under heavy-tailed dis-

tributions: a survey. FoCM 19(5), 1145–1190 (2019)
26. Makarychev, K., Makarychev, Y., Razenshteyn, I.: Performance of Johnson-

Lindenstrauss transform for k-means and k-medians clustering. In: STOC, pp.
1027–1038 (2019)

27. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading Digits
in Natural Images with Unsupervised Feature Learning (2011)

28. de la Peña, V.H., Montgomery-Smith, S.J.: Decoupling inequalities for the tail
probabilities of multivariate U-statistics. Ann. Prob. 806–816 (1995)
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Abstract. Deep neural networks have shown their vulnerabilities to adversar-
ial examples crafted by adding imperceptible perturbations to original examples.
Despite showing powerful attack strength under the white-box setting, most exist-
ing adversarial attack methods can only mislead the black-box model with low
attack success rates. In response, a class of image transformation-based attacks
has been proposed. Its main idea is to apply transformations to adversarial exam-
ples during attack iterations and improve the transferability on the black-box
model. However, a major limitation of these transformation-based attacks is that
they only apply transformations to input images, while ignoring transformations’
usages in hidden representations. Based on our observation that mixup in hidden
space can help attack methods achieve higher transferability than in input space,
we propose the Random-Layer Mixup Attack Method (RLMAM). Our method
interpolates the adversarial examples with clean examples in both input space
and hidden space. The interpolated adversarial representations induced by our
random-layer mixup can improve representations’ diversity in both two spaces
and alleviate adversarial examples’ overfitting phenomenon on the white-box
model. Furthermore, we incorporate RLMAM with our enhanced momentum
method. Experimental results on ImageNet and CIFAR-10 datasets demonstrate
that our RLMAM outperforms other state-of-the-art black-box attacks.

Keywords: Black-box adversarial attack · Mixup · Manifold mixup

1 Introduction

Deep neural networks (DNNs) have achieved great performance in computer vision
[4]. However, recent research [13] has found that DNNs are vulnerable to adversarial
examples which are crafted by adding human-imperceptible perturbations to original
examples. It raised concern about the security of deep learning, thus it’s imperative to
investigate how adversarial examples are generated. Besides, the research of adversarial
attacks not only helps to evaluate the robustness of DNNs [10], but also makes deep
learning more interpretable [6].

Several adversarial attack methods have been proposed to generate adversarial
examples such as FGSM [3], DeepFool [11] and C&W Attack [1]. Most of these attack
methods are white-box attacks which aim to mislead the white-box model with full
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Fig. 1. Given the classifier f(x) = fk(hk(x)), the general framework of our proposed interpo-
lated adversarial attack.

knowledge of the model’s structure and parameters. However, the model’s informa-
tion might be invisible to adversaries in real-world applications [5]. It aroused inter-
est in the research of black-box attacks [8] about how to fool the black-box model
with limited knowledge. Black-box attacks mainly focus on the transferability, namely
whether adversarial examples generated from the white-box model can fool the black-
box model. Transferability of adversarial examples doesn’t mean the powerful attack
strength under the white-box setting, and it rather emphasizes the generalization ability
over different models. For example, iterative adversarial attacks such as PGD [10] and
I-FGSM [7] can mislead the white-box model with high confidence, but they exhibit
low attack success rates under the black-box setting due to the fact that the adversarial
examples generated by iterative attacks tend to overfit the white-box model. In contrast,
single-step attacks have relatively higher transferability, but they are demonstrated to
be less powerful methods than iterative attacks.

To improve the transferability of adversarial attacks, [2] proposed momentum iter-
ative gradient-based methods (MI-FGSM). Unlike traditional iterative attacks using the
gradient of current iteration as the update direction, MI-FGSM introduces the momen-
tum term to accumulate the gradients of previous iterations. It can provide stable update
directions and escape from local maxima. However, the adversarial examples gener-
ated by MI-FGSM still suffer from the overfitting phenomenon, since the gradients of
adversarial examples are highly similar during iterations. To achieve better transferabil-
ity, [9,17,18] proposed a class of transformation based attack methods which combine
MI-FGSM with image transformation operations (resize and pad, scale, mixup variant).
Applying random transformations to the inputs before propagation at each iteration can
alleviate overfitting, as it feeds the white-box model with the randomly transformed
inputs and thus increases the input space complexity.

Overall, the transferability of gradient-based attacks has a close connection with the
overfitting phenomenon on the white-box model, and such a phenomenon is largely due
to the absence of diverse gradient information. Currently, transformation-based attack
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methods focus on the transform operations in input space. It inspires us to explore if
transformations in hidden space can provide more diverse information and improve the
transferability of adversarial attacks.

We first observe that mixup in the specific hidden layer can help attack methods
achieve higher transferability than in input layer (more details in Sect. 4.3). Motivated
by this phenomenon, we propose our adversarial attack method named Random-Layer
Mixup Attack Method (RLMAM), which integrates a variant of manifold mixup [16]
into adversarial attacks. Unlike other transformation-based attacks only applying trans-
formations to input images, we extend transformations to hidden space. Our method
constructs the interpolated adversarial representations in three steps. At each iteration,
we first randomly select a layer index (including input layer). Then, we forward propa-
gate the adversarial example and a random clean example respectively until that layer.
Last, we interpolate such two examples’ intermediate outputs to form the interpolated
representation. From the perspective of diversity, our RLMAM is superior to traditional
iterative attacks, since our interpolated representations can directly improve the global
diversity in both input space and hidden space.

In addition, considering that single-step attacks exhibit higher transfer rates than
iterative attacks, we prove that updating perturbations in a granular manner can improve
the performance under the white-box setting, but it does harm to the transferability.
Thus, we propose Inner-outer Iterations. Our Inner-outer Iterations accumulate gradi-
ents at inner iterations and update perturbations at outer iterations, which avoid updating
perturbation at each iteration.

Our contributions can be concluded as:

– We propose the random-layer mixup attack method, which integrates a variant of
manifold mixup into adversarial attacks. Our method can improve the data diversity
in input and hidden spaces, and thus provide more diverse gradient information.

– To further improve the transferability, we propose Inner-outer Iterations to replace
the single-loop iterations applied in traditional momentum methods.

– Experimental results in Sect. 4 show that the attack success rate of our method out-
performs other methods. It demonstrates that our method can significantly alleviate
adversarial examples’ overfitting phenomenon on the white-box model.

2 Related Work

In this section, we first introduce the notations related to our work, then we briefly
review the input/manifold mixup training principles and several adversarial attack meth-
ods. Let x and ytrue denote an original example and its ground-truth label. Given a clas-
sifier f(x) : x ∈ X → y ∈ Y , adversarial attacks can be divided into two classes: non-
targeted attacks and targeted attacks. The goal of non-targeted attacks is to generate the
adversarial example xadv = x + δ by maximizing the loss function L(xadv, ytrue; f)
such that the prediction of the classifier f(xadv) �= ytrue. Here L(·) is the classification
loss such as cross entropy. Meanwhile, targeted attacks aim to mislead the classifier as
f(xadv) = y′, where y′ is the target class, and y′ �= ytrue. In our work, the perturbation
δ is under the �∞ norm bounded constraint, i.e., ‖δ‖∞ ≤ ε, to ensure the perturbation
is human-imperceptible.
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2.1 Mixup

Empirical risk minimization (ERM) [15] is the fundamental principle in machine learn-
ing, which aims to minimize the empirical error on the training dataset. However,
research [19] found that the model trained with ERM shows weak generalization when
testing distributions slightly differ from the training data. As an alternative, [20] pro-
posed the mixup training principle. For two clean examples (x, ytrue) and (x∗, y∗)
randomly sampled from the training set, mixup constructs virtual training examples
as (Mixλ(x, x∗),Mixλ(ytrue, y∗)), where Mixλ(a, b) = λ · a + (1 − λ) · b. Here
λ ∼ Beta(α, α), and α is the hyperparameter.The loss function of the mixup train-
ing method can be defined as

LMix(x, ytrue, x∗, y∗; f) = L(Mixλ(x, x∗),Mixλ(ytrue, y∗); f). (1)

Mixup can be seen as a data augmentation method, since the virtual examples induce
the global linear behavior in-between data manifolds and increase the complexity of
training set.

Based on the above input mixup principle, [16] proposed the manifold mixup train-
ing principle. For the classifier f(x) = fk(hk(x)), hk denotes the prefix part of classi-
fier mapping the input data to the hidden representation at layer k, and fk denotes the
rest part mapping the hidden representation to the output f(x). Specifically, manifold
mixup will degrade to input mixup if k = 0. The loss function of manifold mixup can
be defined as

LMMix(x, ytrue, x∗, y∗; f) = L(fk(Mixλ(hk(x), hk(x∗))),Mixλ(ytrue, y∗)), (2)

since it interpolates two examples in either input space or hidden space during training
iterations.

2.2 Adversarial Attack Methods

In this subsection, we provide a brief introduction of the family of fast gradient sign
methods.

Fast Gradient Sign Method (FGSM). [3] proposed FGSM as an single-step attack
method, which generates an adversarial example xadv along the direction of the loss
gradient ∇xL(x, ytrue; f) as

xadv = x + ε · sign(∇xL(x, ytrue; f)). (3)

Iterative Fast Gradient Sign Method (I-FGSM). [7] extended FGSM to an iterative
version:

xadv
0 = x,

xadv
i+1 = Clipε

x{xadv
i + α · sign(∇xL(xadv

i , ytrue; f))},
(4)

where Clipε
x represents that the adversarial example xadv

i+1 is clipped within the ε-ball of
the original example x at i-th iteration.
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Momentum Iterative Fast Gradient SignMethod (MI-FGSM). MI-FGSM [2] intro-
duces a momentum variable g to accumulate the gradients of previous iterations with
a decay factor μ. MI-FGSM improves the transferability under the black-box setting
since the gradients’ accumulation helps to stabilize update directions and escape from
poor local maxima. The updating process can be formulated as

xadv
0 = x, g0 = 0,

gi+1 = μ · gi +
∇xL(xadv

i , ytrue; f)
‖∇xL(xadv

i , ytrue; f)‖1
,

xadv
i+1 = Clipε

x{xadv
i + α · sign(gi+1)}.

(5)

Momentum Diverse Inputs Iterative Fast Gradient Sign Method (DIM). To fur-
ther improve the transferability of MI-FGSM, [18] proposed DIM by applying random
resize and pad operations to xadv with a given probability p.

Scale-Invariant Nesterov Iterative Fast Gradient Sign Method (SIM). SIM [9] is
the combination of two enhanced methods: scale-invariant property and Nesterov accel-
erated gradient method. Scale-invariance property constructs the scale copies of the
input image during iterations, while Nesterov accelerated gradient method substitutes
the traditional momentum method.

Admix Attack Method (AAM). AAM [17] proposed to integrate a variant of input
mixup with MI-FGSM. For each attack iteration, AAM first randomly sample a clean
example x∗ and construct the admixed adversarial example x̃ = γ · xadv + η′ · x∗,
where γ ∈ [0, 1] and η′ ∈ [0, γ). Then, AAM calculates the gradient on the admixed
adversarial example as follows:

gi+1 = μ · gi +
∇xL(γi · xadv

i + η′ · x∗
i , y

true; f)
‖∇xL(γi · xadv

i + η′ · x∗
i , y

true; f)‖1
. (6)

3 Methodology

In this section, we present an illustration of our proposed RLMAM in detail. We illus-
trate our method in two steps: first we only introduce our random-layer mixup method
without momentum, then we show how to combine our method with momentum to
further improve the transferability. We follow some notations of manifold mixup in
Sect. 2.1.

3.1 Random-Layer Mixup Attack Method Without Momentum

The key idea of our method is about constructing interpolated adversarial represen-
tations by taking random-layer interpolation of adversarial examples xadv and clean
examples x∗ during iterations. Thus, we consider sampling clean examples from all
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classes except the ground-truth label. In other words, clean examples (x∗, y∗) are ran-
domly sampled from the distribution p\ytrue(x, y), where p\ytrue(x, y) is a uniform
distribution on the set {(x, y) ∈ (X,Y )|y �= ytrue}. Here, (X,Y ) denote the set of all
testing data.

As shown in Fig. 1, the implementation of our proposed RLMAM includes five
steps. At each iteration, we first randomly select a layer index k from an eligible set S
(more details in Sect. 4.3) and sample a clean example x∗. Then, we feed the adver-
sarial example xadv and the clean example x∗ respectively into hk to get the two
examples’ intermediate outputs: hk(xadv) and hk(x∗). Third, we take the interpolation
of such two intermediate outputs to form the interpolated adversarial representation
Mixλ(hk(xadv), hk(x∗)). Unlike the manifold mixup, here λ is a fixed hyperparameter
(more details in Sect. 4.3). Fourth, we continue to feed Mixλ(hk(xadv), hk(x∗))) into
the rest part of white-box model fk, and obtain the corresponding gradient. Fifth, we
update the perturbation with the gradient. The loss function of our proposed random-
layer mixup adversarial attack can be defined as

LRLM(xadv, ytrue, x∗; f) = L(fk(Mixλ(hk(xadv), hk(x∗))), ytrue). (7)

Compared with the loss function of two mixup training methods in Eqs. 1 and 2, here
we don’t require the label y∗ of clean examples, since we just aim to minimize the
probability of ytrue for the objective of non-targeted attacks.

The general procedure of RLMAM without momentum is similar to I-FGSM in
Eq. 4. It can be reformulated as

xadv
0 = x,

xadv
i+1 = Clipε

x{xadv
i + α · sign(∇xLRLM(xadv

i , ytrue, x∗
i ; f))}.

(8)

3.2 Random-Layer Mixup Attack Method

As discussed above, we have explored how to integrate random-layer mixup into the
framework of adversarial attacks. Besides, we can incorporate momentum methods
with our proposed random-layer mixup attack to further improve the transferability.
We propose two momentum interpolated attack methods: RLMAM with Single-loop
Iterations (RLMAMSI) and RLMAM with Inner-outer Iterations (RLMAMII).

RLMAMSI. RLMAMSI is the simple combination of our proposed random-layer
mixup attack and traditional momentum methods with the iteration number K.

RLMAMII. Unlike traditional momentum methods, such as MI-FGSM accumulating
the gradients and updating the adversarial examples simultaneously in single-loop iter-
ations, RLMAMII divides the single-loop iterations into inner iterations and outer iter-
ations. We use M,N to denote the number of inner and outer iterations (K = M ×N ).
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Algorithm 1. RLMAMII

Input: f : the white-box model; S: the index set; x: the input; ytrue: the ground-truth label of x.
Output: xadv: the adversarial example.

1: xadv
0 = x;

2: g0 = 0; τ0 = 0;
3: for i = 0 to N − 1 do
4: g0 = 0;
5: for j = 0 to M − 1 do
6: Randomly select a layer index k from the set S;
7: Randomly sample a clean example x∗

j from the distribution p\ytrue(x, y);
8: Feed xadv

i , x∗
j into hk to construct representation Mixλ(h

k(xadv
i ), hk(x∗

j ));
9: Feed the representation into fk and obtain the gradient ∇xLRLM;
10: Update gj+1 with ∇xLRLM as Eq. 9;
11: end for
12: Add the accumulated gM to τi+1 as Eq. 10;
13: Update xadv

i+1 with τi+1 as Eq. 11;
14: end for
15: return xadv = xadv

N .

On one hand, the Inner-outer Iterations method accumulates previous gradients at the
j-th inner iteration:

gj+1 = μ · gj +
∇xLRLM(xadv

i , ytrue, x∗
j ; f)

‖∇xLRLM(xadv
i , ytrue, x∗

j ; f)‖1
, (9)

where g is the momentum term proposed in MI-FGSM and μ is the decay factor of inner
iterations. On the other hand, Inner-outer Iterations introduces an extra momentum term
τ to accumulate the accumulated gradients. After inner iterations finished, we add the
accumulated gM to τ and update the perturbation at the i-th outer iteration:

τi+1 = η · τi + gM , (10)

xadv
i+1 = Clipε

x{xadv
i + α · sign(τi+1)}, (11)

where η is the decay factor of outer iterations. The adversarial example xadv
i is per-

turbed along the direction of the sign of τi+1. Note that if M = 1, RLMAMII degrades
to RLMAMSI.

In summary, we incorporate our random-layer mixup method RLMAM with two
momentum methods (II and SI). We report RLMAMII in Algorithm 1 as an example.
Compared with input/manifold mixup, our method sets λ as a fixed hyperparameter
and modifies the loss function. Compared with other transformation based methods like
AAM, we additionally consider applying transformations in hidden space.
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Table 1. The attack success rates (%) of adversarial attacks against three different models on
ILSVRC. The adversarial examples are generated from Res-50, VGG-16 and Google. ∗ indicates
white-box attacks.

Model Attack Res-50 VGG-16 Google

Res-50 I-FGSM 99.1∗ 24.2 12.6

MI-FGSM 99.6∗ 53.3 36.5

DIM 99.5∗ 54.0 37.5

SIM 99.6∗ 62.1 52.3

AAM 100.0∗ 71.9 55.5

RLMAMSI (Ours) 100.0∗ 77.2 62.1

VGG-16 I-FGSM 10.9 98.2∗ 5.9

MI-FGSM 29.4 99.4∗ 18.9

DIM 29.0 99.5∗ 18.7

SIM 43.7 100.0∗ 32.6

AAM 43.8 100.0∗ 30.5

RLMAMSI (Ours) 45.0 100.0∗ 33.4

Google I-FGSM 8.8 9.2 98.8∗

MI-FGSM 26.5 27.1 99.6∗

DIM 29.4 30.3 99.7∗

SIM 44.7 43.1 100.0∗

AAM 49.0 50.1 100.0∗

RLMAMSI (Ours) 54.4 56.3 100.0∗

4 Experiments

4.1 Experiment Setup

Datasets. We evaluate our method on two datasets: ILSVRC 2012 and CIFAR-10. For
ILSCRC, we randomly select 5000 images from it as our testing set. For CIFAR-10, we
use the whole dataset as our testing set. We conduct our experiments on ILSVRC by
default.

Models. For ILSVRC, we consider three normally trained models: ResNet-50 (Res-
50) [4], VGG-16 [12] and GoogleNet (Google) [14]. For CIFAR-10, we additionally
consider their adversarially trained versions: Res-50 Adv, VGG-16 Adv and Google
Adv.

Implementation Details. In our work, we set the maximum perturbation ε = 8/255,
number of iterations K = 16. For all momentum based methods, we follow the default
setting in [2] with the decay factor μ = 1. For our RLMAM, the mixup ratio λ is set
to 0.7 according to the results in Fig. 2. For our RLMAMII, the inner-outer iterations
(M , N ) are set to (4, 4) to make sure K = M × N , and the decay factor η is set to 0.8
according to the results in Figs. 4 and 5.
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Table 2. The attack success rates (%) of adversarial attacks against three normally trained models
and their adversarially trained models on CIFAR-10. The adversarial examples are generated from
Res-50, VGG-16 and Google. ∗ indicates white-box attacks.

Model Attack Res-50 Res-50 Adv VGG-16 VGG-16 Adv Google Google Adv

Res-50 I-FGSM 98.7∗ 16.9 51.0 22.5 62.7 17.7

MI-FGSM 99.2∗ 17.8 70.7 23.3 73.6 19.0

DIM 99.5∗ 17.8 58.5 23.5 63.2 19.0

SIM 99.6∗ 18.2 72.4 23.7 76.0 19.4

AAM 99.9∗ 18.8 82.1 24.2 85.2 20.3

RLMAMSI(Ours) 100.0∗ 20.1 87.9 25.0 89.2 21.1

VGG-16 I-FGSM 64.1 17.2 98.7∗ 22.6 70.0 18.0

MI-FGSM 77.8 18.1 99.0∗ 23.5 78.9 19.2

DIM 63.6 18.0 98.8∗ 23.5 65.8 19.2

SIM 77.6 18.2 99.4∗ 23.8 80.0 19.7

AAM 84.8 19.1 99.5∗ 24.6 87.9 20.5

RLMAMSI(Ours) 87.2 20.6 99.7∗ 26.4 91.2 21.3

Google I-FGSM 44.7 16.7 40.4 22.0 98.9∗ 17.3

MI-FGSM 62.8 17.2 61.0 22.8 99.1∗ 18.3

DIM 53.4 17.3 52.4 22.8 99.2∗ 18.3

SIM 71.0 17.9 70.1 23.4 99.5∗ 19.1

AAM 77.7 18.0 78.2 23.6 99.7∗ 19.3

RLMAMSI(Ours) 82.4 19.8 83.5 24.3 100.0∗ 19.9

4.2 Attacking Performance

We compare our RLMAMSI with other methods including I-FGSM, MI-FGSM, DIM,
SIM and AAM on both ILSVRC and CIFAR-10 dataset. We choose RLMAMSI instead
of RLMAMII for fair comparison and highlighting our random-layer mixup method.
We also conduct experiments to compare RLMAMSI and RLMAMII in Sect. 4.4.

Table 1 shows the attack success rates of different attack methods against normally
trained models on ILSVRC. The success rates are the rates of adversarial examples
generated from the white-box model successfully mislead the black-box model. We can
observe that our method outperforms other methods with a large margin. For exam-
ple, adversarial examples generated from Res-50 by our method achieve the success
rates of 77.2% against VGG-16 and 62.1% against Google. In contrast, AAM achieves
the corresponding success rates of 71.9% and 55.5%. Besides, we find an interesting
phenomenon that in black-box attacks, adversarial examples generated from Res-50
achieve higher success rates than generated from other two models.

We also report the attack success rates of different attack methods on CIFAR-10
in Table 2. It can be observed that our method achieves higher success rates than other
methods against both normally and adversarially trained models. For example, adversar-
ial examples generated from Res-50 by our method achieve the success rates of 87.9%
against VGG-16 and 25.0% against VGG-16 Adv. In contrast, AAM achieves the cor-
responding success rates of 82.1% and 24.2%.
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Fig. 2. The attack success rates (%) of our
RLMAMII against VGG-16. The adversar-
ial examples are generated from Res-50
with λ ranging from 0.1 to 0.9 and λ ∼
Beta(α, α).

Fig. 3. The attack success rates (%) of our
RLMAMII against VGG-16. The adversar-
ial examples are generated from Res-50
with index k selecting from different inter-
vals.

4.3 Analysis of Random-Layer Mixup

We analyze our random-layer mixup from two aspects: the reason why we set mixup
ratio λ = 0.7 as a fixed hyperparameter and our investigation of random layer selection.

For the first problem, recall that in input/manifold mixup training principles, λ is
sampled from a beta distribution, since two clean examples (x, ytrue) and (x∗, y∗)
are equivalent. However, in our attack method, we only consider generating transfer-
able adversarial examples xadv, and we use x∗ as a data augmentation to increase the
input/hidden space complexity. It means that the two examples xadv and x∗ are inequiv-
alent in our method. As shown in Fig. 2, we can see that with λ ranging from 0.1 to 0.9,
RLMAMII achieves the best attack success rate of 76% when λ = 0.7, and it only
achieves 48% when λ ∼ β(α, α).

For the second problem, recall that our method selects a random layer index k from
an eligible set S at each iteration. We further assume that S is a continuous interval.
In Fig. 3, we report the attack success rates of our RLMAMII selecting indexes from
different intervals. The y and x-axises denote the start and end index of interval. There
are five indexes including input layer, since we regard each bottleneck of Res-50 as
a layer. The main diagonal shows the results of selecting indexes from the specific
layer only. We can first observe that mixup in specific hidden layer can achieve higher
transferability than in input layer. For example, RLMAMII achieves the attack success
rate of 74% from layer 1, while it only achieves 71% from input layer (layer 0). Besides,
RLMAMII achieves the best attack success rate of 76% when selecting indexes from
the layer interval [0, 3].

4.4 Single Iterations vs. Inner-outer Iterations

As shown in Fig. 4, we compare the performance of Single-loop (SI) Iterations and
Inner-outer Iterations (II). The dashed line indicates the baseline performance of
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Fig. 4. The attack success rates (%) of our
RLMAMII and RLMAMSI. The adversar-
ial examples are generated from Res-50.
For II, we divide iteration number K = 36
into pairs of inner and outer iteration num-
bers (M, N).

Fig. 5. The attack success rates (%) of our
RLMAMII and RLMAMSI. The adversar-
ial examples are generated from Res-50
with η ranging from 0.0 to 2.0.

RLMAMSI with the iteration number K = 36. The solid line shows the attack suc-
cess rate of our enhanced RLMAMII with pairs of inner and outer iteration numbers
(M,N), ensuring that K = M × N . Note that we set λ = 0.5 to underscore the effect
of Inner-outer Iterations method. It can be observed that (9, 4) outperforms other pairs
of (M , N ). We can get the empirical conclusion that the appropriately divided Inner-
outer Iterations can achieve better transferability than Single-loop Iterations method.

In addition, we further investigate the optimal value of the decay factor η in Inner-
outer Iterations. As shown in Fig. 5, we evaluate the attack success rate of our enhanced
Inner-outer Iterations method with the decay factor ranging from 0.0 to 2.0. (M , N ) is
set to (4, 4). The success rate increases steadily from η = 0.0 to 0.8, and then the rate
declines gradually. The optimal value of η is achieved when η = 0.8.

5 Conclusion

In this paper, we propose the RLMAM, which integrates a variant of manifold mixup
into adversarial attacks. Our RLMAM leverages the interpolated adversarial represen-
tations induced by random-layer mixup to improve the complexity in both input and
hidden spaces. Hence, we can obtain diverse gradient information to alleviate the over-
fitting phenomenon on the white-box model. Experimental results show that our method
can improve the transferability of non-targeted attacks.

Acknowledgement. This work is supported by the National Natural Science Foundation of
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Abstract. A wide variety of methods have been developed for identi-
fying depression, but they focus primarily on measuring the degree to
which individuals are suffering from depression currently. In this work
we explore the possibility of predicting future depression using machine
learning applied to longitudinal socio-demographic data. In doing so we
show that data such as housing status, and the details of the family envi-
ronment, can provide cues for predicting future psychiatric disorders. To
this end, we introduce a novel deep multi-task recurrent neural network
to learn time-dependent depression cues. The depression prediction task
is jointly optimized with two auxiliary anomaly ranking tasks, including
contrastive one-class feature ranking and deviation ranking. The auxil-
iary tasks address two key challenges of the problem: 1) the high within
class variance of depression samples: they enable the learning of rep-
resentations that are robust to highly variant in-class distribution of
the depression samples; and 2) the small labeled data volume: they sig-
nificantly enhance the sample efficiency of the prediction model, which
reduces the reliance on large depression-labeled datasets that are diffi-
cult to collect in practice. Extensive empirical results on large-scale child
depression data show that our model is sample-efficient and can accu-
rately predict depression 2–4 years before the illness occurs, substantially
outperforming eight representative comparators.

Keywords: Depression prediction · Anomaly detection · One-class
classification · Deep learning

1 Introduction

Major Depressive Disorder (MDD), widely known as depression, is a mental dis-
order characterized by a severe and persistent feeling of sadness, loss of interest
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in activities, or a sense of despair, causing significant impairment in daily life
[9]. Globally over 300 million people of all ages are estimated to suffer from
depression, and it is a major contributor to nearly 800 thousands suicide deaths
per year [23]. There have been many studies [2,13,19,22] demonstrating effec-
tive automated diagnosis of depression using machine learning techniques. These
studies focus on the detection of ongoing, current depression, using data that
relates information about the current state of an individual. We focus here on
the more challenging task of predicting depression in advance. This is achieved
using longitudinal socio-demographic data. The motivation for this approach is
that prediction far enough in advance of upcoming depression might enable early
intervention before the condition arises.

The longitudinal socio-demographic data used contains a variety of non-
medical information such as education level, socio-economic background, fam-
ily environment, measured at intervals overtime. There are three major chal-
lenges in exploiting these cues for depression prediction. First, this is noisy
high-dimensional temporal data that contains thousands of numeric and cat-
egorical features, among which only very selective set are relevant to depres-
sion prediction. Second, there is no single set of socio-demographic factors that
cause depression, leading to high in-class variance for the depression samples.
For example, for childhood depression, the root cause may be related to the
mental health status of parents, dwelling conditions, or a medical condition. As
a result, the depression cases are highly dissimilar and exhibit no single underly-
ing mechanism, or common characteristics. A model that seeks a single common
explanation for all cases cannot succeed. Lastly, in practice, only a small amount
of labeled data is available, as it is difficult, if not impossible, to collect large
depression samples. The available data thus often fails to cover the diverse types
of depression cases.

In this work we introduce a novel multi-task learning approach to tackle
these challenges, in which a depression classification task is jointly optimized
with two auxiliary anomaly ranking tasks, contrastive one-class feature ranking
and deviation ranking. Depression samples are treated as anomalous samples
in our auxiliary tasks, because the cause-varying depression samples can be
widely distributed, and as a result, are difficult to model as a single concrete
class. Directly modeling these depression samples with classification models can
easily overfit the given depression cases. The two anomaly ranking tasks are
devised to enforce compact low-dimensional representations of normal samples
and allow variations in the representations of depression samples, presenting
effective inductive biases to regularize the classification models. This significantly
improves the model’s generalization beyond the individual cases presented in the
small volume of labeled data available.

In summary, this work makes two key contributions:

– We introduce a novel multi-task learning framework, which harnesses auxil-
iary anomaly detection tasks to empower the greater classification task. To
the best of our knowledge, this is the first multi-task learning approach that
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jointly optimizes classification and anomaly ranking tasks, which is an impor-
tant tool for application problems that are similar to depression prediction.

– We further instantiate the framework into a multi-task recurrent neural net-
work model, termed MTNet, which optimizes the depression model with one-
class constraints on its feature space and deviation constraints on its output
layer. Extensive empirical results on large-scale child depression data show
that MTNet can accurately predict depression two to four years before the
illness occurs (e.g., achieving a recall of 0.8), substantially outperforming
eight competing methods. Additionally, MTNet can also outperform these
competing methods even with largely reduced (50% less) training data.

2 Related Work

Longitudinal Studies. There have been many longitudinal studies of depres-
sion [6,8], but they focus on association discovery that identifies factors or predic-
tors associated with depression using traditional bivariate/multivariate statistic
models. By contrast, our study is on learning prediction models to predict the
occurrence/risk of future depression.

Automated Depression Diagnosis. Current studies focus on the detection of
depression using classification models on vocal/visual data taken during clinical
interviews, with vocal features like prosodic and cepstral features [2,13,24] and
visual features like facial expression, gaze direction, and eye movement [13,22,
26]. Depression detection based on social media data using linguistic and network
features is also extensively studied [11,19]. However, all these studies focus on the
detection of ongoing depression, while we aim at predicting upcoming depression.

An exploratory task is introduced at the eRisk workshop [10] to facilitate the
development and evaluation of models for early detection of signs of depression
using social media data, resulting in a number of early depression detection
models [1,12,18]. Like the aforementioned studies, they are also focused upon
detecting expression of depression cues/symptoms, while we learn the hidden root
cause factors in socio-demographic features which are more difficult to learn.

Multi-task Learning. Multi-task learning [16] has been successful in a range
of applications. There have been many approaches introduced to jointly learn
multiple related tasks (e.g., classification, regression, and clustering) to improve
the performance on small labeled data, such as feature learning, task relation
learning, task clustering, low-rank and decomposition approaches [25]. Our work
uses multi-task feature learning methods with hard parameter sharing as in
[4,20,21], but our approach is the first work that uses anomaly ranking at the
feature and output layers to regularize the classification.

Anomaly Detection. Anomaly detection techniques have been successfully
applied to detect abnormal events/behaviors in many applications [14], but they
are rarely used to regularize supervised learning models in multi-task learning
as the two paradigms have rather different learning objectives. We show in this
work that recent advanced anomaly detection models [15,17] can be adapted to
effectively regularize classification models and improve their sample efficiency.
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3 Multi-task Recurrent Neural Networks

3.1 The Proposed Framework

Upcoming depression prediction aims to learn a binary depression classification
mapping function φ : X → Y, where X = {X1,X2, · · · ,XN} is a set of longitu-
dinal data of N samples; each sample X ∈ R

w×D is a matrix input of an individ-
ual subject, which contains the socio-demographic features of the subject in the
recent w waves (or time steps) of questionnaire data, i.e., X = {x1,x2, · · · ,xw},
where xt ∈ R

D is a feature vector derived from the t-th wave of questionnaire
data; Y = {0, 1} is the output space, with ‘1’ indicating the subject being normal
within all the recent w waves of questionnaire but having depression in the next
waves of questionnaire, and with ‘0’ indicating the subject being normal in the
recent and future waves of questionnaire.

In this work we introduce a novel multi-task learning framework to tackle
the problem. An overview of the approach is presented in Fig. 1. Depression clas-
sification is our primary task and is jointly optimized with two auxiliary tasks,
including deviation score ranking and contrastive one-class feature learning. The
auxiliary tasks treat depression samples as anomalies and enforce compact fea-
ture representations of normal samples and allow some variations in the rep-
resentations of depression samples, serving as a regularizer of the classification
model. This results in better generalized classification models than that in the
single primary task. Formally, let τ : X → R be an anomaly ranking function
that assigns an anomaly score to each subject; ψ : X → Q be the one-class
feature learning function, where Q ∈ R

M with M � D is a new feature space,
then our overall objective function can be given as follows.

arg min
Θe,Θa,Θo

N∑

i=1

[
�e

(
φ(Xi;Θe), yi

)
+ α�a

(
τ(Xi;Θa), yi

)
+ β�o

(
ψ(Xi;Θo), yi

)]
, (1)

where �e, �a and �o are respective loss functions for depression classification,
deviation ranking and contrastive one-class metric learning, yi is the class label
of Xi, Θ = {Θe, Θa, Θo} is the set of parameters to be learned, α and β are
hyperparameters to control the importance of the two auxiliary tasks.

We instantiate the framework into a model called MTNet that leverages a
shared LSTM neural network [7] to learn critical temporal changes in longitudi-
nal data for depression classification. Supervised anomaly deviation and one-class
support vector data description loss functions are defined to improve the model’s
generalization. A simple data augmentation method is also introduced to further
enhance the generalizability. The modules of MTNet are presented as follows.

3.2 Primary Task: Depression Classification

Our classification model leverages an LSTM neural network layer to learn impor-
tant temporal dependency in the longitudinal data. An LSTM layer consists of
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Fig. 1. The proposed multi-task learning framework.

multiple LSTM cells, with each LSTM cell learning temporal-dependent repre-
sentations of the input data at a specific wave. The full LSTM layer uses the
recurrent LSTM cells to encode important temporal changes across all different
questionnaire waves into the output vector h ∈ R

L in the last LSTM cell, i.e.,
the LSTM layer is a mapping function η that performs h = η(X;Θl), where Θl

contains all weight parameters in a standard LSTM (see Supplementary Mate-
rial1 for the full details of LSTM). To learn more expressive representations, a
FC layer is used to project h onto a lower-dimensional feature representation
space:

q = ψ(X;Θl,Ws,bs) = gs(Wsη(X;Θl) + bs), (2)

where Ws ∈ R
M×L and bs ∈ R

M are the learnable parameters, gs is an activa-
tion function, and q ∈ Q is the final feature representation of X. We then train
a classifier on the Q representation space with a standard binary cross-entropy
loss function:

�e(X, y) = −(
y log(p) + (1 − y) log(1 − p)

)
, (3)

where y is the class label of X and p = φ(X;Θe) = ge(Weq + be), where ge is a
sigmoid activation, We ∈ R

1×M and be ∈ R. Θe = {Θl,Ws, bs,We, be} contains
all the network parameters that can be learned in an end-to-end manner.

3.3 Auxiliary Tasks

Two auxiliary tasks, contrastive one-class-based feature ranking and deviation
ranking, are incorporated to introduce an inductive bias (i.e., to learn compact
normal representations and allow large variations in abnormal representations)
to learn more generalized representations of depression samples.

Deviation Ranking. A partially-supervised anomaly ranking task is introduced
to enforce the model to assign significantly larger anomaly scores for depression

1 Supplementary material is available at https://tinyurl.com/MTNetPAKDD22.

https://tinyurl.com/MTNetPAKDD22
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samples than that of non-depression samples. Inspired by [15], a prior-driven
anomaly ranking loss function, called deviation loss, is used to fulfill this goal.
Particularly, a Gaussian prior N (μ, σ2) is imposed on the anomaly scores of
all samples, which posits that the anomaly scores of non-depression samples are
centered around a Gaussian mean value μ while the anomaly scores of depression
samples have at least a∗σ deviations from μ. Formally, we add another network
output head with one linear unit to learn an anomaly score for each sample:

τ(X;Θa) = Waψ(X;Θr) + ba, (4)

where Θa = {Θr,Wa, ba} are the parameters to be learned. We then define the
deviation using the well-known Z-Score:

dev(X) =
τ(X;Θa) − μ

σ
, (5)

The deviation function is then used to define our anomaly ranking loss function:

�a(X, y) = (1 − y)|dev(X)| + y max
(
0, a − dev(X)

)
. (6)

By minimizing �a, our model pushes the anomaly scores of normal samples as
close as possible to μ while enforcing at least a ∗ σ between μ and the anomaly
scores of depression samples in the upper tail of the Gaussian distribution. Fol-
lowing [15], the prior N (0, 1) is used with a = 5 to guarantee significant devia-
tions of depression samples from normal samples.

Contrastive One-class Feature Learning. Unlike the anomaly ranking task
that introduces the inductive bias using an output layer independent from the
classification output, the one-class feature learning complements the deviation
score learning and exerts directly on the feature layer. Particularly, we introduce
a contrastive one-class feature learning method, in which we devise a supervised
variant of support vector data description (SVDD) [17] by contrasting the one-
class center of the normal samples and the depression samples.

�o(X, y) = (1 − y)||ψ(X;Θr) − n||2 + y max
(
0,m − ||ψ(X;Θr) − n||2

)
, (7)

where Θo = {Θr}, n ∈ R
M is the one-class center vector of normal samples and m

is a hyperparameter to control the contrast margin. The first term is the original
SVDD objective. The second term is added to enforce a large margin between
non-depression and depression samples in the ψ-induced representation space,
while minimizing the n-centered hypersphere’s volume. We found empirically
that MTNet can perform well with varying settings of n, e.g., n ∼ N (0, 1)
or n ∼ U(0, 1). We use n ∼ N (0, 1) by default, i.e., generating n by randomly
drawing a vector from a standard Gaussian distribution. m = 1 is used to enforce
a sufficiently large distance margin in the feature representation space.

3.4 Data Augmentation

A simple data augmentation method is introduced to augment depression sam-
ples and further enhance the model’s generalizability. Specifically, a pair of
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depression samples are randomly selected, and then a small percentage of ran-
domly selected values in the last wave data of one sample are replaced with the
corresponding values in another sample to create a new depression sample. The
augmented sample can well retain the original depression-relevant information
while at the same time enriching the depression samples. By using this method,
we increase the number of depression samples in the training data by a factor of
10. In our experiment, we randomly replaced 5% of the feature values by default.

3.5 The Algorithm of MTNet

The algorithmic procedure of our model MTNet is presented in Algorithm 1.
After random initialization of the network parameters in Step 1, stochastic gra-
dient descent is used to optimize the model in Steps 2–8. In Step 4, as the number
of depression samples is typically far smaller than that of non-depression sam-
ples, we generate sample batches with balanced class distribution to achieve more
effective optimization. This shares the same spirit as oversampling in imbalanced
learning [5]. Step 5 calculates the batch-wise loss for the three tasks. Step 6 per-
forms gradient descent steps to learn the parameters Θ. Note that Θr are shared
parameters in {Θe, Θa, Θo}, and thus, the feature representations in MTNet are
jointly optimized by all three tasks. At the inference stage, only the classification
function φ is used to produce the class label.

Algorithm 1. MTNet
Input: X ∈ R

w×D - training samples, and binary class labels y
Output: φ : X → Y - a depression classification network
1: Randomly initialize Θ = {Θe, Θa, Θo}
2: for j = 1 to #epochs do
3: for k = 1 to #batches do
4: B ← Randomly sample the same number of depression and non-depression

samples

5: Calculate the loss using 1
|B|

∑

Xi∈B

[

�e
(
φ(Xi; Θe), yi

)
+ α�a

(
τ(Xi; Θa), yi

)
+

β�o
(
ψ(Xi; Θo), yi

)
]

6: Perform a gradient descent step w.r.t. the parameters in Θ
7: end for
8: end for
9: return φ

4 Experiments

4.1 Datasets

Our model is evaluated on a large child depression data dataset based on the
Longitudinal Study of Australian Children (LSAC) data [3]. LSAC consists of
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multiple bi-annual waves of questionnaire-based interview data of 10,090 chil-
dren across Australia. Initially, children aged from infant to 5 years and their
families are interviewed between August 2003 and February 2004. This routine
is repeated every two years afterwards. At the time of writing seven waves of
data are available. LSAC provides a dataset of 4,983 children aged 4 to 5 years in
the first wave of questionnaire. These children are all healthy until 287 children
are confirmed to have depression at the 6/7-th wave of interview in the years
2013 to 2015. Depression is measured using parental self-report data. Particu-
larly, in the waves 6 and 7, the primary caregiver is asked “does study child have
any of these ongoing (depression) conditions2?”; the child is confirmed to have
depression if the answer is ‘yes’. After a simple feature screening to remove unin-
formative features (e.g., features with very large percentage of missing values),
210 social-demographic features related to individual growth and development
(e.g., age, gender, living location, schooling performance), and family environ-
ment (e.g., social, educational, economic, employment, household income, hous-
ing conditions) are used (see Supplementary Material for the list of the interview
questions and a sample of the questionnaire). In the selected features, missing
values are filled with the mean/mode value in each feature; categorical features
are then converted into numeric features by using one-hot encoding. The result-
ing dataset contains 762 features in each wave of data. Thus, the dataset used
has 4,983 samples, with each sample represented by a 7×762 matrix. We further
perform a stratified random split of the dataset into three subsets, including 60%
data as a training set, and respective 20% data for validation and testing sets.

4.2 Experimental Setup

We evaluate the performance of predicting the possible occurrence of depression
in the near future. To this end, the model is trained and tested using only the
first five waves of data when all children are reported to be mentally healthy
(i.e., absence of depressive symptoms). The task is to predict whether a child
will have depression at the upcoming wave 6 or 7. MTNet is compared with eight
temporal and non-temporal methods.

– Non-temporal Methods. Three popular classification methods, including
logistic regression (LR), support vector machines (SVM) and multi-layer per-
ceptron (MLP) neural networks, are used as baseline methods that are not
designed to capture temporal dependence. They are two main ways to apply
these methods to the longitudinal data. One way is to build the classification
model using the most recent single (i.e., 5-th) wave data only. The second
way is to use the data from all the five waves, in which for each subject we
concatenate the feature vectors derived from all the waves into one lengthy
unified feature vector; the classifiers are then built upon this concatenated
data. This way helps capture some temporal-dependent changes. All three

2 ‘Ongoing conditions’ means that the conditions “exist for some period of time (weeks,
months or years) or re-occur regularly. They do not have to be diagnosed by a doctor”.
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methods are evaluated in both ways, with LR/SVM/MLP-s denoting the
classifier using the single wave data and LR/SVM/MLP-m denoting the use
of the concatenated multi-wave data.

– Temporal Methods. The LSTM-based deep classifier, is used as a com-
peting temporal method. The standard binary cross-entropy loss function is
used to train the model. We also compare MTNet with the state-of-the-art
anomaly detection model DevNet [15] that is adapted to temporal data with
LSTM network.

4.3 Implementation Details

MTNet is implemented with one LSTM layer with 200 units, followed by a fully-
connected (FC) layer with 20 units and a classification output layer. The sigmoid
function is used in gr in the LSTM layer by default; the widely-used ReLU
activation function is used in gs in the FC layer. A dropout layer with a dropout
rate of 0.5 is applied to the LSTM and FC layers. The competing methods
LSTM and DevNet use exactly the same network architecture as MTNet. MLP
uses a similar network structure with two hidden layers of respectively 200 and
20 units, with each layer having a dropout rate of 0.5. MTNet, DevNet, LSTM,
and MLP are implemented using Keras3 and optimized using RMSprop with a
batch size of 256 and 20 batches per epoch. They are trained with 30 epochs as
their performance can converge early. α = 0.5 and β = 2.0 are used in MTNet by
default. LR and SVM are taken from the open-source scikit-learn package4. Due
to a large percentage of irrelevant features presented in the data, our extensive
results showed that applying the l1-norm regularizer to MLP, LR and SVM
obtains significantly better performance than the l2-norm regularizer. Thus, the
l1-norm regularizer is applied to these three classifiers to bring sparsity to the
model. The regularization hyperparameter is probed with {0.001, 0.01, 0.1, 1},
with the best performance reported. The oversampling method in MTNet is
used in all competing methods to alleviate the class-imbalanced problem.

4.4 Performance Evaluation Measures

Three widely-used evaluation measures are used, including the Area Under
Receiver Operating Characteristic Curve (AUC-ROC), Area Under Precision-
Recall Curve (AUC-PR), and F1-score (F-score for brevity). AUC-ROC sum-
marizes the ROC curve of true positives against false positives, while AUC-PR
summarizes the curve of precision against recall. AUC-ROC is popular due to its
good interpretability. AUC-PR is more indicative than AUC-ROC in evaluating
performance on imbalanced data. F-score is the harmonic mean of precision and
recall. We also report the precision and recall results to gain more insights into
the performance. The reported results are averaged over five independent runs.

3 https://keras.io/.
4 https://scikit-learn.org/.

https://keras.io/
https://scikit-learn.org/
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4.5 Empirical Results

Effectiveness on Real-World Data. The results of depression prediction are
shown in Table 1. Our model MTNet is the best performer in AUC-ROC, AUC-
PR and F-score. MTNet substantially outperforms all of its competing methods
by 2%–38% in AUC-PR and 3%–20% in F-score. Impressively, MTNet obtains
a recall of 0.8, achieving at least 7.8% improvement over its contenders. Given
a sufficiently high precision of 0.7, the high recall rate in MTNet would enable
accurate intervention and pre-treatment of up to 80% upcoming depression cases
at a very early stage (2–4 years before the depression occurs), effectively pre-
venting and reducing the depression cases.

Table 1. Performance results (mean±std) of depression prediction.

AUC-ROC AUC-PR F-score Precision Recall

LR-s 0.648± 0.020 0.595± 0.018 0.632± 0.021 0.659± 0.032 0.611± 0.037

LR-m 0.648± 0.019 0.596± 0.016 0.620± 0.023 0.670± 0.027 0.579± 0.038

SVM-s 0.666± 0.012 0.610± 0.012 0.646± 0.005 0.682± 0.023 0.614± 0.011

SVM-m 0.684± 0.013 0.631± 0.010 0.646± 0.026 0.729± 0.013 0.582± 0.045

MLP-s 0.771± 0.007 0.780± 0.010 0.706± 0.023 0.679± 0.032 0.742± 0.071

MLP-m 0.814± 0.009 0.808± 0.019 0.718± 0.022 0.730± 0.049 0.718± 0.082

LSTM 0.779± 0.012 0.775± 0.010 0.662± 0.034 0.751± 0.031 0.593± 0.039

DevNet 0.785± 0.013 0.786± 0.017 0.688± 0.035 0.704± 0.044 0.684± 0.094

MTNet 0.818± 0.009 0.823± 0.008 0.743± 0.037 0.697± 0.006 0.800± 0.080

Sample Efficiency. This section examines the model’s generalizability from
the sample efficiency aspect, i.e., how is the performance if less labeled training
data is available? Specifically, each model is trained on a new training set that
is a random subset of the original training data, and then it is evaluated using
the same test data as that used in Table 1. We focus on comparing to the better
contenders LR/SVM/MLP-m and omit the less effective ones – LR/SVM/MLP-
s. The results are shown in Fig. 2. Remarkably, MTNet is substantially more
sample-efficient than its competing methods; it performs much better than, or
comparably well to, the best performance of its competing methods even when
it uses 50% less training data. This superiority of MTNet benefits from the
integrated anomaly ranking tasks in its multi-task objective function, which
enable better generalization to diverse depression cases. This is manifested by
the large performance gap between MTNet and LSTM, since the only difference
between them is the two auxiliary tasks integrated into MTNet.

Parameter Sensitivity. This section evaluates the sensitivity of MTNet w.r.t.
its two hyperparameters, α and β, which respectively adjust the importance of
the anomaly ranking loss and one-class metric loss. The test results are presented
in Fig. 3. The results show that MTNet generally performs stably with both α
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and β in a wide range of setting choices. Relatively small α and large β are
needed for MTNet to achieve the best performance. This indicates that MTNet
is dependent more on the one-class feature learning than the deviation ranking.
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Ablation Study. This section evaluates the importance of each module in
MTNet. LSTM is used as a baseline to evaluate the effect of incorporating one
or more of the following modules, including the deviation ranking loss �a, the
one-class metric learning loss �o, and the data augmentation (DA). The results
are reported in Table 2. It is clear that i) the multi-task learning performs sub-
stantially better than the individual tasks, ii) all three modules in MTNet make
important contribution to its overall performance, and iii) the deviation ranking
loss �a and the one-class metric learning loss �o are complementary to each other.

Table 2. Ablation study results. DA is short for data augmentation.

Method AUC-ROC AUC-PR F-score Precision Recall

LSTM 0.779 0.775 0.662 0.751 0.593

LSTM+�a 0.785 0.786 0.688 0.704 0.684

LSTM+�o 0.804 0.821 0.702 0.673 0.737

LSTM+�a+�o 0.817 0.834 0.721 0.709 0.737

LSTM+�a+�o+DA 0.818 0.823 0.743 0.697 0.800

5 Conclusions and Future Work

In this work we propose a novel multi-task learning framework and its instan-
tiation MTNet for depression prediction. MTNet effectively leverages the two
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auxiliary anomaly ranking tasks to improve the depression prediction model’s
representations and generalizability. Remarkably, our empirical results show that
MTNet is able to accurately predict 80% depression cases 2–4 years before the
depression actually occurs in children. The improved generalizability of MTNet
is supported by the sample efficiency experiment, in which MTNet requires sig-
nificantly less labeled depression samples to perform comparably well to, or
substantially better than, the competing methods. It should be noted the model
has around 70% precision only, indicating 30% false positive predictions. Thus,
caution must be taken when using the the model in practice. In future work, to
improve the model’s accountability and its collaboration with clinical psycholo-
gists, we plan to incorporate an interpretation module into our model to provide
insightful explanation for each of its depression prediction result.
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Abstract. Survival analysis (SA) is an active field of research that is concerned
with time-to-event outcomes and is prevalent in many domains, particularly
biomedical applications. Despite its importance, SA remains challenging due to
small-scale data sets and complex outcome distributions, concealed by trunca-
tion and censoring processes. The piecewise exponential additive mixed model
(PAMM) is a model class addressing many of these challenges, yet PAMMs are
not applicable in high-dimensional feature settings or in the case of unstructured
or multimodal data. We unify existing approaches by proposing DeepPAMM, a
versatile deep learning framework that is well-founded from a statistical point
of view, yet with enough flexibility for modeling complex hazard structures. We
illustrate that DeepPAMM is competitive with other machine learning approaches
with respect to predictive performance while maintaining interpretability through
benchmark experiments and an extended case study.

Keywords: Deep learning · Time-to-event data · Survival analysis ·
Interpretability · Random effects · Mixed models

1 Introduction

Deep learning (DL) excels in many different areas of application through flexible and
versatile network architectures. This has also been demonstrated in survival analysis
(SA) [27,33], where it is often not straightforward to apply off-the-shelf machine learn-
ing models. Apart from medical applications such as the prediction of time-to-death or
the time to disease onset, time-to-event models are also applied in a variety of other
domains. Among other fields, SA is successfully employed for predictive maintenance,
credit scoring, and customer churn prediction. In practice, time-to-event outcomes are
not necessarily observed fully but might be censored, truncated or stem from a com-
peting risks, or a multi-state process. While these aspects relate to the nature of the
observation of event times, SA is also challenging due to the typically small amount of
observations as well as complex feature effects and dependencies between observations.
Medical survival data for instance potentially includes patient data of certain cohorts
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(such as patients from different hospitals with varying levels of patient care), longitudi-
nal data with recurrent events or includes time-varying features such as a patient’s vital
status. Additionally, data can be multimodal (e.g., tabular patient information paired
with medical images).

Our Contribution. In this paper, we introduce a novel method called DeepPAMM for
continuous time-to-event data that enables the hazard-based learning of survival mod-
els via neural networks and supports 1) many common survival tasks, including right-
censored, left-truncated, competing risks, or multi-state data as well as recurrent events;
2) the estimation of inherently interpretable feature effects; 3) learning from multiple
data sources (e.g., tabular and imaging data); 4) time-varying effects and time-varying
features; 5) the modeling of repeated or correlated data using random effects.

2 Related Literature

Various models have been brought forward in SA. We will distinguish between mod-
els developed from a statistical point of view (Sect. 2.1), machine learning approaches
(Sect. 2.2) and recently proposed deep learning frameworks (Sect. 2.3).

2.1 Piecewise Exponential Additive Models and Cox Proportional Hazard
Models

The Cox proportional hazard model (CPH) [11] is the most widely used survival model.
Under certain assumptions [42] the Cox PH model is equivalent to the piecewise expo-
nential model (PEM). The original formulation of the PEM, a parametric, linear effects,
PH model, goes back to [14]. The general idea is to partition the follow-up time into
J intervals and to assume piecewise constant hazards in each interval. The originally
proposed PEM requires a careful choice of the number and placement of interval cut-
points. The piecewise exponential additive model (PAM) [2,3,9] is an extension of the
PEM. PAMs estimate the baseline hazard and other time-dependent effects as smooth
functions over time via penalized splines. This leads to more plausible and robust hazard
estimates and (indirectly) lower computational cost. PAMs can be further generalized
to piecewise exponential additive mixed models (PAMMs) by adding frailty terms (ran-
dom effects). While PEMs and PAMMs can deal with many types of survival data (see,
e.g., [4,6]), they are limited w.r.t. the complexity of feature effects that they can esti-
mate, especially in the case of high-dimensional features and interactions and cannot
handle unstructured data.

2.2 Machine Learning Approaches

In recent years a large number of machine learning methods for SA have been put
forward. Random forest (RF) based methods include the random survival forest (RSF)
[20] and more recently the oblique random survival forests (ORSF) [21]. In contrast
to conventional RFs [8], these adaptions make the models applicable to survival data
by adjusting the splitting criterion. Next to trees and forests, several boosting methods
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exist, such as XGBoost [10] or component-wise boosting for accelerated-failure time
models [36] and non-parametric hazard boosting [28]. More recently and closest to
our work, [4] have proposed a general machine learning approach for various survival
tasks based on PEMs and demonstrated its application using the standard XGBoost
implementation.

2.3 Deep Learning Approaches

Various deep learning approaches have been proposed for SA, with the first approaches
dating back to the mid-1990s (see, e.g., [12]). More recent approaches include both
discrete-time methods like DeepHit [27] or Nnet-survival [15] and continuous-time
methods such as DeepSurv [22] or CoxTime [24]. DeepHit parametrizes the proba-
bility mass function by a neural network and specifically targets competing risks, but
is only able to predict survival probabilities for a given set of discrete follow-up time
points due to its time-discretization approach. Nnet-survival, by contrast, models dis-
crete hazards and provides flexibility in terms of architecture choice, but it also relies
on discretization of event times. DeepSurv is a Cox PH model with the linear predic-
tor replaced by a deep feed-forward neural network. CoxTime further improves upon
DeepSurv by allowing for time-varying effects, thereby overcoming the proportional
hazards assumption. A deep Gaussian process to predict competing risks is proposed
in [1]. While all previous methods focus on tabular data, a few multimodal networks
such as [17,23,30,40] have also been proposed as well as survival tasks combined with
a generative appraoch [41]. The first combination of PEMs with a NN was proposed
by [29]. [7] discussed the estimation of PEM by representing generalized linear models
via feed-forward NNs, and [13] proposed the estimation of the shape of the hazard rate
with NNs. [25] also discussed the parametrization of the PEM via NNs with application
to tabular data. As for PEMs, the choice of cut-points in their framework is crucial for
performance and computational complexity. Our framework eliminates this problem.

3 Piecewise Exponential Additive Models

Survival analysis aims to estimate the survival function S(t) = P (T > t). Instead of
directly estimating S(t), the hazard function

h(t) := lim
Δt→0+

P (t < T < t + Δt|T ≥ t)
Δt

(1)

is modeled. The survival function can be derived from h(t) via S(t) =
exp(−

∫ t

0
h(s) ds). A hazard for time point t ∈ T , conditional on a potentially time-

varying feature vector x(t) ∈ R
P , can be defined by

h(t|x(t), k) = exp (ρ(x(t), t, k)) , k = 1, . . . , K. (2)

The function ρ(·) represents the effect of (time-dependent) features x(t) on the hazard
and can itself be potentially time- and transition-specific. k indicates a transition, e.g.,
from status 0 to status k in competing risks or the transition between two states in
the multi-state setting. In the following, we will set K to 1 for better readability and
only address the single risk application if not stated otherwise. Further omitting the
dependence on t, (2) reduces to the familiar PH form known from the Cox model.
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3.1 Data Transformation

PEMs and PAMs approximate (2) via piecewise constant hazards, which requires a
specific data transformation, creating one row in the data set for each interval a subject
was at risk. Assume observations (subjects) i = 1, . . . , n, for which the tuple (ti, δi,xi)
with event time ti, event indicator δi ∈ {0, 1} (1=event, 0=censoring) and feature vector
xi is observed. PAMs partition the follow up into J intervals (κj−1, κj ], j = 1, . . . , J .
This implies a new status variable δij = 1 if ti ∈ (κj−1, κj ] ∧ δi = 1, and 0 otherwise,
indicating the status of subject i in interval j. Further, we create a variable tij , the time
subject i was at risk in interval j, which will enter the analysis as an offset. Lastly, the
variable tj , (e.g., tj := κj) is a representation of time in interval j and the feature based
on which the model estimates the baseline hazard and time-varying effects. In order
to transform the data to the piecewise exponential data format (PED), time-constant
features xi are repeated for each of Ji rows, where Ji, denotes the number of intervals
in which subject i was at risk. This data augmentation step transforms a survival task
into a standard Poisson regression task. Depending on the setting, e.g., right-censoring,
recurrent events, left truncation, etc., the specifics of the data transformation vary, but
the general principles remain the same. For more details we refer to [4,5,32].

3.2 Model Estimation

Given the transformed data, PAMs approximate (2) by h(t|xi(t)) = exp(ρ(xij , tj)) :=
hij ,∀t ∈ (κj−1, κj ] , where xij is the feature vector of subject i in interval j. Assuming
δij ∼ Poisson(μij = hijtij), the log-likelihood contribution of subject i is given by
�i =

∑Ji

j=1(δij log(hij) − hijtij), where

log(hij) = β0 + f0(tj) +
P∑

p=1

xij,pβp +
L∑

l=1

fl(xij,l),

with log-baseline hazard β0 + f0(tj), linear feature effects βp of features xij,p ⊆ xij

and univariate, non-linear feature effects fl(xij,l) of features xij,l ⊆ xij . Both f0
and fl are defined via a basis representation, i.e., fl(xij,l) =

∑Ml

m=1 θl,mBl,m(xij,l)
with basis functions B·,m(·) (such as B-spline bases) and basis coefficients θ·,m. To
avoid underfitting, the basis dimensions M0 (for f0) and Ml (for fl) are set rela-
tively high. To avoid overfitting, the basis coefficients are estimated by optimizing
an objective function that penalizes differences between neighboring coefficients. Let
β = (β0, . . . , βP )� and θl = (θl,1, . . . , θl,Ml

)�, l = 0, . . . , L. The objective func-
tion minimized to estimate PAMs is the penalized negative log-likelihood given by
− log L(β,θ0, . . . ,θL) +

∑L
l=0 ψlΨ(θl), where the first term is the standard nega-

tive logarithmic Poisson likelihood, comprised of likelihood contributions �i, and the
second term Ψ(θl) is a quadratic penalty with smoothing parameter ψl ≥ 0 for the
respective spline fl. Larger ψl lead to smoother fl estimates (see [6,43] for details).

4 Deep Piecewise Exponential Additive Mixed Models

DeepPAMMs extend PAM(M)s with hazard as defined in (2) by allowing for deep neu-
ral networks (NN) in the additive predictor. Instead of combining PAMMs with (deep)
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Fig. 1. Exemplary architecture of a DeepPAMM. A DeepPAMM comprises a PAMM (black path)
and additionally either a deep neural network (DNN) for unstructured data (yellow path), a DNN
for tabular features (blue path), or both. The unstructured data, e.g., images, are summarized to
latent representations of size R, repeated J times, and concatenated (c) with the tabular data’s
latent representation of size S, as well as raw tabular data of sizeQ. Finally, the offset is added to
the output and the network is trained using the Poisson loss for each of the K competing risks.

NNs in a two-stage approach, we embed the PAMM into the NN similar to [35] and
train the network based on the (penalized) likelihood in an end-to-end manner.

Network Definition. While PAMMs restrict ρ to structured additive effects, the hypoth-
esis space of DeepPAMMs can also be modeled using a deep NN. Assume that the NN
d(·) is used to process a potentially time-varying (unstructured) data source z(t). We
first assume a time-constant effect of z(t) and extend the PAMM’s definition to

h(t|x(t),z(t)) = exp
{
ρ(x(t), t) + d(z(t))

}
, (3)

by adding one (or several) NN predictor(s) to the structured predictor.
The predictor d(z(t)) can be modeled using an arbitrary NN. For example, a Deep-

PAMM can combine a PAM with an additional NN to explore non-linearities and inter-
actions in tabular features (beyond the ones specified in the structured part). Alterna-
tively, a DeepPAMM can combine different data modalities, e.g., tabular patient data
and corresponding medical scans using a convolutional NN for d. By (3), DeepPAMM
learns a piecewise constant hazard rate

hij = exp
{
Bijw +

U∑

u=1

ζij,uγu

}
, (4)

for each observation i and each discrete interval j, where Bij subsumes all Q structured
features (linear and basis evaluated features) with weights w. ζij,1, . . . , ζij,U are U =
R + S latent representations learned from the deep network part that processes tabular
data (into S latent features) and unstructured data (into R latent features). The network
then combines these U latent representations to learn the effect γ1, . . . , γU of each of
these feature effects. Due to the additive structure in predictor (4), the structured terms
with linear effects w preserve their interpretability inherited from PAMMs.
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PED and Latent Representations. d(z(t)) can be viewed as linear effects of U latent
representations derived from inputs z(t). In (3) this representation is combined with the
structured features in a last layer summing up the two predictors. If z is constant over
time, i.e., z(t) ≡ z, it is not straightforward to combine these latent representations with
the PED format properly. A naive approach would be to repeat the original data source
z over all J intervals. This, however, leads to significant computational overhead and
storage of redundant information. Instead, we resort to weight-sharing and reshaping
within the network that allows learning a single latent representation per observation
for all J intervals (cf. Fig. 1). First, the original tabular data is transformed to the PED
format prior to the network training. Subsequently, the reshaped three-dimensional PED
tensor batches with the same sampling dimension as the unstructured data source z are
passed through the network. z itself is transformed into R latent representations and
then repeated J times for each interval. This avoids repeating the original unstructured
data source multiple times. Finally, we combine these representations with the original
tabular data and the S non-linear representations of the structured data part into a joint
set of features. While we here focus on time-constant unstructured data, our framework
can be extended to allow for time-varying unstructured features by simply also supply-
ing the time t to the deep NN d explicitly, i.e., extending d(z(t)) in (3) to d(z(t), t).

Learning Non-proportional Hazards. PAMMs allow for non-proportional hazards via
an interaction of features x with a feature that represents time in each of the J inter-
vals. In practice, however, the accompanying computational complexity and manual
definition of these interactions are often infeasible. In DeepPAMM, such interactions
can be modeled using an appropriate multilayer NN architecture. In particular, interac-
tions between features z(t) and the follow-up t can be expressed by h(t|x(t),z(t)) =
exp

{
ρ (x(t), d(z(t)), t)

}
, where ρ now also depends on the the specified NN to model

a non-proportional hazard in z(t). As the PH assumption is a helpful inductive bias for
applications with small sample sizes, we recommend this extension for larger data sets
or in applications where the PH assumption is clearly violated.

Learning Competing Risks Hazards. When modeling competing risks data with K
different risks that determine the time-to-event, one is interested in retrieving the cumu-
lative incidence functions of each risk (CIFs). Our architecture allows for a holistic
way of modeling the hazard of subject i in interval j and cause k in a joint NN:
hijk = exp

{
Bijkwk +

∑U
u=1 ζijk,uγk,u

}
, where Bijk is equivalent to the input Bij ,

i.e., we repeat Bij K times so that cause-specific weights wk share the same inputs.
Similarly, the latent representations ζijk,u now also depend on the risk k = 1, . . . , K
to yield cause-specific effects γk,u for each latent feature. Figure 1 illustrates the CR
case for an exemplary network architecture. Training the network is based on a joint
loss summing up all K loss contributions for each CR and weighted by binary interval
weights if the observation is still at risk in the jth interval and 0 if not.

Learning Mixed Effects and Recurrent Events. In many SA settings, data comes in
clusters. For example, the survival of patients has been observed at different locations.
This is typically the case for multi-center studies for which survival may substantially
vary between clusters while being more homogeneous within each cluster. A random
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effect (RE), i.e., a linear effect for each cluster with a normal prior, can account for
this within-cluster correlation. REs can also be used to account for repeated measure-
ments and recurrent events. Optimization of NNs with random or mixed effects can be
done using an EM-type optimization routine (see, e.g., [45]), by training a Bayesian NN
(see, e.g., [19]), or by tuning the prior variance based on the equivalence of a random
normal prior and a ridge-penalized effect (see, e.g., [43]). While learning the RE prior
variance explicitly is desirable, a carefully chosen ridge penalization should yield simi-
lar results (due to their mathematical equivalence) while being more straightforward to
incorporate in most NNs.

5 Numerical Experiments

We first explore DeepPAMM by investigating some of the proposed model properties
in a simulation study. Additionally, we compare DeepPAMMwith state-of-the-art algo-
rithms on various benchmark data sets including real-world medical applications. We
examine model performance via the integrated Brier score (IBS) [16], which measures
both, discrimination and calibration of predicted survival probabilities. Instead of inte-
grating over the whole time domain, we evaluate the IBS at the first three quartiles
(Q25, Q50, Q75) of the observed event times in the test set, in order to assess the per-
formance at different time points. While DL-based approaches usually require large
data sets for training, DeepPAMM also works well in small data set regimes. In the
worst case, if there is not enough data to train the deep part of our network, the struc-
tured network part will dominate the predictions. DeepPAMM will then effectively fall
back to estimate a PAMM, which in turn is well suited for small data sets. This property
is especially important in SA where most data sets are relatively small.

5.1 Simulation and Ablation Study

The goal of our simulation study is to investigate the performance of DeepPAMM under
various controlled settings with a focus on 1) mixed effects, 2) competing risks, 3)
multimodal data. For all simulations, the data generating process incorporates both,
linear effects and non-linear interactions. For every setting, we repeat this procedure 25
times to account for variance in data generation and model fitting. In the spirit of an
ablation study, we compare DeepPAMM with its corresponding PAM(M) to investigate
the attribution of performance gains as well as the relation to an ideal model (Optimal).

For competing risks, we simulate two competing risks based on two different haz-
ards structures. While cause 1 is based on 5 features and multiple non-linear interaction
effects, cause 2 relates to 3 features and a more moderate level of interactions as well
as non-linearities.

For mixed effects, we simulate repeated measurements by defining 60 clusters and
drawing a random effect for each cluster unit from a normal distribution with zero mean
and a standard deviation of 1.5. Before training DeepPAMM, we pre-train the random
effects of the DeepPAMM with the corresponding PAMM and use the associated ridge
penalty as a warm start for tuning.
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Table 1. Comparison of the average IBS (with standard deviation in brackets) across the three
quartiles Q25, Q50, Q75 (rows) for different methods (columns) in different study settings. The
†-symbol indicates methods that can only take tabular data information into account.

CR (cause 1) CR (cause 2) Mixed effects Multimodal

Q25 Q50 Q75 Q25 Q50 Q75 Q25 Q50 Q75 Q25 Q50 Q75

KM 5.1
(0.43)

10.8
(0.49)

16.2
(0.57)

4.3
(0.31))

9.1
(0.52)

13.6
(0.60)

7.0
(0.47)

13.5
(0.57)

18.2
(0.68)

4.1†

(0.44)
8.0†

(0.49)
12.1†

(0.66)

PAMM 3.3
(0.32)

6.0
(0.52)

8.9
(0.52)

2.5
(0.21)

4.5
(0.38)

7.0
(0.61)

3.9
(0.49)

6.9
(0.71)

9.1
(0.89)

3.7†

(0.43)
6.3†

(0.63)
8.6†

(0.71)

Ours 2.9
(0.41)

5.4
(0.40)

8.1
(0.43)

2.4
(0.38)

4.4
(0.46)

6.8
(0.68)

3.2
(0.41)

5.7
(0.61)

7.5
(0.69)

3.6
(0.43)

6.1
(0.52)

8.4
(0.65)

Optimal 2.9
(0.72)

5.4
(0.80)

8.0
(0.79)

2.1
(0.22)

4.1
(0.39)

6.5
(0.63)

2.9
(0.36)

5.2
(0.57)

6.8
(0.68)

3.6
(0.42)

6.1
(0.58)

8.3
(0.68)

For the multimodal data scenario, we simulate log-hazards based on linear latent
effects from point clouds (PC) based on the data set fromModelNet10 [44]. Each of the
PC labels is associated with a different latent coefficient ranging from −0.5 to 0.75. The
hazard is defined to depend on these latent coefficients as well as on tabular features.
A reduced PointNet [31] is used to model the PCs. This set up has been adapted from
[23].

Results. Model comparisons are provided in Table 1. In summary, our proposed model
is the best performing method across all three settings and in most cases yields perfor-
mance values close to the optimal error in terms of the IBS. While performance gains
in absolute terms seem small, the decrease in IBS relative to the optimal error is espe-
cially noteworthy for CR (cause 1) and the mixed effects setting. Results confirm that
DeepPAMM works well in various of the proposed data situations. The ablation study
further justifies the deep part of DeepPAMM by its improved performance in compari-
son to PAMM.

5.2 Benchmark Analysis

We compare our approach with various state-of-the-art methods (Table 2). Comparisons
include a tree-based method (ORSF; [21]), a boosting approach (PEMXGB; [4]), as
well as (DeepHit; [27]), a well-established deep NN for SA. As baseline models we
use a Kaplan-Meier estimator (KM; [11]) and a Cox PH model (CPH; [11]). We restrict
our comparison to directly and publicly available SA data sets that have been used
in the benchmarks of methods listed above, namely tumor [5], gbsg2 [37], metabric
(cf. [27]), breast [39], mgus2 [26], and icu (cf. [18]). For each method, we perform a
random search with 50 configurations and compare the aggregated (mean and std. devi-
ation) test set performances on 25 distinct train-test-splits. The data sets impose differ-
ent challenges, including CR (icu, mgus2), high-dimensional data (breast), and mixed
effects (icu). For these, DeepPAMM is consistently among the best-performing sur-
vival models. The main point here is that DeepPAMM is competitive compared to other
state-of-the-art methods while maintaining interpretability as illustrated in Sect. 5.3.
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Table 2. Performance comparison based on the IBS (↓) at the three quartiles (Q25, Q50, Q75)
across different data sets (rows) and models (columns) with best models per row highlighted in
bold. Missing entries are due to missing support for CRs.

Data set KM Cox PH ORSF PEMXGB DeepHit DeepPAMM

tumor Q25 6.6 (0.59) 6.0 (0.58) 5.5 (0.56) 5.7 (0.63) 5.6 (0.55) 5.7 (0.59)

Q50 12.3 (0.86) 11.2 (0.82) 10.8 (0.91) 10.9 (1.05) 11.0 (0.96) 10.9 (0.86)

Q75 17.6 (0.79) 16.3 (0.77) 16.3 (0.85) 16.2 (0.92) 16.4 (0.95) 16.2 (0.81)

gbsg2 Q25 3.1 (0.49) 3.1 (0.45) 3.0 (0.45) 3.0 (0.46) 3.1 (0.49) 3.1 (0.41)

Q50 6.8 (0.80) 6.5 (0.72) 6.2 (0.70) 6.3 (0.68) 6.6 (0.8) 6.5 (0.69)

Q75 12.5 (1.04) 11.4 (0.94) 11.1 (0.95) 11.3 (1.01) 11.9 (0.99) 11.5 (0.95)

metabric Q25 4.0 (0.22) 4.0 (0.26) 4.1 (0.25) 3.8 (0.22) 4.0 (0.22) 3.9 (0.27)

Q50 8.6 (0.51) 8.2 (0.54) 8.9 (0.46) 7.8 (0.49) 8.4 (0.45) 7.9 (0.45)

Q75 14.0 (0.38) 12.9 (0.47) 14.7 (1.19) 12.3 (0.51) 13.5 (0.40) 12.6 (0.44)

breast Q25 1.9 (0.61) – 2.0 (0.59) 2.0 (0.57) 2.1 (0.54) 1.9 (0.60)

Q50 4.1 (0.89) – 4.0 (0.80) 4.0 (0.83) 4.2 (0.81) 4.0 (0.90)

Q75 7.1 (1.13) – 6.7 (0.96) 6.7 (1.10) 7.1 (1.02) 6.8 (1.33)

mgus2 (cause 1) Q25 1.1 (0.21) – – 1.9 (0.34) 1.1 (0.21) 1.1 (0.21)

Q50 2.2 (0.34) – – 4.1 (0.55) 2.2 (0.34) 2.2 (0.34)

Q75 3.4 (0.48) – – 6.9 (0.69) 3.5 (0.51) 3.4 (0.49)

mgus2 (cause 2) Q25 8.7 (0.52) – – 8.6 (0.65) 8.1 (0.55) 8.3 (0.49)

Q50 14.4 (0.61) – – 13.9 (0.84) 12.9 (0.66) 13.1 (0.65)

Q75 18.4 (0.60) – – 17.9 (1.04) 15.8 (0.67) 16.0 (0.67)

icu (cause 1) Q25 1.3 (0.06) – – 1.4 (0.66) 1.3 (0.06) 1.3 (0.06)

Q50 3.6 (0.14) – – 3.6 (0.13) 3.5 (0.13) 3.5 (0.13)

Q75 6.7 (0.19) – – 6.7 (0.19) 6.5 (0.20) 6.4 (0.19)

icu (cause 2) Q25 3.5 (0.15) – – 3.5 (0.14) 3.4 (0.14) 3.4 (0.14)

Q50 7.6 (0.17) – – 7.6 (0.17) 7.3 (0.17) 7.3 (0.16)

Q75 12.0 (0.15) – – 12.1 (0.17) 11.5 (0.20) 11.3 (0.17)

5.3 Extended Case Study

In this extended case study, we show how DeepPAMM can be used to obtain inter-
pretable feature effects and at the same time incorporate potentially high-dimensional
interactions. To illustrate this, we apply DeepPAMM to spatio-temporal data where the
outcome is response times (time-to-arrival) of the London fire brigade to fire-related
emergency calls [38]. Additionally, the data includes geographic coordinates of the site
of the fire as well as information about the ward from which the truck was deployed
and the time of day of the incident. We expect a non-linear effect of the time of day that
varies with day and night times as well as traffic hours and a bivariate spatial effect of
the location with different hazards in different regions of the city. Therefore, we model
the hazard for arrival at time t given time of day td, spatial coordinates (c1 and c2) and
ward v = 1, . . . , V as
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Table 3. Performance comparison based on the IBS (↓) at the three quartiles (Q25, Q50, Q75)
across different models (columns) for the data set of [38] with best models per row highlighted
in bold. The performance has been assessed using 25 train-test splits.

Quantile KM PAMM DeepPAMM

Q25 12.8 (0.28) 12.3 (0.30) 12.2 (0.32)

Q50 18.1 (0.18) 16.9 (0.21) 16.7 (0.23)

Q75 19.9 (0.11) 18.4 (0.14) 18.2 (0.14)

log(h(t|td, c1, c2, v)) = β0 + f0(t) + f1(td) + f2(c1, c2) + bv︸ ︷︷ ︸
structured

+ d(t, td, c1, c2, v)
︸ ︷︷ ︸

unstructured

where f1(td) is estimated as a cyclic spline that enforces equal values of the func-
tion at 0 and 24 h, f2(c1, c2) is a bivariate tensor product spline and bv are random
effects for the individual wards. In the unstructured part, we additionally allow for high-
dimensional interactions between the features from the structured part. This way, we can
investigate whether the predictive performance can be improved beyond the structured
part. Structured effects are given in Fig. 2. For interpretation, note that higher hazards
imply shorter response times, thus response times are on average longer during night
hours and between 12 and 18 p.m. as well as in the periphery of the city. The results
w.r.t. the predictive performance are shown in Table 3, where we compare our model
with a KM baseline and the respective PAMM. In addition to the PAMM specification,
our model includes a NN with three layers (64, 32, 8 neurons) to model feature inter-
actions. The results indicate that on average the performance improves slightly when
the unstructured part is added. Given the resulting standard deviations, we conclude
that the structured part is sufficient. Further, DeepPAMM’s structured effects are in
line with results presented in [38]. This shows the strength of DeepPAMM: maintain-
ing interpretability of covariate effects as illustrated in Fig. 2, while also allowing the
investigation of additional effects in the unstructured part.
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Fig. 2. Smooth cyclic (left) and spatial (right) effect of a DeepPAMM. Effects are from a single
of the 25 runs.
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6 Concluding Remarks

We present DeepPAMM, a novel semi-structured deep learning approach to survival
analysis. Our experiments demonstrate that our model has high predictive capacity
and is capable of modeling diverse complex data associations. DeepPAMM allows to
include non-linear and feature interaction effects in the model, can be used to model
non-proportional hazards, time-varying effects and competing risks, while also account-
ing for correlation in the data using mixed effects. The deep part of the model further
makes estimation in high-dimensional settings possible and can be used to include
unstructured data into the survival analysis. The additive predictor in our approach
allows for straightforward interpretability and to recover the PAM(M) when no addi-
tional deep predictors are necessary. Our method can be fit using existing software
solutions (e.g., deepregression [34]).

Acknowledgements. This work has been partly funded by the German Federal Ministry of Edu-
cation and Research (BMBF) under Grant No. 01IS18036A. The authors of this work take full
responsibility for its content.
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Abstract. The increasing application of machine learning techniques
in everyday decision-making processes has brought concerns about the
fairness of algorithmic decision-making. This paper concerns the problem
of collider bias which produces spurious associations in fairness assess-
ment and develops theorems to guide fairness assessment avoiding the
collider bias. We consider a real-world application of auditing a trained
classifier by an audit agency. We propose an unbiased assessment algo-
rithm by utilising the developed theorems to reduce collider biases in the
assessment. Experiments and simulations show the proposed algorithm
reduces collider biases significantly in the assessment and is promising in
auditing trained classifiers.

Keywords: Fairness · Collider bias · Causal inference

1 Introduction

Fig. 1. The process of audit.

There are increasing concerns over the fair-
ness of decision making algorithms with the
wide use of machine learning in various appli-
cations, such as job hiring, credit scoring
and home loan since discrimination can be
inadvertently introduced into machine learn-
ing models. To prevent unfairness in a model
from spreading in society, audit techniques are
needed for the independent authority to audit machine learning models. Figure 1
shows an audit process. An audit agency accesses a model of a company and has
its own audit cases for assessing the fairness of the model. The audit agency does
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not have access to the training data set but has the regulatory policy. In this
paper, we use a causal graph to represent the regulatory policy. The company
may use additional variables that are not specified in the regulatory policy to
build its models to improve prediction accuracy.

Situation test has been used in the U.S. to detect discrimination in recruit-
ment [2], which is a controlled experiment approach for analysing employers’
decisions on job applicants’ characteristics, as illustrated with the following
examples. Pairs of research assistants are sent to apply for the same job, and
each pair of the pretended applicants have the same qualifications and expe-
rience related to the job but have different values for their protected variable,
such as male/female or young/old. Discrimination is detected if the favourable
decisions are unequal between groups with different protected values.

The above described situation test can be simulated in an audit process, and
we call it Naive Situation Test (NST) in this paper. We feed two inputs repre-
senting two individuals whose variable values are identical except their protected
values to a machine learning model. If the model provides different decisions,
NST will detect the model as discriminatory.

Table 1. An example of incorrect
detection by NST on a classifier.

Race Edu Sub Predicted.Sal
white high A >50k
black high A >50k
white high A >50k
black high B ≤50k
black high B ≤50k
white high B ≤50k

NST ⇒ “fair”

f(white, high, A)=f(black, high, A)

f(white, high, B)=f(black, high, B)

NST may produce an incorrect detec-
tion. We use the following example to show
this. Consider a classifier f() used by a
company to determine employees’ salaries as
salary = f(race, education, suburb). Some
predicted outcomes by the model are shown in
Table 1. Based on NST, the black people are
not discriminated against since with the same
education and suburb, both white and black
people are predicted to have the same salary.
However, Suburb is an irrelevant variable for determining the Salary. Without
considering the Suburb, with the same level of Education, 2/3 white people
receive a salary higher than 50K while only 1/3 black people receive a salary of
50K or higher. Hence, black people are discriminated against by the model.

Fig. 2. The causal graph for
the above example.

The incorrect detection by NST is caused by
collider bias. We use a causal graph, formally
defined in Sect. 2, to explain the collider bias.
Causal relationships of variables in the above
example are shown using the causal graph in Fig. 2
where a directed edge represents a causal relation-
ship. The suburb is a collider since two edges “col-
lide” at it. Conditioning on a collider, an associa-
tion is formed between the two variables but it is spurious [5]. In the example,
the spurious association cancels the association due to the causal relationship
between Race and Salary and hides the true discrimination. Collider bias is
related to the selection bias [10]. In a classifier, conditioning on a variable is
equivalent to selecting sub-populations using the values of the variable. If the
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variable is a collider, a selection bias in each sub-population is resulted. We call
this bias collider bias in this paper.

There is no existing alternative method to NST to audit classifiers. Most
methods, to be reviewed in the related work, need to access the training data
set and suffer from collider bias. A causal-based situation test (CST) [25] does
not suffer from collider bias, but needs to access the training data set too. The
audit cases used by an audit agency are only a small number of individual cases
which do not represent the population. Collecting a representative sample of the
population needs a significant resource. Therefore, a data-based audit method
is not applicable. We make the following contributions in this paper.

– We study collider bias in fairness assessment and present theorems to avoid
collider bias. Our theoretical results give a principled guidance on which vari-
ables can be used for fairness assessment and also for building fair classifiers.

– We investigate the problem of auditing machine learning models and propose
an Unbiased Situation Test (UST) algorithm for auditing without accessing
training data or an unbiased sample of the population. Experiments show
that UST can effectively reduce collider bias.

2 Background

We present the necessary background of causal inference. We use upper case
letters to represent variables and bold-faced upper case letters to denote sets of
variables. The values of variables are represented using lower case letters.

Let G = (V,E) be a graph, where V = {V1, . . . , Vp} is the set of nodes and
E is the set of edges between the nodes, i.e. E ⊆ V ×V. A path π is a sequence
of distinct nodes such that every pair of successive nodes are adjacent in G. A
path π is a directed path if all edges along the path are directed edges. A path
between (Vi, Vj) is a backdoor path with respect to Vi if it has an arrow into
Vi. Given a path π, Vk is a collider node on π if there are two edges incident
like Vi → Vk ← Vj . In G, if there exists Vi → Vj , Vi is a parent of Vj and we
use Pa(Vj) to denote the set of all parents of Vj . In a directed path π, Vi is an
ancestor of Vj and Vj is a descendant of Vi if all arrows point to Vj .

A DAG (Directed Acyclic Graph) is a directed graph without directed cycles.
With the following two assumptions, a DAG links to a distribution.

Definition 1 (Markov condition [17]). Given a DAG G = (V,E) and P (V),
the joint probability distribution of V, G satisfies the Markov condition if for
∀Vi ∈ V, Vi is probabilistically independent of all non-descendants of Vi, given
the parents of Vi.

When the Markov condition holds, P (V) can be factorised into: P (V) =∏
i P (Vi | Pa(Vi)).

Definition 2 (Faithfulness [20]). A DAG G = (V,E) is faithful to P (V) iff
every independence presenting in P (V) is entailed by G which fulfills the Markov
condition. A distribution P (V) is faithful to a DAG G iff there exists DAG G
which is faithful to P (V).
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With the above two assumptions, we can read the independencies between
variables in P (V ) from a DAG using the Definition 8 in Appendix A. To conduct
causal inference with DAGs, we make the following assumptions.

Definition 3 (Causal sufficiency [20]). A data set satisfies causal sufficiency
if for every pair of variables (Vi, Vj) in V, all their common causes are also in V.

With a DAG, if we interpret a node’s parent as its direct cause, the DAG
is known as a causal DAG. We can learn a causal DAG from data when the
assumptions of causal sufficiency, faithfulness and Markov condition are satisfied.

An intervention, which forces a variable to take a value, can be represented
by a do operator. For example, do(X = 1) means X is intervened to take value
1. P (y | do(X = 1)) is an interventional probability. Let us understand do in an
ideal experiment.

Definition 4 (Direct effect [17]). The direct effect of X on Y is P (y | do(X =
x), do(V\XY = v)) where V\XY means all other variables except X and Y .

In order to study the relationship between X on Y , all other variable are con-
trolled in the ideal experiment. To infer interventional probabilities (by reducing
them to normal conditional probabilities) with a causal DAG, the rules of do-
calculus [17] are necessary. Detailed description of these rules are available in
Appendix A, and we used these rules to proof our theorems.

3 Problem Definition

A classifier (prediction model) has been built by a company/organisation from a
training data set which contains a binary protected variable A, a binary decision
outcome Y , and a set of relevant variables of Y , X, since variables independent
of Y are not used for predicting Y . An agency wants to audit the model using
some cases. We make the following assumptions about the audit.

Assumption 1 1. The regulatory policy has specified the causal relationships
among the factors and Y , and uses a causal DAG to indicate. The factors are
ancestral variables of Y including all direct causes of Y .

2. The audit agency has no access to the model training data or an unbiased
sample of the population. The agency however has access to the distributional
statistics from some sources, such as government census data.

3. The company or organisation has used all the legitimate factors to comply
with the regulatory policy. However, some other variables are also used by the
model to enhance the prediction performance.

In the theorem development, we assume that there is a DAG that is consistent
with the regulatory policy. In the algorithm, we do not need the complete DAG,
but ancestral variables of Y and colliders in the descendant nodes of Y .
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We first define the criterion for auditing. We use Controlled Direct Effect
(CDE) [18] to measure fairness. CDE is extended Definition 4 to simulate an
ideal experiment. The alternative definitions are path specific causal effect [4,21]
and counterfactual fairness [12], we will discuss why the alternatives have not
been used after Definition 5.

The protected variables in this paper include redline variables, which are
the descendants of protected variables. The redline variables are recognised as a
proxy of protected variables and may cause some discrimination [11]. Some com-
panies or organisations build the models under the concept of fairness through
awareness [7], which means the classifier functions may not use the protected
variables as input. In this case, the redline variables will be considered as the
protected variables.

Definition 5. (Fairness score). Given a causal DAG G representing the
regulatory policy, A, X, and Y as described above. The fairness score is of
an individual (or a subgroup) X = xi is defined by Controlled Direct Effect,
CDE(xi) = P (y | do(A = 1), do(X = xi)) − P (y | do(A = 0), do(X = xi)),
where y denotes Y = 1.

The rationale of the above definition is that we conduct a controlled exper-
iment by intervening the protected variable, and controlling all other variables
to xi. The decision for xi is fair if the intervention does not change the outcome.

Unlike previous works [7–9,15], our definition of fairness score is based on the
CDE which uses intervention. Thus the spurious association between A and Y
caused by conditioning on colliders will be avoided. We do not use counterfactual
fairness [12] in our fairness definition since it needs stronger assumptions and
poses a practical challenge. To estimate counterfactual outcomes, there is a need
for knowing the full causal model and latent background knowledge. Both are
not available in our problem setting. Some other definitions [4,21] make use of
path specific causal effect. Their solutions also need counterfactual reasoning
and they do not fit our problem setting.

Definition 6. (Problem definition). Given G, A and X as described above,
and classier Ŷ = f(A,X). The audit is to determine if a prediction on an
individual (X = xi) is fair, i.e. |CDE(xi)| < τ where τ is a threshold determined
by the regulatory policy and Y in CDE(xi) is replaced by Ŷ .

4 Estimating CDE

For the sake of fairness audit, the protected variable A is assumed to be a parent
node of Y so we can use CDE for the audit. The results in this section are true
in general, not just for auditing classifiers. Due to page limitations, all the proofs
of theorems will be presented in Appendix B.

Theorem 1. DAG G contains variables A and Y , and variable set X where (A∪
Y ) ∩ X = ∅. The causal sufficiency is satisfied. P (y | do(A = a), do(X = x)) =
P (y | A = a, Pa′(Y ) = pa) where Pa′(Y ) is the set of all parents of Y in G
excluding A.
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Fig. 3. DAGs for the examples of Theorem/Corollary. X1 to X6 are observed variables,
and U1 and U2 are unobserved variables.

Theorem 1 removes the descendant nodes of Y from the conditioning set
in the conditional probabilities for CDE estimation, and this removes possible
collider bias. Furthermore, it gives a succinct set of variables for estimating CDE.

For example, in Fig. 3(a), P (y | do(a), do(x1, x2, x3, x4)) = P (y | a, x1, x2)
based on Theorem 1, where we use xi for Xi = xi. The CDE is determined by
conditional probabilities on A, X1 and X2. Since X3 is not used in the condition-
ing set, there will be no collider bias. Theorem 1 is based on the causal sufficiency
assumption, which assumes that there are no unobserved common causes in the
data set. In real-world applications, unobserved variables are unavoidable. When
there are unobserved variables, how do we estimate CDE? The following corol-
lary will show that they do not invalidate the result of Theorem 1.

Corollary 1. Let Ca(Y ) include all the direct causes and only direct causes of
Y except A. P (y | do(A = a), do(X = x)) = P (y | A = a,Ca(Y ) = ca).

Corollary 1 indicates that discrimination detection is sound when the
audit agency knows all the direct causes of Y and uses them as the
conditioning set when calculating CDE. For example, in Fig. 3(b), P (y |
do(a), do(x1, x2, x3, U1)) = P (y | a, x1, x2) based on Corollary 1. Unobserved
ancestral variables of Y are blocked off from Y by X1 and X2, and they do not
affect the probability of Y . The unobservable variables can be in the descendant
nodes of Y too, but they do not affect the CDE estimation since they will not
be used anyway.

We will further explain why direct causes are necessary for Corollary 1. Let
Fig. 3(c) be a true DAG with two unobserved variables U1 and U2. X2 is not
a direct cause of Y . Since U1 and U2 are unobserved, X2 is perceived as a
parent of Y in the observed data. If X2 is used to estimate CDE, the estimation
will be biased since the back door path (Y,U1, U2,X1, A) is opened when X2

is conditioned on. In this case, X1 is necessary to block the path. When both
X1 and X2 are included, the CDE estimation is unbiased. Sometimes, we need
redundancy to prevent such a biased estimation.

Both Theorem 1 and Corollary 1 give a succinct conditioning set for CDE
estimation. In fact, a superset of the direct causes works as long as the superset
does not contain descendant nodes of Y . In a DAG, ancestral nodes represent
the direct causes and indirect causes of Y .
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Corollary 2. Let B include all the direct causes and some (or all) indirect
causes of Y . We have P (y | do(A = a), do(X = x)) = P (y | A = a,B = b).

Corollary 2 allows some redundancy in the conditioning set comparing to
Corollary 1. In practice, the redundancy gives a flexibility for users to determine
the direct causes of Y . Sometimes, a direct cause and an indirect cause are diffi-
cult to distinguish, and Corollary 2 indicates that including both does not bias
the CDE estimation. For example, in Fig. 3(d), P (y | do(a), do(x1, x2, x3, x4)) =
P (y | a, x1, x2) = P (y | a, x1, x2, x4) based on Corollary 2 if X1 and X2 are all
direct causes of Y . Let us assume that Fig. 3(d) is the true DAG, but a gov-
ernment agency has a DAG as Fig. 3(e) since they do not know which one of
X1 and X4 is the direct cause of Y . A CDE estimation based on the imprecise
DAG in Fig. 3(e), i.e. P (y | do(a), do(x1, x2, x3, x4)) = P (y | a, x1, x2, x4) is also
unbiased.

5 Implementing Unbiased Situation Test

We summarise the discussion and propose the following unbiased situation test.

Definition 7 (Unbiased Situation Test (UST)). UST exams whether a
classifier Ŷ = f() is fair for a given case xi by calculating CDE(xi) = P (Ŷ =
1 | A = 1,B = bi) − P (Ŷ = 1 | A = 0,B = bi), where B is the set of direct
causes and some (or all) indirect causes of Y . The test case xi is discriminated
if |CDE(xi)| ≥ τ , where τ is a threshold specified by the regulatory policy.

All variables in the problem except (A, Y ) can be categorized into two types:
B and C. B is the set of ancestral nodes of Y which can be identified by the
regulatory policy, and C includes others. Note that irrelevant variables which
are independent of Y are not in X.

To conduct UST as in Definition 7, one problem is that an audit agency can-
not obtain the conditional probability P (Ŷ = 1 | A = a,B = bi) directly since
it does not access the training data set or a unbiased sample of the population.

Algorithm 1. Unbiased Situation Test (UST)
Input: Classifier f(), X = B ∪ C as defined in the text. P (C = ci). Test cases DTest.
The threshold τ .
Output: L, a list of discriminated cases in DTest.

1: for each ri ∈ DTest do
2: Let r′

i be the record by flipping the value of A in ri
3: Let P (Ŷ = 1 | ri) = f(ri) and P (Ŷ = 1 | r′

i) = f(r′
i)

4: Obtain P (Ŷ = 1 | A = A(ri),B = B(ri)) and P (Ŷ = 1 | A = A(r′
i),B = B(r′

i))
by Equation 1 where A() and B() return values of A and B in the records
respectively

5: Conduct situation test by Definition 7 and update L
6: end for
7: Return L
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Instead, it can have P (Ŷ = 1 | A = a,B = bi,C = ci) from the classifier f().
Therefore, the following marginalisation is used:

P (ŷ | A = a,B = bi) =
∑

ci∈C

P (ŷ | a,bi,C = ci)P (ci) (1)

where ŷ denotes Ŷ = 1, and probability P (ci) can be obtained from some sources,
such as government census data. The algorithm for UST is presented in Algo-
rithm 1. The complexity for UST algorithm is O(n), where n is the size of DTest,
i.e. linear to the number of test records.

6 Experiments

In this section, we first demonstrate UST algorithm can correct the spurious
associations generated by collider. Then, we simulate the audit process by using
real-world data set. We only compare UST with NST in population-level sam-
pling since other situation test methods, such as, CST [25], k-NN based situation
test [15] need to access training data set which is unavailable in our problem.
We also demonstrate that data-based audit method fails in unrepresentative
sampling but UST works. Finally, we apply the UST algorithm to compare fair-
ness for different models and guide the audit agency to choose the model. The
experimental settings and details can be found in the full version [22].

6.1 Correcting Collider Biases

We construct synthetic data sets including a collider as discussed in the full
version [22]. UST has significantly reduced biases in CDE estimation. Bias is used
to measure the error between an estimated CDE and the true CDE. Biases of
including and not including a collider are shown in Table 2. The later is the UST
method which corrects biases of a collider in data by directly using Corollary 2.

Table 2. UST has significantly
reduced biases caused by a collider.

Trials Bias (with collider) Bias (UST)

1 0.143 ± 0.011 0.072 ± 0.004

2 0.154 ± 0.013 0.074 ± 0.004

3 0.149 ± 0.012 0.066 ± 0.004

4 0.149 ± 0.014 0.067 ± 0.004

5 0.152 ± 0.012 0.069 ± 0.004

Table 3. Suburb variable (collier)
improves the accuracy of classifica-
tion models.

Acc. w/ Sub Acc. w/o Sub

DT 89.66% 81.01%

SVM 89.60% 80.93%

RF 89.81% 80.86%

NN 89.64% 80.85%



270 Z. Xu et al.

6.2 Simulating an Audit Process Using Adult Data Set

The Adult data set from UCI Machine Learning Repository [1] is used to simulate
audit process as shown in Fig. 4. We use the Adult data set as the population
for generating the ground truths. A company has a sample (50%) as the private
data to build a model. The red dashed line represents the information that the
audit agency has access to. The ground truths are generated from the population
and all causes of Y .

Fig. 4. A simulation of audit process
using Adult data set

Race is the protected variable and
Salary is the outcome. Other variables
are Education level, Marriage statues,
Work hour, Work class, and they all
determine the salary. We simulate a Sub-
urb variable as a collider. The accuracy
of a classifier is significantly higher when
the Suburb is used than not as shown in
Table 3. The accuracy improvement is due
to the spurious associations.

6.3 Comparing the Audit Performance of NST and UST

We apply UST to audit a few well-known classifiers built from sample data
set. NST (introduced in the introduction) is used for the comparison since it is
the only method for assessing the fairness of a classifier without accessing the
training data set. We use precision and recall for the comparison. The ground
truth for each audit case is calculated by using the population and the causes of
Y . Audit cases are k% records randomly selected from the population. For each
k, we resample audit cases 10 times and report the average precision and recall.

UST outperforms NST in both precision and recall as shown in Table 4. With
the increasing number of audit cases, the deviations of both methods decrease.
From the gaps between the precision and recall of NST and UST, we see that
the collider bias deteriorates the detection performance of NST significantly.

Table 4. The audit performance comparison of NST and UST. The higher values are
highlighted. The standard error is shown in brackets.

k = 0.1% k = 0.5% k = 1%

NST UST NST UST NST UST

DT Recall 59.6%(0.96) 79.8%(0.11) 56.7%(0.27) 73.3%(0.05) 56.3%(0.05) 71.7%(0.10)

Precision 84.4%(0.32) 98.1%(0.16) 78.9%(0.06) 99.1%(0.01) 80.3%(0.02) 98.8%(0.01)

SVM Recall 77.9%(1.18) 87.8%(0.26) 75.7%(0.17) 89.9%(0.03) 74.1%(0.06) 89.1%(0.02)

Precision 68.1%(0.73) 83.4%(0.14) 65.1%(0.11) 79.9%(0.06) 64.6%(0.13) 81.0%(0.05)

RF Recall 56.1%(1.91) 73.8%(0.32) 58.2%(0.23) 66.8%(0.03) 57.7%(0.09) 65.2%(0.14)

Precision 88.6%(0.17) 96.4%(0.25) 86.8%(0.02) 97.8%(0.01) 86.9%(0.04) 98.4%(0.01)

NN Recall 65.9%(1.17) 74.9%(0.14) 67.6%(0.16) 71.5%(0.10) 67.9%(0.06) 69.2%(0.08)

Precision 85.9%(0.24) 96.7%(0.21) 81.7%(0.04) 97.1%(0.01) 82.8%(0.02) 97.2%(0.01)
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6.4 Data Based Audit May Be Biased

Removing the collider from the data can be used as an alternative method to
UST. However, a data-based audit (DBA) relies on the representativeness of the
audit cases for the population. The representativeness is difficult to be ensured
because individuals who receive unfair treatments likely require the authority
to audit their results. An audit agency does not have a resource to collect a
representative sample for auditing. We simulate the unrepresentative audit cases
by over (under) sampling discriminatory cases in the population. In the Adult
data set, about 15% of the individuals are discriminatory and this ratio is the
baseline. We vary discriminatory ratios of 1% data set.

The performance of DBA deteriorates significantly when a discriminatory
ratio deviates from the baseline as shown in Table 5. Note that all discrimination
detection methods based on data have the same limitation. In contrast, UST
maintains similar performance.

Table 5. The audit performance comparison of DBA and UST with discriminatory
sample. The higher values are highlighted. The standard error is shown in brackets.

Discriminatory Ratio=0% Discriminatory Ratio=10% Discriminatory Ratio=20%

DBA UST DBA UST DBA UST

DT Recall 60.1%(1.18) 72.2%(0.06) 57.8%(1.72) 71.7%(0.07) 60.9%(0.91) 71.8%(0.10)

Precision 84.6%(0.23) 97.5%(0.01) 78.2%(0.35) 96.2%(0.01) 70.9%(0.11) 95.1%(0.01)

SVM Recall 39.8%(1.64) 89.0%(0.01) 40.0%(1.51) 89.5%(0.01) 35.6%(2.57) 89.8%(0.01)

Precision 77.8%(0.19) 82.5%(0.03) 71.2%(0.31) 76.0%(0.05) 56.4%(1.02) 67.7%(0.06)

RF Recall 39.9%(0.18) 65.6%(0.06) 40.4%(0.14) 65.2%(0.06) 39.5%(1.13) 65.2%(0.05)

Precision 78.9%(0.14) 97.3%(0.02) 72.6%(0.16) 96.4%(0.02) 61.2%(0.26) 94.2%(0.05)

NN Recall 46.1%(2.02) 69.8%(0.07) 45.7%(2.11) 69.8%(0.06) 39.4%(2.26) 69.4%(0.09)

Precision 80.6%(0.11) 95.0%(0.03) 73.6%(0.29) 93.0%(0.03) 60.0%(0.51) 90.1%(0.07)

6.5 Rank Models Based on Fairness

We show that UST can be used for comparing the fairness of different models.
We first discuss the metrics for the comparison. After discrimination detection
on a model using audit cases with ground truths, we obtain True Positive (TF),
False Positive (FP), True Negative (TN), and False Negative (FN). FN indi-
cates the cases that are unfair but are corrected to be fair by the model. They
are favourable for fair predictions, and we use correction rate, CR = FN

TP+FN ,
to represent the proportion of true unfair cases being corrected by a model. In
contrast, FP represents that the cases that are fair become unfair after model
predictions. These cases are called reversed discrimination and are unfavourite
for predictions. We use the reversion rate, RR = FP

FP+TN , to represent the pro-
portion of fair cases being reversed by a model. We wish the revision rate is as
small as possible.
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Table 6. The audit results of var-
ious models.

CR(↑) RR(↓)
DT 29.09% ± 0.079 1.69% ± 0.001
SVM 10.05% ± 0.024 39.37% ± 0.049
RF 35.24% ± 0.147 1.07% ± 0.001
NN 31.48% ± 0.064 2.76% ± 0.001

The CR and RR of four classifiers are
shown in Table 6. Random Forest is the fairest
model based on the two measures. Random
Forest has corrected 35.24% of unfair cases,
and only reversed 1.07% of fair cases to unfair.
Note that, their prediction accuracies are very
similar, but their CR and RR are different.
This assessment shows that some errors made by a model are better than others
in terms of the fairness.

7 Related Works

The work belongs to discrimination detection. Detection methods are divided
into the group, and individual-based. Another division of the methods is associ-
ation or causal based.

At the group level, a number of metrics have been defined to detect dis-
crimination. Demographic parity, a well-known fairness measurement, is defined
by [7]. Other measurements including equalised odds [9], predictive rate parity
[23]. However, these group-based fairness does not necessarily mean individual
fairness. Many algorithms focus on detecting discrimination at the individual
level. Authors in [19] use existing inequality indices from economics to measure
individual level fairness. Speicher et al. [14] propose an individual level discrim-
ination detector, which is used to prioritise data samples and aims to improve
the subgroup fairness measure of disparate impact.

Under the causal framework, Li et al. [13] use the (conditional) average causal
effect to quantify fairness for (sub)group level discrimination detection. Coun-
terfactual fairness [12] is an attractive definition of individual level fairness mea-
surements by causality. It means that a decision is fair towards an individual
if it is the same in both the actual world and a counterfactual world (when a
value of a protected variable is changed). However, it needs strong assumptions.
Zhang et al. [26] use nature direct effect and nature indirect effect to quantify
fairness. The path-specific causal effect [4,21] have been used to quantify fairness
when the regulatory policy recognises some causal paths involving a protected
variable fair. Nature direct (indirect) effect and path-specific causal effect all
need counterfactual reasoning and are difficult to implement in practice since
the strong assumptions are related to counterfactual reasoning.

Situation test related work has been discussed in the introduction. The above-
mentioned related work only introduces some main influential contributions. For
more related work, please refer to the literature review [3,6,16,24].

8 Conclusions

In this paper, we have discussed collider bias in fairness assessment. We have pre-
sented theoretical results based on the graphical causal model to avoid collider
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biases in fairness assessment. The results are useful for discrimination detec-
tion and also for feature selection for building fair classifiers. We have proposed
an Unbiased Situation Test (UST) algorithm for the fairness assessment of a
classifier without accessing the training data set or a sample of the population.
Experimental results show that UST effectively reduces collider biases and can
be used to assess the fairness of a classifier without accessing to data. The UST
is promising for an audit agency to audit machine learning models by private
companies and organisations.

A Additional Definition and Theorem

Definition 8 (d-separation [17]). A path π in a DAG is said to be d-separated
(or blocked) by a set of nodes Z iff (1) π contains a chain Vi → Vk → Vj and a
fork Vi ← Vk → Vj node such that the middle node Vk is in Z, or (2) π contains
a collider Vk such that Vk is not in Z and no descendant of Vk is in Z.

Theorem 2 (Rules of do-Calculus [17]). Let X,Y,Z,W be arbitrary dis-
joint sets of variables in a causal DAG G. The following rules hold, where
x,y, z,w are the shorthands of X = x,Y = y,Z = z and W = w respectively.

Rule 1. (Insertion/deletion of observations):
P (y | do(x), z,w) = P (y | do(x),w), if (Y ⊥⊥ Z | X,W) in GX.
Rule 2. (Action/observation exchange):
P (y | do(x), do(z),w) = P (y | do(x), z,w), if (Y ⊥⊥ Z | X,W) in GXZ.
Rule 3. (Insertion/deletion of actions):
P (y | do(x), do(z),w) = P (y | do(x),w), if (Y ⊥⊥ Z | X,W) in G

XZ(W)
,

where Z(W) is the nodes in Z that are not ancestors of any node in W in GX.

B Proofs

B.1 Proof of Theorem 1

Theorem 1. DAG G contains variables A and Y , and variable set X where (A∪
Y ) ∩ X = ∅. The causal sufficiency is satisfied. P (y | do(A = a), do(X = x)) =
P (y | A = a, Pa′(Y ) = pa) where Pa′(Y ) is the set of all parents of Y in G
excluding A.

Proof. Firstly, let X = {C ∪ Q} where C contains descendant nodes of
Y , and Q contains non-descent nodes of Y . We have P (y | do(A =
a), do(C = c), do(Q = q)) = P (y | do(A = a), do(Q = q)). This is achieved by
repeatedly using Rule 3 of Theorem 2. We show this by an example where C ∈ C,
P (y | do(A = a), do(C = c), do(Q = q)) = P (y | do(A = a), do(Q = q)) because
Y ⊥⊥C in DAG GA,C where the incoming edges to A and to C have been removed.

Secondly, we consider P (y | do(A = a), do(Q = q)) only. Based on the
Markov condition 1, Y is independent of all its non-descendant nodes given
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its parents. Therefore, P (y | do(A = a), do(Q = q)) = P (y | do(A =
a), do(Pa′(Y ) = pa)).

Thirdly, we will prove P (y|do(A = a), do(Pa′(Y ) = pa)) = P (y | A =
a, Pa′(Y ) = pa). This can be achieved by repeatedly applying Rule 2 of Theo-
rem 2.

Let Pa(Y ) = {A,X1,X2, . . . , Xk}.

P (y | do(A = a), do(X1 = x1), do(X2 = x2), . . . , do(Xk = xk))
= P (y | A = a, do(X1 = x1)do(X2 = x2), . . . , do(Xk = xk))
Since Y ⊥⊥ A|X1,X2, . . . , Xk in GX1,X2,...,Xk,A

= P (y | A = a,X1 = x1, do(X2 = x2), . . . , do(Xk = xk))
Since Y ⊥⊥ X1|A,X2, . . . , Xk) in GX2,...,Xk,X1

Repeat k − 1 times

= P (y | A = a,X1 = x1,X2 = x2, . . . , Xk = xk)
= P (y | A = a, Pa′(Y ) = pa)

Now, we get,

P (y | do(A = a), do(X = x)) = P (y | A = a, Pa′(Y ) = pa)

B.2 Proof of Corollary 1

Corollary 1. Let Ca(Y ) include all the direct causes and only direct causes of
Y except A. P (y | do(A = a), do(X = x)) = P (y | A = a,Ca(Y ) = ca).

Proof. Direct causes of Y will be parent nodes of Y in any DAG even when the
unobserved common causes are included, i.e. the causal sufficiency is unsatisfied.
Since Pa′(Y ) = Ca(Y ) and there is not an unobserved variable in between a
direct cause and Y , P (y | do(A = a), do(X = x)) = P (y | A = a,Ca(Y ) = ca)
can be derived following the same procedure in Theorem 1.

Since other variables apart from Pa′(Y ) are not used in reducing P (y |
do(A = a), do(X = x)), the unobserved common casues between these variables
are irrelevant to the deduction and do not affect the above conclusion.

B.3 Proof of Corollary 2

Corollary 2. Let B include all the direct causes and some (or all) indirect causes
of Y . We have P (y | do(A = a), do(X = x)) = P (y | A = a,B = b).

Proof. Let B = Ca′(Y ) ∪ R, and R includes indirect causes of Y . Following
Corollary 1, P (y | do(A = a), do(X = x)) = P (y | A = a,Ca′(Y ) = ca). Based
on the Markov condition 1, Y is independent of R given A ∪ Ca′(Y ). Hence,
P (y | A = a,Ca′(Y ) = ca) = P (y | A = a,B).
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Abstract. In recent years, contrastive learning has become an impor-
tant technology of self-supervised representation learning and achieved
SOTA performances in many fields, which has also gained increasing
attention in the reinforcement learning (RL) literature. For example,
by simply regarding samples augmented from the same image as pos-
itive examples and those from different images as negative examples,
instance contrastive learning combined with RL has achieved consider-
able improvements in terms of sample efficiency. However, in the con-
trastive learning-related RL literature, the source images used for con-
trastive learning are sampled in a completely random manner, and the
feedback of downstream RL task is not considered, which may severely
limit the sample efficiency of the RL agent and lead to sample bias.
To leverage the reward feedback of RL and alleviate sample bias, by
using gaussian random projection to compress high-dimensional image
into a low-dimensional space and the Q value as a guidance for sam-
pling the hard negative pairs, i.e. samples with similar representation
but diverse semantics that can be used to learn a better contrastive rep-
resentation, we propose a new negative sample method, namely Q value-
based Hard Mining (QHM). We conduct experiments on the DeepMind
Control Suite and show that compared to the random sample manner
in vanilla instance-based contrastive method, our method can effectively
utilize the reward feedback in RL and improve the performance of the
agent in terms of both sample efficiency and final scores, on 5 of 7 tasks.

Keywords: Contrastive learning · Reinforcement learning · Random
projection · Hard negative sample mining

1 Introduction

With the development of deep neural network and by combining its feature
extraction power with the decision ability of reinforcement learning (RL), Deep
RL (DRL) has been widely and successfully applied to dozens of tasks with
high dimensional inputs [6]. However, how to endow an agent with the ability to
quickly master the task with less interactions is still a challenge nowadays. While
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model-based RL algorithms try to build and maintain an environment model
which will help agent planning and making full use of precious interaction data,
they usually suffer from enormous computations for planning and fragile model
accuracy [7]. On the other side, model free RL algorithms directly learn from raw
observation space, but plenty of training data is indispensable for good perfor-
mance [8]. It’s widely believed that a policy directly trained from the real state
data will act better than those with raw and high dimensional inputs [9]. Hence
a key to efficiency promotion for model free RL agents is to acquire good repre-
sentations [1]. Lots of auxiliary tasks have been incorporated in traditional RL
algorithms to accelerate better representation learning, such as auto-encoder [10],
prediction [17,18,37], prototypes [11], goals [5] and so on. Recently, contrastive
learning has make significant progress in natural language processing and com-
puter vision areas [12,32], which has also been incorporated into RL algorithms.
Srinivas et al. proposed an instance contrastive method called Contrastive Unsu-
pervised Representations for Reinforcement Learning (CURL), which is the first
contrastive based algorithm that beats model-based methods like PlaNet [15]
and Dreamer [16] on several tasks of DeepMind Control Suite (DMC) [9].

As a self-supervised learning method, contrastive learning tries to define and
contrast semantically similar (positive) pairs and semantically dissimilar (neg-
ative) pairs in the embedding space [18]. The success of contrastive methods
mainly depends on the design of correct positive and negative pairs [19]. In
RL setting, naively we can regard the real states as the label of observations
and let contrastive learning gathers samples of the same state and pushes away
those with different states. However, due to the limitation of perception, agents
generally can not access to the real states. Under such circumstances, existing
contrastive RL methods design positive or negative pairs in a random or unsu-
pervised way, where the feedback of RL tasks is completely ignored and positive
samples may sneak into negative samples. Such false-negative phenomenon is
known as sampling bias. It may empirically induce to significant performance
deterioration in some fileds [20].

Moreover, a plenty of work in metric learning believe that hard negative
samples dominate the quality and efficiency of the representation learning [22,
36], where hard negative samples are the true negative samples that mapped
nearby the anchor sample in the embedding space [21]. To mine hard negative
samples and improve the sample efficiency of RL agents, by observing that hard
negative samples are samples that look similar but with different semantics, in
this paper, we propose a new hard negative samples mining method, namely
Q-value based Hard Mining (QHM).

In the detail, in order to seek for samples embedded similarly, gaussian
random projection and KD-Tree are firstly applied in QHM for dimensional-
ity reduction and search. Then to further filtering semantically different pairs
among these similar samples, as real states are inaccessible, we can take the
advantage of cumulative reward Q value as a guidance for mining since it is the
most key feedback of any RL tasks. Consequently, with the assistance of a handy
K-means cluster method, QHM approximately treats those similar observation-
action pairs but with different Q value in recent trajectories as hard negative
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samples pairs. Equipped with these unsupervised techniques, QHM is able to
latch the RL task feedback and efficiently solve two key problems: (1) How to
design task-relevant positive-negative pairs for contrastive representation learn-
ing in RL? (2) How to mine and exploit hard negative samples?

We conduct experiments on DMC and show that compared to contrastive
learning with vanilla random sample method, our sample method combined with
instance-based contrastive learning in RL can achieve better data efficiency and
even better score performance on several tasks.

2 Related Work

2.1 Improving Sample Efficiency in RL

It is well known that learning policy directly from high dimensional data such as
raw pixel images is inefficient [2]. Model-based RL agent builds an environment
model and generates virtual rollouts to help better decisions, which is usually
more data efficient than model-free agent. The related methods like SimPLe [2],
PlaNet [15] and Dreamer [16] have successfully improve the data efficiency in
Atari Games [13] and DMC [9], and even make a breakthrough on some challeng-
ing tasks such as MONTEZUMA’S REVENG. For the model-free approaches, to
improve performance and efficiency, the agent mainly focus on constructing and
adopting various auxiliary tasks, such as predicting future [17,18,37], prototypes
cluster [11], particle-based entropy maximization [4] or multi-goals [5].

In recent years, contrastive learning is also incorporated into RL as an aux-
iliary task. Typical works include instance contrastive learning based CURL [1]
and CPC [18] that leverages prediction information. Subsequent works also
tried to use contrastive learning to force agents to learn temporal features [23].
Although these approaches have achieved some successes in various domains, the
pairs in these contrastive learning methods are sampled in a random or unsu-
pervised manner, and the possible signals that may help representation learning
are not considered. In the work of Guoqing et al. [25], a return-based contrastive
representation for RL (RCRL) method is introduced, where observation-action
samples with similar cumulative rewards are regarded as positive pairs and vice
versa. While the cumulative reward is used for the sampling in both RCRL and
our approach, QHM further considers about the hard property of negative sam-
ples and uses a more adaptive manner to partition the experience buffer, where
the explicit model structure or learning objective does not need to be changed.

Besides using auxiliary tasks for learning a better representation, recent work
such as RAD [26], DrQ [24], DrQ-v2 [27] also show that simple combination of
image augmentation is conducive to the improvement of data efficiency.

2.2 Sample Strategy in Unsupervised Contrastive Learning

Contrastive learning encourages semantically similar pairs (x, x+) to be close
and semantically dissimilar pairs (x, x−) to be more distant in embedding space
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f(∗) [34]. Since the labels of data are unknown under unsupervised conditions,
the main differences among these methods are their strategies of obtaining pos-
itive and negative pairs [20]. In the literature, strategies including random crop,
jittering in images [26,33] and random dropout in text missions [31] are com-
monly used to select positive samples, while less attention has been paid in the
sampling of negative pairs and they are only simply sampled uniformly from
the training data [19]. There exists two problems in randomly picking nega-
tive pairs. First, false negative samples will give rise to sample bias which is
impossible to completely dismiss under unsupervised situations [20]. Second, we
cannot ensure how informative the negative samples will be when they serve the
downstream tasks [19]. The key to address the mentioned issues is hard negative
mining, which in metric learning is well elucidated and proved to be most help-
ful for efficient representation learning [22]. But how to mine such hard negative
samples for unsupervised contrastive learning? Based on Debiased Contrastive
Loss (DCL) [20], Robinson et al. proposed to define the priority of a sample
proportional to its similarity with the anchor to acquire hard samples, which
has made a certain progress in images and sentences representations [19]. Wang
et al. found that the choice of temperature τ in contrastive loss controls the
granularity of penalties on hard negative samples [35].

3 Background

3.1 Instance Contrastive Learning in RL

In general, considering an embedding space f(∗), contrastive learning tries to
gather the representations of positive pairs (x, x+) but push away the represen-
tations of negative pairs (x, x−):

Ex,x+,{x−
i }N

i=1
[−log

ef(x)T f(x+)

ef(x)T f(x+) +
∑N

i=1 ef(x)T f(x−)
] (1)

Given an anchor x, a corresponding positive sample x+ and N negative samples
x− will be used for contrast. For Instance Discrimination [14], x and x+ are
different views generated from the same sample whilst x and x− are from differ-
ent samples. CURL is the first method that combines Instance Discrimination
with RL where views of different images are accomplished by random crop. In
detail, given a batch of randomly sampled K raw-pixel images, for each of them
xi(1 ≤ i ≤ K), we have:

xi1 = aug(xi) xi2 = aug(xi) (2)

where aug(∗) represents a fixed random method of data augmentation such
as random crop. CURL simply takes samples (xi1, xi2) as positive pairs and
(xi∗, xj∗)(j �= i) as negative pairs according to whether they are generated from
the same image. All these generated 2K samples will be used for the InfoNCE
loss [18]:
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LCURL = −log
ezT

q Wz+
k

ezT
q Wz+

k +
∑K

i=1 ezT
q Wz−

ki

(3)

In Eq. (3), zq are the encoded low-dimentional representations of cropped images
xi1 through the query encoder fθq of the RL agent while zk are from key encoder
fθk. Query and key encoders share the same neural framework but have different
parameters weights. Similar to Moco [12], CURL detaches the gradient of the key
encoder fθk whose parameters θk can be only updated by exponentially moving
average (EMA) method as follow:

θk = mθk + (1 − m)θq (4)

where m ∈ [0, 1] is a factor of trading off and such an update method has
been proved to be helpful in improving agent’s performance and avoiding model
collapse [1,12].

In DMC tasks, CURL takes a SAC agent as the base policy learner by using
Eq. (3) to learn contrastive representations. Our work will build upon CURL
and aim to improve the completely random sample method to aquire more task-
relevant negative samples for the calculation of Eq. (3).

3.2 Gaussian Random Projection

Gaussian random projection is a simple and convenient projection method to
reduce high-dimensional space to low dimension. It defines a mapping function
φ : x → Px ∈ R

F where x ∈ R
D is the original data with dimension D and

will be multiplied by a random initialized matrix P ∈ R
F×D to be transformed

to a space of dimension F . Generally we have F � D and each element Pij in
P are sampled independently from a predefined gaussian distribution N(μ, σ2).
According to Johnson-Lindenstrauss lemma [28], for arbitrary xi and xj , there
exists a ε(0 ≤ ε ≤ 1) and a map function φ that satisfy:

(1 − ε) ‖ xi − xj ‖≤‖ φ(xi) − φ(xj) ‖≤ (1 + ε) ‖ xi + xj ‖ (5)

As showed in Eq. (5), the distance relationship can be well preserved in the
mapped low-dimensional space even with a random initialized matrix as long as
D is sufficient [29]. In our method, in order to search for hard negative samples,
a computation efficient search method is urgently-needed and as it is time con-
suming and computation expensive by directly searching in the raw pixel space,
gaussian random projection are adopted for reducing the high-dimensional input
to a low-dimensional space.

4 Q Value Based Hard Mining

In this section, we will introduce QHM, a contrastive learning sampling method
based on cumulative rewards. Our intention is to improve the unreasonable ran-
dom sampling method of contrastive learning in RL such as CURL and try to use
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the reward feedback of a specific task to guide the sampling strategy of positive-
negative pairs. So that the samples eventually used for contrastive training are
semantically mutually exclusive in RL setting, which will also contribute to effi-
ciency promotion. The most ideal result is that the samples divided into positive
and negative pairs will not belong to the same real state.

4.1 Construct Task-Relevant Positive and Negative Pairs in RL

In contrastive learning, given an arbitrary anchor sample x, a sample x+ is
positive when it is semantically similar to anchor x and takes x− as negative
vice versa. In RL, considering an one-step observation ot composed of successive
images, through a given data augmentation method, accurate positive pairs can
be guaranteed since we can simply generate two views of ot and they do actually
semantically matched. However, it is common to regard the augmentations of
any two different observation ot1 and ot2 as negative pairs in existing contrastive
method, where positive samples may be misdiagnosed as negative ones and that
will inevitably lead to the sample bias problem and probably further, sample
efficiency decline as mentioned before.

It is natural for an RL agent to distinguish different observations by their real
states s, however, it is notoriously known that the real states is unavailable due
to perceptual limitations in real world. When only high-dimensional observation
ot is available, we can turn to the most important feedback of RL tasks, i.e. Q
value. Q value is the expected discount cumulative rewards after agent taking
action at at observation ot: Q(ot, at) = E(

∑T
τ=t γτ−trτ (oτ , aτ )), where τ ∈ (0, 1]

is the discount factor. Hence, to define pos-neg samples in RL, intuitively we
have:

Assumption 1. In RL, given a policy πψ : O → A and arbitrary observation-
action samples (augmented or not) (ot1, π(at1 | ot1)), (ot2, π(at2 | ot2)), if they
share the same Q value, we can approximately regard them as a positive pair.

However, strict conditions are required for the establishment of this hypothesis
including a perfect reward function of environment to disambiguate Q value.
But on the contrary, we can define the negative samples:

Assumption 2. In RL, given a policy πψ : O → A and representations
similar observation-action samples (augmented or not) (ot1, π(at1 | ot1)),
(ot2, π(at2 | ot2)), if they have quite different Q values, we can approximately
regard them as a negative pair.

Please note that a sample mentioned above is composed of both observation
and action. Such a definition for the negative pair is not perfect because of
the uncertainty of the environment and the policy divergence, but it is still
more reasonable than the random sampling method that is widely adopted for
contrastive representation learning in RL. Since it is quite difficult to get the
exact value of any Q(ot, at), in practice we simply use the cumulative rewards
in historical trajectories to approximate Q.
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4.2 Mine and Utilize Hard Negative Samples in RL

As mentioned, hard negative samples, i.e., the pairs with similar representation
but different semantics are the key to efficient contrastive learning [21]. However,
how to mine such samples from the data is still a challenging problem in the
literature. In the following, how to mine and make use of hard negative samples
in RL by using QHM will be introduced.

Given an anchor sample, it is infeasible to search the similar samples directly
from the raw-pixel space due to heavy computational burden. We also should not
search for the samples in agent’s encoder embedding space since frequent forward
propagation in model may deteriorate the overall running time. In QHM, we just
take the advantage of gaussian random projection to map raw-pixel images to
a far-less dimensional space and subsequently a KD-Tree is utilized to execute
k-nearest searching on the projection space. Specifically, KD-Tree is a table-like
buffer which is independent of the agent’s replay buffer. Considering a gaus-
sian projection function φ(∗), QHM simply stores tuples <[φ(o), a], o,Q(o, a)>
encountered in recent trajectories into the KD-Tree. Once the tree capacity hits
the peak, samples visited most infrequently during training will be replaced. The
specific process above is illustrated in Fig. 1.

Fig. 1. KD tree storage process in QHM. For each observation o, QHM summarizes its
cumulative reward Q in the trajectory after rollout and writes o, z and Q into the KD
tree where z is the concatenation of projection φ(o) and corresponding action a.

In order to further screen hard negative samples, a simple K-means method
is applied in QHM to cluster all these similar samples according to their Q value,
and as all samples have been well scattered, QHM will eventually pick one sample
at random from each cluster respectively. Then, all these left samples will share
similar representations but with different Q values, which should be the hard
negative samples we are seeking for. Please note that our QHM method mainly
focus on the selection of the source images for negative samples generation. As
for postive pairs, we adopt the same scheme as CURL, i.e. two views generating
from a same image will be regard as positive to each other.
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The implementation process is shown in Fig. 2: firstly QHM samples a batch
of N samples xi(1 ≤ i ≤ N) = [φ(oi), ai, oi, Qi] at random from the KD-Tree.
For each xi of these N samples, QHM queries the KD-Tree for M nearest samples
xij(1 ≤ j ≤ M) on φ(∗) to form a similar batch Bin

i = {xi, xi1, , xi2, ..., xiM}
after absorbing the query sample xi. Then K-Means cluster is applied based on
their Q value to get K clusters Ck(1 ≤ k ≤ K). Excluding the cluster Cki which
the query sample xi belongs to, we randomly pick one sample from each clusters
to finally make up the hard negative batch Bout

i = {xi, xik, ...}(1 ≤ k ≤ K & k �=
ki) of xi. Sequentially, N × K samples will be acquired and cropped randomly
to generate totally N × K × 2 samples {xik1, xik2, ...}(1 ≤ i ≤ N, 1 ≤ k ≤ K),
which will be used for contrastive loss Eq. (3) as following:

LQHM−CURL =
∑N

i=1
LCURL(xik1, xik2, ..., xiK1, xiK2) (6)

Fig. 2. The illustration of sample strategy in QHM. Firstly, several samples are sampled
at random. For each of them, QHM queries the KD-Tree for M nearest samples to make
up a state-similar batch including the query one. Then K-means cluster will conduct
based on Q values to pick up the most divergent ones in each of these state-similar
batchs, which will finally form the hard negative samples batchs for training.

5 Experiments

5.1 Environments

7 challenging tasks of DMC [9] are selected for evaluation. At every time step, the
input of the agent is an 8-bits, 100×100, RGB image from the environment and 3
successive frames will be stacked as the observation to alleviate partially observ-
able problems. And to accelerate training, the agent’s action repeat numbers is
set as 8 for cartpole swingup, 2 for walker run and 4 for the rest respectively. Cor-
responding task policy step can be calculated by total frames/action reapeat,
which will be the abscissa of our experimental plot results.

5.2 Setting

QHM will be carried on CURL for experiments with the same neural network
structure and hyperparameters. Specifically, encoders fθq and fθk composed of
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successive convolution layers and full connection layers that are in charge of a
mapping from raw-pixel images to embedding space with a dimensionality of 50.
The capacity of replay buffer is 100k and a batch of 512 samples will be randomly

Fig. 3. Evaluation scores results on 7 tasks of DeepMind Control Suite. QHM-CURL
indicates CURL equipped with our method and vanilla CURL is our main competitor.
SAC+AE is also included as a competitive method.
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selected for SAC [3] updating. Adam [30] optimizer for update and 84 × 84
random crop for image preprocessing. Specific QHM settings are shared across
tasks: the dimensionality of the gaussian projection matrix P is [h, 9×100×100]
where h is the projection dimension that we set 128 by default. Notes that
the computational complexity of tree query is O(n(1−1/h) + k), where k is the
population of total samples, it finally takes QHM almost twice as long as CURL
to complete the training on the same device. Each element in projection matrix P
is sampled independently from a predefined gaussian distribution N(0, (1/

√
h)2).

In KD-Tree, samples that are new-coming or frequently sampled for updating
will be contained longer. In QHM sample strategy, N = 16,M = 31,K = 4
are the numbers of query samples, M-nearest samples of query and clusters for
K-Means, respectively. In practice we only take the last 16 samples of the M
nearest of query for clustering in the next stage, which can effectively prevent
identical samples. It’s also worth noticed that empty cluster may occur due to
completely Q value duplicate. To get rid of biased negative samples, QHM will
simply abandon this whole batch and the subsequent contrastive update.

5.3 Results

We conduct experiments on 7 different tasks of DMC and the supremum of tasks
frames is limited to 500k to evaluate the agent efficiency. The results are showed
in Fig. 3. Every line is averaged over different random seeds and smoothed on
abscissa interval. QHM − CURL represents the CURL [1] algorithm whose
sampling strategy is replaced by our proposed QHM method. Hence, CURL is
our main competitor which uses a completely random sample strategy. We also
take another auxiliary task model-free method, SAC+AE [10], into account as a
competitive baseline to further confirm the validity of our implementations. We
implement CURL and SAC+AE from their official codes on github respectively.

As showed in Fig. 3, we can see that CURL combined with our sampling
method QHM has superior sample efficiency and performance than vanilla CURL
and SAC+AE on several tasks such as cheetah-run, walker-run and reacher-hard.
All of these 3 tasks are defined in medium [27] subsets due to their greater action
dimensions and 500k environment steps are not yet sufficient for SAC-based
agents to master them. In cartpole balance task, QHM-CURL acts more robust
than baselines and has better convergence tendency. Most of the rest tasks are
defined relatively easy [27]. Hence in these tasks, we can only see nuances among
CURL and QHM-CURL.

Throughout all tasks results, we believe that our task-relevant hard negative
mining strategy, QHM, can actually facilitate sample efficiency of the RL agent
which may be suffering from the biased negative samples induced by a random
sample strategy in contrastive-based reinforcement learning.

6 Conclusion

In this paper, we proposed QHM, a hard negative mining method dedicated to
improving data-efficiency of RL agents. With the assistance of light components
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such as KD-Tree, K-Means Cluster and Random Projection, when compared to
vanilla instance-based contrastive sampling method, QHM can achieve further
efficiency and even performance improvements on a certain number of tasks from
DeepMind Control Suite. However, as in general we have no access to the real
state of the environments, differentiating samples by their Q value stored would
still be biased. There is a long way for us to acquire a near-real hard negative
distribution and we leave this for future work. We believe that in the forthcoming
future, better hard sampling strategies for contrastive learning in RL will be
discovered and make significant contribution to representation learning.
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Abstract. The relative position of sensors placed on specific body parts
generates two types of data related to (1) the movement of the body part
w.r.t. the body and (2) the whole body w.r.t. the environment. These
two data provide orthogonal and complementary components contribut-
ing differently to the activity recognition process. In this paper, we intro-
duce an original approach that separates these data and abstracts away
the sensors’ exact on-body position from the considered activities. We
learn for these two totally orthogonal components (i) the bias that stems
from the position and (ii) the actual patterns of the activities abstracted
from these positional biases. We perform a thorough empirical evalu-
ation of our approach on the various datasets featuring on-body sen-
sor deployment in real-life settings. Obtained results show substantial
improvements in performances measured by the f1-score and pave the
way for developing models that are agnostic to both the position of the
data generators and the target users.

Keywords: Meta-learning · Decentralized machine learning ·
Federated learning · Internet of Things · Human activity recognition

1 Introduction

The selection of the sensors’ positions in moving targets is a constraint that is
encountered in many fields, such as human activity recognition from on-body
sensor deployments [4,5,11,12,30]. The movements of the area of the target on
which the sensors are positioned generate data of two different but complemen-
tary natures (see Fig. 1). The first concerns the movement of the position relative
to the target itself, and the second concerns the movement of the target rela-
tive to its surroundings. In the case of human activity recognition, we notice for
example that the kinetics of the hand movements during a race can be decom-
posed into a circular movement (CM) of the hand relative to the shoulder and
a translation movement (TM) associated with the whole body [23].

At least three practical implications can be devised from this: (i) CM data
are enough to learn some target concepts, e.g., the hand kinetics movement is

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Fig. 1. (left) The hand sensor undergoes two types of movements. One is of the same
nature as the torso and linked to the translational movement of the body. The other
is linked to the movement of the hand locally relative to the body. (right) Phase
plan showing the dynamics of the thigh and foot during gait cycle (GC) ( 1%GC)
extracted from the biomechanics works of [6].

enough to determine if a person is at rest or running; (ii) CM data from different
positions, e.g., hand and torso, cannot be shared and mixed together. Otherwise,
this generates noise and confusion during the learning process; (iii) only TM data
can be shared among the different positions as these data are of the exact same
nature but taken from different points of view (positions or perspectives).

In this paper, we leverage the data decomposition into universal and position-
specific components to improve activity recognition models. These components
have distinctive contributions concerning the target concepts to learn. This
brings an interesting property that allows us to fuse the universal components
as seen from different points of view (positions) while identifying the position-
specific components, which could serve as additional knowledge in situations
when the position-specific components are not sufficient to recognize an activity.
Without this data decomposition process, the local part of the data adds posi-
tion noise challenging to manage with centralized approaches, e.g., federated
learning [22,34]. Indeed, to integrate data from different positions (or clients), it
is necessary to separate the data of the same nature (shareable) from the pure
local ones linked to the specific kinetics of the position. Similar data can and
should be shared to improve recognition rates. However, the specific data must
be processed locally, otherwise impacting the learning process.

Traditional HAR approaches [5,24,38] often consider the sensory inputs to
be flattened therefore disregarding the significant impact of the various posi-
tional biases. Some approaches consider these problems from the perspective of
deployment optimization, mainly focusing on the study of the optimal on-body
sensors placement and its impact on the recognition of target activities [3,4,30].

There are also rare approaches offering pipelines which include recognition
of the position of the data generator followed by the activity recognition [37] or
including an explicit model of the context [2,8]. Other approaches, e.g., [19], try
to develop heuristics to improve the robustness of activity recognition models
to sensors displacements. Regardless of the devised techniques, these approaches
rely on centralized processing of the data, which does not match the intrinsic
complementary nature of the data, thus limiting their potential capacities.
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To deal with these complementary data sources, we propose an original multi-
level model of abstraction of the data generator position encompassing a central
learner (or set of local generic learners) and a set of specific local learners. The
local learners (one for each position) use only specific local data concerning the
local relativity. They are responsible for learning (i) the position-dependent pat-
terns of activities and (ii) the movements that link them to the individual. The
aim is to abstract the learning examples from the bias arising from the posi-
tion from which they are generated. The central learner (or set of local generic
learners) uses the aggregated universal components from the local learners via
a conciliation step based on the efficient federated learning (FL) setting. Exten-
sive experiments on three representative datasets featuring real-world sensor
deployment settings show the effectiveness of abstracting the impact of the data
generator’s position. We noticeably get substantial improvements in terms of the
recognition performances of individual activities and robustness to the evolution
of the sensor deployments. We perform a comprehensive comparative analysis of
our proposed approach via ablation studies which shows the contribution of the
dual interplay between the local and central learners.

2 Problem Formulation

In this section, we briefly characterize the problem of abstracting the exact
position of a given sensor. We consider settings where a collection S of M sen-
sors (also called data generators or data sources), denoted {s1, . . . , sM}, are
positioned respectively at positions {p1, . . . , pM} in the object of interest, e.g.,
human body. Each sensor si generates a stream xi = (xi

1, x
i
2, . . . ) of observa-

tions of a certain modality like acceleration or gravity, distributed according to
an unknown generative process. Furthermore, each observation is composed of
channels, e.g. three axes of an accelerometer. The goal is to continuously recog-
nize a set of target concepts Y like running or biking in the case of the human
activity recognition according to all sensor’s positions. In the case of the SHL
dataset, the sensors deployment features data generated from 4 smartphones,
carried simultaneously at typical body locations (hand, torso, hips, and bag).

2.1 Abstraction of the Position

As described in the previous section, each sensor produces two types of orthogo-
nal data. This problem can be formally defined as the construction, for the data
generated by each sensor si, of a factorized representations zi being a composi-
tion of (i) position-invariant (abstract or universal) components vector ziA, and
(ii) a position-specific (local) components vector ziP . The position-invariant com-
ponents vector captures the features that are shared across all positions. On the
other hand, the position-specific components vector captures specific and com-
plementary insights concerning the target concepts. The first problem to solve
in our model is to build automatically this data decomposition process for each
sensor automatically. Thanks to this process, each sensor s ∈ S will disentangle
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the data interlaced between the local and universal component x by projecting
them into two separate representations zA and zP . Components zP will be used
only in a local learner, and zA can be used in the local learner or shared with the
same data coming from all other sensors in a global learner. This process allows
us to have fine-grained control on the inference process where one can leverage
different configurations in order to get optimal performances, while traditional
HAR approaches often consider the inputs to be flattened and disregard the bias
related to the position. We notice that in certain situations the position-specific
component alone is enough to recognize the activity, e.g., the circular movements
of the hand are sufficient to distinguish between running and walking. In addi-
tion, since only position-independent data is shared, this process considerably
reduces data heterogeneity. It, therefore, improves data aggregation techniques
or learners such as federated learning [36] by sharing only the position-invariant
data. When the data are not decomposed, the position-specific part of the data
represents noise for the global system.

To deal with these two challenging complementary representations, we pro-
pose a model based on multi-level processing to abstract the position as described
below. In this model, we suppose that the position-invariant components share
the data with a central learner.

3 Source Position Multi-level Abstraction

Here, we propose an instantiation of the proposed problem formulation composed
of local and central learners. To perform the separation of the position-specific
components from the universal ones, we use a family of models based on variational
autoencoders (VAEs) [18] (Sect. 3.1). The proposed conciliation step is based on
the federated learning (FL)-based aggregation setting where the position-specific
learners in our formulation are assimilated to the decentralized clients in FL (Sect.
3.2). This instantiation is described in the following. Figure 2 summarizes the pro-
posed instantiation. Algorithm 1 outlines the complete learning process.

3.1 Position-Specific (or Local) Learners

The position-specific learners Lp pursue their own learning steps locally using
their own generated data. Their goal is to decompose the contents of the data
into different factors of variations, particularly those related to the position itself.
The objective of the local learner Lp can be formalized as the expected loss over
the data distribution of the position p, fp(wp) = Eξp

[f̃p(wp; ξp)], where ξp is
a random data sample drawn according to the distribution of position p and
wp the set of the learner’s weights. In particular, the distributions from which
are drawn the samples ξpi

and ξpj
, pi �= pj , can be distinct. At the step t of

communication round, each local learner independently runs τp iterations of the
local solver, e.g., stochastic gradient descent, starting from the current global
model L

(t,0)
p until the step L

(t,τp)
p to optimize its own local objective (see the

black arrows depicted in Fig. 2).
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Fig. 2. Framework of the proposed multi-level abstraction architecture. The global
learner LS starts with an initial set of weights which are distributed to the local learners.
The local learners Lp, one for each position p, learn the two vector components zA and
zP , by performing independently a set of gradient steps which allows to get newer
versions. These new versions are used during the conciliation step which results in a
new version of the global learner, and subsequently a more robust position-independent
representation. (Color figure online)

The objective function fp(wp) is constructed using a family of models based
on VAEs for their ability to deal with entangled representations. The task here is
to learn these factors of variation, commonly referred to as learning a disentan-
gled representation. It corresponds to finding a representation where each of its
dimensions is sensitive to the variations of exactly one precise underlying factor
and not the others.

Depending on the availability of explicit knowledge about the underlying
factors of variation, different strategies are pursued to learn the disentangled
representation. For example, in video prediction [7,16], temporal-invariance is
often leveraged with a content representation which captures structure that
is shared across all video frames and a pose representation capturing content
that varies over time. These strategies require devising complex architectures
and intricate loss functions to enforce prior knowledge. Alternatively, the disen-
tanglement can be performed using separate representations for each factor of
variation, which are jointly learned by different encoders, e.g. [28,29]. Although
the representations are explicitly separated and learned by different encoders,
getting exact correspondence with the factors of variation, i.e., non-overlapping
dimensions, is not ensured and can lead to identical representations. Recent
advances in unsupervised disentangling based on VAEs demonstrated noticeable
successes in many fields using the β-VAE, which leads to improved disentan-
glement [15]. It uses a unique representation vector and assigns an additional
parameter (β > 1) to the VAE objective, precisely, on the Kullback Leibler (KL)
divergence between the variational posterior and the prior, which is intended
to put implicit independence pressure on the learned posterior. The improved
objective becomes:
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L(x; θ, ϕ) = Eqϕ(z|x)[log pθ(x|z)] − βDKL(qϕ(z|x)||p(z)) − αDKL(qϕ(z)||p(z)),

where the term controlled by α allows to specify a much richer class of properties
and more complex constraints on the dimensions of the learned representation
other than independence. Indeed, the proposed conciliation step is challenging
due to the dissimilarity of the data distributions across the local learners, leading
to discrepancies between their respective learned representations. One way to
deal with this issue is by imposing sparsity on the latent representation in a way
that only a few dimensions get activated depending on the learner and activities.
We ensure the emergence of such sparse representations using the appropriate
structure in the prior p(z) such that the targeted underlying factors are captured
by precise and homogeneous dimensions of the latent representation. We set the
sparse prior as p(z) =

∏
d(1− γ)N (zd; 0, 1)+ γN (zd; 0, σ2

0) with σ2
0 = 0.05. This

distribution can be interpreted as a mixture of samples being either activated or
not, whose proportion is controlled by the weight parameter γ [21].

3.2 Referential (or Central) Learner

Each local learner pursues its own “version” of the universal representation zpA

but has not to diverge from the referential universal representation zA, which
constitutes a consensus among all local learners. In our setting, we build the
referential universal representation by making every learner contributes to it via
a weighted aggregation defined as follow: given the objectives fp(w) of the local
learners Lp, the referential learner objective function is formulated as:

min
w∈Rd

{

F (w) :=
M∑

p=1

αp × fp(wp)

}

with
M∑

p=1

αp = 1, (1)

where αp is used to weigh the contribution of every learner to the universal
representation. After a predefined number of local update steps, we conduct a
conciliation step (see the dotted red arrows in Fig. 2). Each conciliation step
t produces a new version of the referential learner L

(t)
S and, a new version of

the referential universal representation z
(t)
A . The conciliation step has to be per-

formed on the learned representations z
(t)
pA via regularization, for example. In

our approach, the conciliation step is performed via representation alignment,
e.g., correlation-based alignment [1]. More formally, we instrument the objective
function of the local learners with an additional term derived from the represen-
tation alignment [33].

min
w∈Rd

{

F (w) =
1
M

M∑

p=1

Fp(wp)

}

, Fp(wp) = min
w∈Rd

{

fp(wp) + λR(zpA, z
(t)
A )

}

,

(2)
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where R is a regularization term responsible for aligning the locally learned
universal components with the ones learned by the referential learner and λ ∈
[0, 1] is a regularization parameter that balances between the local objective
and the regularization term. Note that in this setting, it is required that, at
conciliation step t, a copy of the referential learner’s weights be available locally
to perform the generative step. Position-specific and universal components will
still be learned separately but locally. Then, the conciliation can be performed
via the standard FL setting, where the weights of the local universal components
learners are aggregated and used to update the referential learner. In this regard,
the conciliation step can be implemented with any federated learning algorithm,
e.g., federated averaging [22], federated normalized averaging [34]. The shared
global model is updated based on the federated averaging as follows:

w(t+1,0) − w(t,0) =
M∑

p=1

αpΔ
(t)
p = −

M∑

p=1

αp · η

τp−1∑

k=0

gp(w(t,k)
p ), (3)

where w
(t,k)
p denotes client p’s model after the k-th local update in the tth com-

munication round and Δ
(t)
p =w

(t,τp)
p −w

(t,0)
p denotes the cumulative local progress

made by client p at round t. η is the client learning rate and gp represents the
stochastic gradient over a mini-batch of samples.

Algorithm 1: Multi-level abstraction of sensor position
Input : {xp}M

p=1 streams of annotated observations from the sensors
1 w ← initWeights() ; % Init. referential learner weights
2 distributeWeights(w, S) ; % Weights distribution
3 while not converged do

; % Local updates
4 foreach position p ∈ S do
5 for t ∈ τp steps do
6 Sample mini-batch {xp

i }np

i=1 from the stream of data xp

7 Evaluate ∇wpL(wp) with respect to the mini-batch

8 Compute adapted parameters: w
(t)
p ← w

(t−1)
p − η∇wpL(wp)

9 end

10 end
; % Central updates

11 Update central model’s weights LS by aggregating the incoming weights
from the local models Lp, p ∈ {1, . . . , M} using Eq. 3

12 end
Result: LS and Lp, p ∈ {1, . . . , M}, the trained referential and local learners

4 Experiments and Results

We perform an empirical evaluation of the proposed approach, consisting of two
major stages: (1) we evaluate the quality of the data separation into position-
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specific and universal components which is performed by the local learners and
how each of these components contributes individually, with and without the
conciliation process, to the recognition performances (Sect. 4.2); (2) we then eval-
uate various inference configurations where the position-specific and universal
components are combined to improve the performances. We also provide a com-
parative analysis against baselines (Sect. 4.3). Code and supplementary material
can be found in https://github.com/hamidimassinissa/positionAbstraction.

4.1 Experimental Setup

We evaluate our proposed approach on three large-scale real-world wear-
able benchmark datasets featuring multi-location and heterogeneous sensors:
SHL [10], HHAR [32], and Fusion [31] datasets (see § A.1 for a detailed descrip-
tion). Implementation details can be found in § A.2. We compare our approach
with the following closely related baselines.

– DeepConvLSTM [24]: a model encompassing 4 convolutional layers respon-
sible of extracting features from the sensory inputs and 2 long short-term
memory (LSTM) cells used to capture their temporal dependence.

– DeepSense [38]: a variant of the DeepConvLSTM model combining convo-
lutional and a Gated Recurrent Units (GRU) in place of the LSTM cells.

– AttnSense [20]: features an additional attention mechanism on top of the
DeepSense model forcing it to capture the most prominent sensory inputs
both in the space and time domains to make the final predictions.

For the ablation study, we compare our approach with two baselines which
do not perform the separation nor conciliation steps. These models consist of
convolution-based circuits for each position which are then fused together and
trained jointly. We implemented two types of fusion schemes [13]: concatenation-
based and alignment-based fusion (see § A.3). To make these baselines compara-
ble with our models, we make sure to get the same complexity, i.e., comparable
number of parameters. We use the f1-score in order to assess performances of
the architectures. We compute this metric following the method recommended
in [9,25] to alleviate bias that could stem from unbalanced class distribution (see
§ C). In addition, to alleviate performance overestimation problem, we rely in
our experiments on the meta-segmented partitioning proposed in [14] (see § D).

4.2 Evaluation of the Data Decomposition Process

In this part, we evaluate the ability of the local learners to decompose the sensor
data into the position-specific components and the universal ones. We evaluate
this process with and without the conciliation phase, then we show the impact
of this step on the recognition performances. We measure the sparsity of a given
representation using the Hoyer extrinsic metric [17] which is formally defined
for a vector y ∈ R

d to be Hoyer(y) =
√

d−‖y‖1/‖y‖2√
d−1

∈ [0, 1] yielding 0 for a fully

https://github.com/hamidimassinissa/positionAbstraction
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dense vector and 1 for a fully sparse one. Table 1 summarizes the average nor-
malized sparsity of the obtained representations. Figure 3 illustrates the average
latent magnitude computed for each dimension of the learned representations.
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Fig. 3. Average latent encoding magnitude computed over different steps of the con-
ciliation process.

Table 1. Summary of the per-position average normalized sparsity measured using the
Hoyer extrinsic metric. Results w/ and w/o conciliation are shown.

Config. Average normalized sparsity±std.

Bag Hand Hips Torso

w/o concil. 0.42±.072 0.77±.002 0.71±.029 0.68±.024

w/ concil. 0.44±.0145 0.91±.0521 0.87±.038 0.727±.033

From Table 1, we can observe, as expected, that the representations learned
by the local learners of the hand and hips have high sparsity compared to bag
and torso. Sparsity increases further when the conciliation is performed as the
dimensions that are less important are being pushed more and more towards zero.
Regarding the latent magnitudes, we can observe that during conciliation some
dimensions of the central learner’s latent representation are getting more acti-
vated (e.g., dimensions 30, 35, 39, and 40 with an average magnitude of 0.0134,
0.146, 0.0138, and 0.138, resp.) corresponding to the universal components, while
the remaining dimensions having low activation and some noticeable picks (e.g.,
at 3, 12, 18, and 24) corresponding to the position-specific components.

As demonstrated above, the dimensions of the learned representations have
meaningful interpretation with regards to the activities that we seek to recognize.
To further assess the usefulness of the separated components per se (without a
conciliation step), we leverage them in a traditional discriminative setting. In
other words, we take the learned representation and add, on top of it, a sim-
ple dense layer. This additional layer is trained to minimize classification loss
while the rest of the circuit is kept frozen. To alleviate any effect that could be
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attributed to the model’s complexity, the additional dense layer has low VC-
dimension so that we ensure it has no capacity to improve the representation
by itself. Table 2 compares the obtained performances with the baseline mod-
els on the considered representative datasets. Furthermore, to better understand
how the process of conciliation among the learners, attached to the different posi-
tions, impacts the quality of both the universal and position-specific components,
we leverage similarly the separated components but this time, after performing
the conciliation process. Table 3, summarizes obtained results. We compare the
results with baseline models trained on data generated from specific positions
without applying the separation nor the conciliation processes.

Table 2. Recognition performances (f1-score) of the baseline models on different rep-
resentative related datasets. Evaluation based on the meta-segmented cross-validation.
Experiments were averaged over 7 repetition runs.

Model HHAR Fusion SHL

DeepConvLSTM 70.1±.0018 68.5±.002 65.3±.0206

DeepSense 72.0±.0022 69.1±.0017 66.5±.006

AttnSense 76.2±.0074 70.3±.0027 68.4±.03

Feature fusion 72.9±.004 68.7±.001 66.8±.009

Corr. align. 75.8±.0014 70.2±.04 69.1±.015

Proposed 78.3±.0045 72.8±.002 74.5±.0133

We observe from Table 3 that, overall, the obtained performances using the
position-specific and universal components are better than those obtained using
the baseline (without separation nor conciliation). In theory, with the concilia-
tion step, optimal representations would emerge in particular for the universal
components. Indeed, this is achieved by the additional alignment term in Eq. 2
which should make them interchangeable regardless of the position from which
they have been generated. This should nevertheless be harder in the case of the
position-specific components which may activate very diverse dimensions of the
learned representation (as described in the experimental results above). Surpris-
ingly, this has a mild impact on the performances which stay comparable. This
could potentially be explained by the importance of the position-specific com-
ponents for the recognition of many of the activities that are considered in the
SHL dataset. It is worth noticing though that the universal components achieve
remarkable improvements in the case of bag and torso.

4.3 Inference Configurations

Here we evaluate the robustness of the proposed approach to the evolution of
the sensors deployments via the flexibility that it offers for the inference step.
Depending on the activity, the right prediction can be achieved by using either
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Table 3. Performances obtained using
either the universal or the position-specific
components.

Config. Bag Hand Hips Torso

No sep. 63±.0089 63±.0014 65±.0126 60±.0072

Universal

w/o concil. 66±.0224 65±.0147 66±.0035 62±.013

w/ concil. 66±.016 67±.0015 67±.0354 63±.01

Pos.-specific

w/o concil. 64±.3 66±.007 67±.0026 61±.087

w/ concil. 65±.029 68±.03 70±.07 61±.029

Table 4. Per-class performances
obtained using various inference
configurations.

Class Best config. Overall

Still zhi; zt(85.77) 83.26±0.7

Walk zA; zha(88.54) 86.74±0.058

Run zha(90.51) 89.46±0.03

Bike zA; zhi(85.62) 83.22±0.086

Car zA; zha(78.24) 77.14±0.2

Bus zha(78.08) 75.17±0.004

Train zhi; zhi(76.13) 74.88±0.08

Subway zA; zha; zt(75.89) 74.07±0.006

components zA or ziP taken individually, or a combination of the universal com-
ponent zA and the most appropriate position-specific component. In this part,
we take a fine-grained look at the previously obtained performances by assess-
ing the optimal configuration which allows the correct prediction of each of the
individual activities. For this, we evaluate the predictions obtained using basic
inference configurations, i.e., the combination of the universal components with
torso [zA; zt]; hand [zA; zha]; bag [zA; zb]; and hips-specific [zA; zhi] components.
Compared to the baseline models, the evaluated inference configurations yield
better performances in general. For example, the combination of the universal
and most of the position-specific components help discriminate efficiently activ-
ities like walk, run, and bike. On the other hand, some activities like car, bus,
or train suffer from confusion and do no show significant improvements over the
baseline (approx. 2% on avg.). Also, activity subway exhibits the same behavior
with less proportion suggesting that this “on-wheels” group of activities need
elaborate combination of points of views as demonstrated in [13,26,27]. This
issue could potentially be circumvented by using more featured configurations
where other position-specific representations, rather than a single one, can be
leveraged to infer these problematic or hard-to-infer activities.

Table 4 summarizes the evaluation results of the inference configurations fea-
turing the combination of various position-specific components. We observe an
increase in the correct predictions for most of the activities compared to the
previous setting. In particular, the “on-wheels” group of activities, i.e., car, bus,
train, and subway, get improved substantially. At the same time, as expected,
we see now that the configurations, which yield the highest performances for
these activities, use genuine combinations like zA alone in the case of bus or a
combination of zA, zha, and zt in the case of subway. On the other hand, still
gets the least improvement compared to the previous setting while the best con-
figuration to infer it is a combination of zha and zt (85.77±0.016). It is worth
noticing that activities like walk and bike still achieve competitive performances
(88.54±0.07 and 85.62±0.2, resp.) while using the same inference configuration,
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i.e., a combination of zA and zha for walk and zhi for bike, as in the previous
setting. For run, the highest scores are achieved using only zha, which supports
the observations presented in Sect. 1.

5 Summary and Future Work

This paper proposes an original approach for abstracting the impact of the spe-
cific position of the sensory data generators. Our approach is based on multi-level
processing, starting with the disentanglement of the position-specific and univer-
sal components at a local level and the conciliation of the universal components
at a global level. Experimental results show that the proposed approach improves
recognition rates and has many advantages, including reducing the data sources’
heterogeneity impact. The decomposition process allows a better recognition
rate in several ways: (i) by reducing the noise induced by the data linked to the
position itself, e.g., the local component of the movement of the hand constitutes
noise for the local component of the movement of the feet; (ii) by aggregating
only data of the same nature presenting different points of view and; (iii) for
certain activities, the local component alone is sufficient to ensure recognition,
e.g., hand movement during run. Future work follows two axes. (1) Improving
the quality of the model, in particular, having a fine-grained control on the data
decomposition process using additional domain knowledge, e.g., expliciting the
dynamics of the body movements in the latent space like in [6,35]. (2) Improv-
ing federated multi-source approaches where the sources are entangled with local
components. Sharing only mutualisable components has a promising potential.
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Abstract. Knowledge graph completion (KGC) aims to predict miss-
ing connections by mining information already present in a knowledge
graph (KG). Predicting such connections is heavily dependent on the
inference patterns. IsA relations (i.e., instanceOf and subclassOf) play
an essential part in inferencing the composition pattern. Some existing
methods already exploit isA relations. However, most of them learn insuf-
ficient representations, which may limit the performance. To address this
issue, we propose a box-based knowledge graph embedding model called
IBKE, in which concepts are embedded as boxes, and instances are
represented by vectors in the same semantic space. According to the rel-
ative positions of elements, IBKE can naturally formulate isA relations.
In addition, we introduce a random update strategy (RUS) for optimiz-
ing training, which updates embeddings in a probability pattern. Experi-
mental results on benchmark datasets show that IBKE outperforms most
existing state-of-the-art methods, and demonstrate the effectiveness of
RUS.

Keywords: Knowledge graph embedding · Link prediction · Box

1 Introduction

Knowledge graphs (KGs) are structured facts of the real world, where nodes
represents entities and edges between nodes represents relations. Large-scale
KGs such as WordNet [14], YAGO [20] and Freebase [3] find applications in a
variety of downstream tasks including machine translation [31], relation extrac-
tion [24], question answering [9] and recommender systems [29]. Although KGs
may contain millions of triples, most existing KGs are incomplete. Therefore,
much research work has been devoted to link prediction task, which is also
known as knowledge graph completion (KGC). The target of link prediction is
to predict missing facts in KG based on the existing links. An effective solution
for KGC is knowledge graph embedding (KGE), which learns embeddings in a
continuous low-dimensional vector space, and predicts missing links by evaluat-
ing the similarity of facts.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Fig. 1. Space utilization.

State-of-the-art KGE models can be broadly categorised as translational
models [4,10,12,26], semantic matching models [11,23,28] and deep learning
models [6,16,25]. Most approaches focus on translational models in early times,
which provide competitive performance with fewer parameters. Afterwards, sev-
eral methods turn to semantic matching models, which achieve better perfor-
mance by matching latent semantics of entities and relations. Recently, deep
learning models for KGC have received increasing research attention. Such mod-
els generally achieve more outstanding performance on account of the larger
parameters.

Despite achieving remarkable performance, most existing methods still regard
both instances and concepts as entities to make a simplification, which leads
to the following two drawbacks: insufficient concept representation and
lacking transitivity of isA relations. To address these issues, TransC [13]
is proposed as the first KGC model for differentiating concepts and instances,
which encodes each concept as a hypersphere and each instance as a vector.
Although modeling concepts via hyperspheres can building the transitivity of
isA relations, it still result in the insufficient concept representation. A
typical case is shown in Fig. 1(a). Commonly, parent class Cities in Americas
can be exactly divided into two disjoint subclasses: Cities in North America
and Cities in South America. However, TransC cannot take full advantage of
space in parent class Cities in Americas under any circumstances, which means
the representations of subclass concepts are insufficient. Furthermore, the blank
space in the hypersphere of Cities in Americas lacks practical significance, which
may lead to weak interpretability.

The problem of insufficient representation gives rise to the box structure [19].
Boxes can be regarded as the extended hyperspheres, which have different radii
in each dimension. Similarly, boxes can easily deal with isA relations. Due to
the flexibility of hyper-rectangles, boxes need only a slight effort to fill the gaps
between the parent class and subclasses. Thus, boxes not only have more promis-
ing representation power but also reserve the superiority of hyperspheres.

In this paper, we propose a new method called IBKE for knowledge graph
embedding. IBKE encodes each concept as a box (hyper-rectangle), while
instances and relations are encoded as vectors. Further, we utilize relative posi-
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tions between instances and concepts to model isA relations. Specifically, IBKE
represents instanceOf relation by checking whether an instance vector is inside
the box. For subclassOf relation, we enumerate four relative positions and
define different score functions for three non-target cases: disjoint, intersect
and inverse. Moreover, we introduce a new parameter update method called
Random update strategy (RUS) for optimizing, which randomly updates embed-
dings according to two update thresholds. Note that RUS has good generalization
ability for closed-region models.

In summary, our contributions are listed as follows:

– We propose IBKE, to the best of our knowledge, the first method using box
structure to distinguish instances and concepts for modeling isA relations.

– We present a random update strategy, which enhances the representation
power by updating parameters in a probability pattern.

– Through extensive experiments on two datasets, we show that IBKE achieves
state-of-the-art performance in most cases. Besides, we analyze the random
update strategy in detail and prove its effectiveness.

2 Related Work

In this section, we give an overview of KGE models for link prediction, and
divide previous methods into four categories.

Translational Models. TransE [4] is the first translational model, which
encodes entities and relations as vectors based on the principle h + r = t, where
h, r, t denotes head entity, relation and tail entity, respectively. Then, several
variants are proposed to solve the drawbacks of TransE, including TransH [26],
TransR [12] and TransD [10]. By introducing manifold-wise modeling, Mani-
foldE [27] remedys the N-N problem in TransE. TorusE [7] expands the embed-
ding space to a Non-Euclidean space, i.e., torus. RotatE [21] first regards trans-
lations as rotations from head entity to tail entity in complex plane.

Semantic Matching Models. RESCAL [18] is the first bilinear model that can
perform collective learning, which is prone to overfitting. Hence, DistMult [28]
simplifies RESCAL by using a diagonal matrix. ComplEx [23] extends DistMult
to the complex domain for modeling antisymmetric relations. HolE [17] combines
the quintessence in DistMult and ComplEx. Recently, SimplE [11] presents a
simple enhancement of Canonical Polyadic (CP) decomposition, and TuckER [2]
is based on Tucker decomposition. QuatE [30] first models relations as rotations
in quaternion space to enable rich and expressive semantic matching.

Deep Learning Models. ConvE [6], ConvKB [16] and InteractE [25] use con-
volutional neural network to capture the interactions between entities and rela-
tions. In addition, KBGAT [15] learns graph attention-based embeddings by a
generalized graph attention model.

Region-Based Models. Generally, region-based models encode elements by
explicitly defining the regions. These elements can be both entities and relations.
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Fig. 2. Four relative positions between box bi and bj .

Using a hypersphere to encode each concept, TransC [13] first differentiates
concepts and instances. BoxE [1] that provides a solution to multi-arity KGC,
encodes each relation as a box, while encodes each entity as a point and the
corresponding translational bump.

Our proposed model IBKE belongs to the translational models. IBKE shares
similarities with TransC, in which both models can deal with isA relations by
differentiating concepts and instances. However, there are two major differences
between TransC and IBKE:

– Modeling. IBKE encodes each concept as a box instead of a hypersphere,
which is used in TransC.

– Training. Compared to TransC, we propose the random update strategy,
which randomly learns parameters.

Note that we provide a comprehensive analysis about the computational
complexity of several representative models in the supplemental material.1

3 Methodology

In this section, we propose a novel embedding method IBKE and present a new
algorithm random update strategy (RUS).

3.1 IBKE

Formally, a knowledge graph is denoted by G = {E ,R,S}. Entity set E consists
of instance set I and concept set C, i.e., E = I∪C. Relation set R = {ri, rc}∪Rr,
where ri represents instanceOf relation, rc represents subclassOf relation and
Rr denotes the set of other relations. Therefore, the triple set S can be divided
into three disjoint subsets according to the relation type: relational triple set Sr,
instanceOf triple set Si and subclassOf triple set Sc.

Given a knowledge graph G, KGC aims at predicting the missing links in G
by learning embeddings for instances, concepts and relations in the same vector
space R

k, where k denotes the dimension of vector space. In IBKE, for each
instance i ∈ I and relation r ∈ Rr, we learn a k-dimensional vector i ∈ R

k and
1 The supplemental material of our paper is available online: https://github.com/

JensenDong/IBKE.

https://github.com/JensenDong/IBKE
https://github.com/JensenDong/IBKE
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r ∈ R
k, respectively. For each concept c ∈ C, we learn a box b(cen,off) with

cen,off ∈ R
k denoting the box center and offsets of all dimensions, respectively.

Box structure is more flexible, but it also brings the challenge that it is
difficult to measure nested boxes. Thus, we define different dimensional-wise
score functions for instanceOf, subclassOf and relational triples.

Relational Triples. A relational triple denoted as (h, r, t) consists of one relation
and two instances. IBKE learns k-dimensional vectors for instances and relations.
Hence, we define the score function just like TransE as follows:

fr(h, t) = ‖h + r − t‖22. (1)

InstanceOf Triples. For an instanceOf triple (i, ri, c), when it holds, the
instance i should be inside the box b. However, there is another relative position
which i is out of the box b. Therefore, we define the following score function for
optimizing:

fi(i, c) =
k∑

n=1

(|in − cenn| − offn), (2)

where in, cenn and offn represent the n-th element of i, cen and off, respectively.

SubclassOf Triples. For a subclassOf triple (ci, rc, cj), when it holds, the box
bi should be inside the box bj (as shown in Fig. 2(a)). However, there are three
other relative positions between box bi and bj , i.e., disjoint, intersect, and
inverse. Distance between the centers of bi and bj in n-th dimension is defined
as follows:

dn = |ceni,n − cenj,n|, (3)

where ceni,n and cenj,n denote the n-th dimension of ceni and cenj , respectively.
Further, we define a specific score function for each condition.

– Disjoint. bi is disjoint from bj (as shown in Fig. 2(b)). The two boxes should
be closer in optimization. Therefore, the score function is defined as follows:

fc(ci, cj) =
k∑

n=1

(dn + offi,n − offj,n), (4)

where offi,n and offj,n denote the n-th dimension of offi and offj, respec-
tively.

– Intersect. bi intersects with bj (as shown in Fig. 2(c)). Similarly, we define
the score fuction like the first condition as follows:

fc(ci, cj) =
k∑

n=1

(dn + offi,n − offj,n). (5)
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– Inverse. bi is inside bj (as shown in Fig. 2(d)). This condition is exactly
the opposite of our optimization objective, so we define the following score
function to reduce offj,n and increase offi,n:

fc(ci, cj) =
k∑

n=1

(offi,n − offj,n). (6)

Fig. 3. Traditional method VS. RUS. Best view in colors. Red triangles represent
negative instances and blue circles represent positive instances. Dotted triangles and
circles represent their original positions. (Color figure online)

In experiments, we enforce constraints on embeddings, i.e., ‖h‖2 ≤ 1, ‖r‖2 ≤ 1,
‖t‖2 ≤ 1, ‖i‖2 ≤ 1, ‖cen‖2 ≤ 1 and ∀n ∈ {1, . . . , k}, offn ≤ 1.

Optimization. We define a margin-based ranking loss function for relational
triples as follows:

Lr =
∑

ξ∈Sr

∑

ξ′∈S′
r

[γr + fr(ξ) − fr(ξ′)]+, (7)

where[x]+ � max(0, x), ξ denotes a positive triple, ξ′ denotes a negative triple
and γr is the margin between positive triples and negative triples. Similarly, we
define the loss function for instanceOf triples and subclassOf triples as follows:

Li =
∑

ξ∈Si

∑

ξ′∈S′
i

[γi + fi(ξ) − fi(ξ′)]+, (8)

Lc =
∑

ξ∈Sc

∑

ξ′∈S′
c

[γc + fc(ξ) − fc(ξ′)]+. (9)

We adopt stochastic gradient descent (SGD) to minimize the above loss func-
tions, and use random update strategy (RUS) to randomly update embeddings.

Negative Sampling. Following Lv et al. [13], we randomly replace h or t to con-
struct a negative triple (h′, r, t) or (h, r, t′). (See details in supplemental material)

3.2 Random Update Strategy

During training instanceOf triples, the traditional method will stop updating
parameters when score function fi(ξ) < 0 for positive triples or fi(ξ′) > 0 for
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negative triples, which means that positive instances are inside the boxes or neg-
ative instances are outside the boxes, respectively. While the positive instances
and negative instances are separated, they still gather around near the bound-
ary of the boxes, i.e., the surface of hyper-rectangles. According to empirical
regularity, instances and concepts should randomly distribute in the embedding
space. Intuitively, we present a Random Update Strategy (RUS) in place of the
traditional algorithm. The comparison of these two algorithms is shown in Fig. 3.
Note that we demonstrate this case in 2D for convenience.

In RUS, both positive triples and negative triples randomly update param-
eters depending on the score function fi. We set two update thresholds
φpos, φneg ∈ [0, 1], where φpos, φneg denote positive update threshold and neg-
ative update threshold, respectively. For each positive training triple ξ, RUS
updates parameters when fi > 0 and updates parameters with probability φpos

when fi ≤ 0. Similarly, for each negative training triple ξ′, RUS updates param-
eters when fi < 0 and updates parameters with probability φneg when fi ≥ 0.
Details of RUS are summarized in supplemental material.

RUS is also applied to subclassOf triples. This strategy assists our model
to separate positive and negative triples. Moreover, RUS can be generalized to
a method that uses a structure of closed region such as hypersphere and box.

4 Theoretical Analyses

In this section, we provide some theoretical analyses of IBKE and Box structure.
Note that all proofs for theorems can be found in the supplemental material.

4.1 Representation Power

Definition 1. (Filling Mode) A filling mode is the way to stuff a box (hyper-
sphere) with smaller ones. We define three types of filling modes.

– Align mode aligns the centers of the smaller boxes (hyperspheres) along each
axis.

– Compact mode aligns the centers of the interlaced boxes (hyperspheres) to
get a more compact spatial distribution.

– Hybrid mode is the mixture of Align mode and Compact mode.

Theorem 1. A hypersphere cannot be filled with several identical smaller hyper-
spheres without a single gap by any filling mode.

Theorem 2. A box can be filled with several identical smaller boxes without a
single gap by a certain filling mode.

Definition 2. (Representation Power) The representation power of box
(hypersphere) structure is the space utilization of embedding space.

Theorem 3. The representation power of box is superior to hypersphere.
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4.2 Inference Patterns

Knowledge graphs mainly consist of three relation patterns. We give their formal
definitions here:

Definition 3. A relation r is symmetric(antisymmetric) if

∀x, y ∈ E , r(x, y) ⇒ r(y, x) ( r(x, y) ⇒ ¬r(y, x) )

A relation with such form is a symmetry(antisymmetry) pattern.

Definition 4. Relation r1 is inverse to r2 if

∀x, y ∈ E , r2(x, y) ⇒ r1(y, x)

Relations with such form is an inversion pattern.

Definition 5. Relation r1 is composed of relation r2 and relation r3 if

∀x, y, z ∈ E , r2(x, y) ∧ r3(y, z) ⇒ r1(x, z)

Relations with such form is a composition pattern.

According to the above definitions, we provide a comprehensive analysis on IBKE
in supplemental material and come to the following theorem:

Theorem 4. IBKE can infer the antisymmetric, inversion and composition pat-
terns.

5 Experiments

In this section, we evaluate IBKE and RUS on link prediction [4]. In addition,
we conduct a series of ablation experiments for RUS.

5.1 Experimental Setup

Datasets. Most previous models are evaluated on FB15k [4] and WN18 [4].
To address the test leakage problem in FB15k and WN18, FB15k-237 [22] and
WN18RR [6] are constructed, which are subsets of FB15k and WN18, respec-
tively. However, FB15k and FB15k-237 mainly consist of instances; WN18 and
WN18RR mainly consist of concepts. The imbalance in the number of instances
and concepts makes these four datasets inappropriate for testing the ability of
distinguishing instances and concepts. Besides, isA relations are not explicitly
given on these datasets. Even YAGO26K-906 [8] and DB111K-174 [8], which
have explicitly given the isA relations, are not applicable. Both YAGO26K-906
and DB111K-174 suffer from the severe imbalance of instances and concepts,
either. Moreover, these two datasets have test leakage problem and contain a
large number of repeating triples. Hence in experiments, following TransC, we
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evaluate IBKE on benchmark dataset YAGO39K [13], which is constructed from
another popular knowledge graph YAGO [20], and contains a number of instances
and concepts. The statistics of YAGO39K are listed in supplemental material. In
addition, we also evaluate IBKE on Countries dataset [5,21] to explicitly test the
ability of inferring the composition pattern. It consists of three sub-tasks which
increase in difficulty in a step-wise fashion. For more details about Countries,
please see supplemental material.

Evaluation Protocol. Following Bordes et al. [4], the link prediction perfor-
mance is reported on the standard evaluation metrics: Mean Reciprocal Rank
(MRR) and Hits@N for N = 1, 3, 10. MRR is the mean reciprocal rank of correct
triples. Hits@N is the proportion of correct triples whose rank is not larger than
N. Note that an excellent embedding model should achieve a higher MRR and a
higher Hits@N. We report the filtered results to avoid possibly flawed evaluation.

Table 1. Link prediction results on YAGO39K with k = 100 and k = 200. Best results
are in bold and second best results are underlined.

Model k = 100 k = 200

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE [4] .248 .123 .287 .511 – – – –

TransH [26] .215 .104 .240 .451 – – – –

TransR [12] .289 .158 .338 .567 – – – –

TransD [10] .176 .089 .190 .354 – – – –

HolE [17] .198 .110 .230 .384 – – – –

DistMult [28] .362 .221 .436 .660 – – – –

ComplEx [23] .362 .292 .407 .481 – – – –

SimplE [11] .392 .283 .456 .590 .465 .367 .523 .644

TorusE [7] .351 .295 .388 .449 – – – –

TuckER [2] .270 .187 .290 .428 .427 .315 .477 .653

KBGAT [15] .469 .351 .539 .692 .475 .357 .543 .699

QuatE [30] .399 .273 .452 .659 – – – –

RotatE [21] .504 .413 .560 .668 .552 .458 .611 .721

BoxE [1] .546 .462 .598 .697 .566 .475 .626 .726

TransC [13] .437 .299 .521 .700 .520 .406 .597 .720

IBKE (ours) .522 .404 .605 .731 .578 .487 .640 .729

TransC-RUS .448 .311 .534 .704 .531 .423 .602 .721

IBKE-RUS (ours) .532 .418 .613 .731 .582 .497 .641 .725

Implementation. We select learning rate λ for SGD among {0.1, 0.01, 0.001},
the dimensionality of embedding space k among {20, 50, 100}, the three margins
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γr, γi and γc among {0.1, 0.3, 0.5, 1, 2}, the two update thresholds φpos and φneg

among {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The optimal configurations on
YAGO39K and Countries are listed in the supplemental material. To maintain
comparison fairness, we train each model for 1000 epoches.

5.2 Results and Analysis

Evaluation results for relational triples are shown in Table 1. Note that we use
publicly available source codes to reproduce results of comparison models, i.e.,
SimplE, TorusE, TuckER, KBGAT, QuatE, RotatE, BoxE and TransC. Other
results are taken from [13]. From Table 1, we conclude that: (1) IBKE outper-
forms all baseline models in terms of Hits@3 and Hits@10. Results indicate that
IBKE can get better performance by explicitly modeling isA relations. Distin-
guishing instances and concepts play a crucial part in learning embeddings. (2)
The trend of performance with k = 200 is basically consistent with the perfor-
mance with k = 100. We can see that IBKE outperforms all baseline models on
all metrics when k = 200. The reason is that the representation power of box
is more significant with a larger dimension. (3) The RUS works well for both
IBKE and TransC, which implies a good scalability.

Comparison with TransC. IBKE achieves significant performance improve-
ment. In specific, the improvement is 0.522–0.437 = 0.085 on MRR and +8.1%
on Hits@1 over TransC when k = 100, which indicates that with a higher space
utilization, the box structure is superior to hypersphere.

Comparison with BoxE. IBKE is only less competitive than BoxE in MRR
and Hits@1 with k = 100, but outperforms BoxE on all metrics when k = 200.
The reason is that IBKE encodes concepts as boxes and BoxE encodes relations
as boxes. The number of concepts is larger than relations. Therefore, IBKE can
capture more information with a larger dimension.

Random Update Strategy. To verify the effectiveness of RUS, we conduct
a series of ablation experiments as shown in Table 1, Fig. 4 and Fig. 5(a). From
Table 1, TransC-RUS achieves relative improvement of 0.448–0.437 = 0.011 on
MRR and +1.7% on Hits@1 over TransC. Compared to IBKE, IBKE-RUS
achieves relative improvement of 0.532–0.522 = 0.010 on MRR and +1.4% on
Hits@1. Figure 4(a) shows that despite the epoch, models with RUS always out-
perform the corresponding ones without RUS. Moreover, as shown in Fig. 5, RUS
can achieve better performance by using specific update thresholds.

Results on Countries S1/S2/S3. To further investigate the ability of inferring
composition pattern, we evaluate our model on Countries dataset. In Table 2, we
report the results with respect to the AUC-PR metric, which is commonly used
in the literature. We can see that IBKE outperforms all the baseline models on
S1 and S3, and obtains competitive performance on S2. Note that S3 is the most
difficult task.
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Fig. 4. Performance with different update thresholds on MRR.

Table 2. Link prediction results of Countries datasets. Best results are in bold.

Model Countries (AUC-PR)

S1 S2 S3

DistMult 1.00 0.72 0.52

ComplEx 0.97 0.57 0.43

ConvE 1.00 0.99 0.86

RotatE 1.00 1.00 0.95

IBKE 1.00 0.99 0.96

Fig. 5. (a) Learning curves of IBKE, IBKE-RUS, TransC, and TransC-RUS; (b) Per-
formance versus dimensionality; (c) Runtime analysis.

Robustness Experiment. We evaluate the dependence of IBKE on dimen-
sionality. Experimental results are shown in Fig. 4(b), in which we can conclude
that: (1) Compared to IBKE, BoxE can obtain competitive performance with a
smaller dimension. (2) When k ≥ 150, IBKE can achieve state-of the-art perfor-
mance relative to most models.

Running Time Analysis. We train IBKE-RUS on the CPU and BoxE on
a single Tesla V100 GPU. Results are shown in Fig. 4(c), in which we can see
that each runtime of IBKE is less than BoxE with same embedding dimension.
Furthermore, as the dimension grows, so does the runtime gap between IBKE
and BoxE. Hence, IBKE is more efficient than BoxE.

6 Conclusion

In this paper, we propose IBKE, which introduces a new use of box for knowl-
edge graph completion. IBKE applies box structure to model concepts. Instances
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and relations are both embedded as vectors. We also propose a new parameters
update method named random update strategy for randomly updating embed-
dings. Experimental results show that IBKE outperforms most state-of-the-art
baselines and has obvious advantages when inferring the composition pattern.
By ablation experiments, we further prove the effectiveness of RUS. In future
work, we will explore how to combine box and rotation.

Acknowledgments. This work was supported by the National Key Research and
Development Program of China.
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Abstract. Game bots are automated programs that assist cheating
players in obtaining huge superiority in Massively Multiplayer Online
Role-Playing Games (MMORPGs), which has led to an imbalance in the
gaming ecosystem and a collapse of interest among normal players. Game
bot detection aims to identify cheating behaviors to ensure fair compe-
tition for MMORPGs. Due to the high practical value, there is much
research on game bot detection at present. One main existing method is
conventional machine learning algorithms, which require extensive fea-
ture engineering and get limited performance. The other main existing
method is the recurrent neural network, but it fails to capture the com-
plex behavioral patterns of players. To tackle the above problems, we pro-
pose a novel graph neural network-enhanced game bot detection model,
namely GB-GNN. In the proposed model, we model players’ trajecto-
ries as graph-structured data to capture the player’s complex behavioral
patterns that are difficult to reveal by traditional sequential methods.
Extensive experiments on three real-world datasets show that GB-GNN
outperforms the previous methods.

Keywords: Game bot detection · MMORPGs · Graph neural
networks

1 Introduction

The COVID-19 pandemic has reshaped the world in many aspects, anecdotal
reports claim that many people have turned to play video games during the
pandemic; people play games to search for cognitive stimulation, opportunities
to socialize, and stress reduction [2]. MMORPG is a popular and relaxing game
genre in which players can take on various roles in a virtual world, complete
main/side storylines, upgrade, socialize, and adventure [6]. Some MMORPGs
allow players to use fiat money to buy virtual items or exchange virtual currency.
The association of fiat and virtual currencies gives rise to game bot developers
as the business is profitable [10]. Game bots can replace humans with scripts
to complete tedious tasks, or complete a series of difficult operations through
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(a) normal player’s trajectories (b) trajectories of game bot A

(c) trajectories of game bot B (d) trajectories of game bot C

Fig. 1. Some typical trajectories.

simulated clicks, to help players gain an unfair advantage in the game, such as
quickly accumulating experience values, obtaining legendary items or equipment.
This unfair game ecology will significantly reduce the game experience of honest
players, leading to player loss and is detrimental to the healthy development of
the entire game industry [11]. To mitigate the negative effects of game plug-
ins and automated scripts, some previous work [7,8,19] performed game bot
detection by designing domain-specific features and models. [18,22] resort to
the integration of supervised and unsupervised learning and propose an auto-
iteration mechanism to quickly acquire the ability to detect bots in new games
or domains. Besides, the disparities between social network data constructed by
humans and game bots can also be used for game bot detection [14,20].

However, The above studies revolve around data from the PC side. As the
mobile game market is continuously expanding1, the trajectory data inside the
game is also rapidly accumulating. A survey from Adjust2 finds that 41% of
mobile gamers have used bots in 2020, indicating a real and urgent need to
develop an effective game bot detection system for mobile games. While playing
mobile games, the mobile device may generate a large amount of trajectory data.

1 https://www.mordorintelligence.com/industry-reports/mobile-games-market.
2 https://www.adjust.com.

https://www.mordorintelligence.com/industry-reports/mobile-games-market
https://www.adjust.com
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In a typical mobile MMORPG, virtual buttons located at the lower-left corner
are used for direction control while those on the right side are used for using spells
or items. The trajectories of the player’s finger touching these virtual buttons
will be recorded by the mobile sensors. Although there are two research works
aiming to distinguish movement trajectories between humans and bots of a PC
FPS game (Quake2) [3,15], game bot detection research on trajectory data of
mobile sensors for MMORPGs is still vacant.

We collect a large amount of original trajectory data from two MMORPGs
in distinct genres released from NetEase Games3, including one PC game and
one mobile game. On this basis, after necessary preprocessing, we obtain three
real-world datasets for the study of trajectory-based game bot detection in this
paper. Note that due to the significant differences between the two scenes in
our selected mobile game, we separate them into two independent datasets. One
major difference between trajectory data in PC games and mobile games is
the resolution of mobile devices varies, as screen sizes of different brands of
mobile phones and tablet computers are often not the same4. This resolution
inconsistency increases the difficulty of developing game bot detection systems
for the mobile sensor data.

To overcome the limitations, we regard each player’s trajectories as a graph
and employ graph neural networks to exploit the behavioral patterns of the
game bot as shown in Fig. 1 and avoid hand-crafted features. In this paper,
we propose a novel graph neural network-enhanced game bot detection model,
namely GB-GNN. Concretely, for capturing the patterns of the game bot, each
trajectory should be discretized and built as a directed line graph. GB-GNN
utilizes graph neural networks to pass messages and obtain the representation
of nodes of the graph. Finally, we employ Gated Recurrent Units (GRUs) to get
the vector of a trajectory and identify whether the trajectory is a game bot. The
major contributions of this paper are summarized as follows:

– We model players’ trajectories into graph-structured data and use graph neu-
ral networks to capture complex patterns of the game bots. To the best of our
knowledge, it presents a novel perspective for modeling game bot detection
in practical scenarios.

– Based on trajectory graph, we propose a novel model to unify Graph Neu-
ral Networks and Gated Recurrent Units for game bot detection across
MMORPGs in distinct genres.

– By implementing extensive experiments on three commonly used real-world
datasets, we demonstrate that our proposed model outperforms state-of-the-
art non-graph-based methods.

3 http://game.163.com/.
4 https://en.wikipedia.org/wiki/Comparison of high-definition smartphone displays.

http://game.163.com/
https://en.wikipedia.org/wiki/Comparison_of_high-definition_smartphone_displays
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2 Related Work

In this section, we briefly review the work related to this paper from game bot
detection and integration of GNN and RNN.

2.1 Game Bot Detection

Game bot detection is generally divided into three categories: client-side,
network-side, and server-side. We only discuss the widely adopted server-side
approaches as such approaches are prioritized to ensure the best gaming expe-
rience for players [18]. Game developers can collect many types of data on the
server-side, including domain-specific features, behavior sequences, social net-
work data, and trajectory data. [7,8,19] mine logs to distinguish differences
between humans and robots in behavioral characteristics and network commu-
nication timing and sizes. The main drawback of these works is that they all
rely on domain-specific features, leading to the inability to directly transfer such
methods to new games. To address this problem, [18,22] integrate supervised and
unsupervised methods for game bot detection, and its proposed auto-iteration
mechanism approach can be quickly adapted to new games for plugin detec-
tion. Social network data can also be exploited to distinguish humans and bots.
[14] assume that humans and game bots are different in their construction of
social networks. [20] perform social activity detection by analyzing users’ social
interactions.

In addition, there is a large amount of trajectory data in games, such as
mouse trajectories and movement trajectories in the game world. [3,15] propose
a manifold method (Isomap) to perform bot detection on movement trajectories.
However, the above work was only validated on quake2, a PC-based FPS game,
and only three types of mainstream FPS plug-ins were validated. Nowadays,
plug-ins and automation scripts are also proliferating in various MMORPGs,
and players are also slowly moving from the PC platform to the mobile side.
However, very little work has been done specifically on the trajectory data of
mobile sensors. Game developers may record many touch sensor data but detect-
ing bots on these specific data still remain challenging. To fill this void, we care-
fully investigate the characteristics of sensor trajectories and propose a model
architecture combining GNN and GRU.

2.2 Integration of GNN and RNN

The integration of GRU and GNN is not uncommon, but the function of GRU
and GNN may vary according to different tasks. [17] integrate GNN and LSTMs
to predict COVID-19 new cases by exploiting spatial and temporal information.
To facilitate prescription, a hybrid method of RNN and GNN are proposed to
represent patient status sequences and temporal medical event graphs respec-
tively [12]. [13] design Graph Long Short Term Memory (GLSTM) model for
traffic speed prediction, using GNN to capture spatial-temporal dependencies
and LSTM to capture long-term dependencies.
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Fig. 2. The workflow for graph construction.

3 Preliminaries

Problem Formulation: In this paper, we intend to use the players’ trajectories
to detect game bots, where a player’s trajectory T can be expressed as:

T = {(x0, y0, t0), (x1, y1, t1), ..., (xn, yn, tn)}, t0 < t1 < ... < tn. (1)

Here n is the length of the trajectory T , tn is the timestamp, and (xn, yn) is the
player’s n-th coordinate. We use Ti to denote the i-th coordinate of T , and Ti,0

and Ti,1 to denote the corresponding x and y of Ti, respectively.

Graph Construction: We construct the graph as shown in Fig. 2. We first
discretize the original trajectory T into T̂ as follows:

T̂ = {(w0, t0), (w1, t1), ..., (wn, tn)}, t0 < t1 < ... < tn. (2)

Here element wi could be calculated as the following way:

wi = [mTi,0/L] + m[nTi,1/W ]. (3)

Here [·] denotes rounding up. L and W are the length and width of the trajectory
coordinate plane, respectively. And m and n mean that the length L is equally
divided into m parts and the width W is equally divided into n parts.

On this basis, the discretized trajectory T̂ can be modeled as a directed graph
G = (V, E). After the trajectory T is discretized, sequence T̂ can be modeled as a
directed graph G = (V, E), where each node represents an element and each edge
(wi−1, wi) ∈ E means that element wi appear after wi−1. We embed each element
wi into a unified embedding space and learn the node vector through a graph
neural network. Finally, each trajectory can be represented as an embedding
vector, denoted as T for simplicity.
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Fig. 3. The workflow of our proposed model.

4 The Proposed Model

In this section, we introduce the workflow of our proposed model as shown in
Fig 3. The input of our proposed model is discrete trajectories while the out-
put is the probability distribution of the game bots. Graph convolution net-
works (GCN) are employed in the model to capture repetitive patterns of the
game bots. And we utilize Gated Recurrent Units (GRU) to explore normal
players’ intentions such as “attack” and “move”. After obtaining the latent rep-
resentation of trajectories, the probability distribution of the game bots could
be obtained by softmax of the representation vector of the trajectories.

4.1 Capturing Repetitive Patterns

Because the trajectories of the game bots contain more repetitive patterns, the
trajectories of the game bots are more predictable than that of normal players.
The vanilla graph neural network is proposed by Scarselli et al. [16], extending
neural network methods for processing the graph-structured data. Graph neural
network is widely applied to natural language process, computer vision, and
data mining due to their capability of capturing patterns. Multi-layer GCN is
employed in the model to capture different repetitive patterns, we consider a
multi-layer GCN with the following layer-wise propagation rule:

Z(l+1) = σ( ˜D− 1
2 ˜A ˜D− 1

2 Z(l)W (l)). (4)

Here ˜A = A + E, E is the identity matrix, A is the adjacency matrix of the
directed graph G with added self-connections. ˜Dii =

∑

j
˜Aij and W is train-

able parameters. σ(·) means an activation function. And Z(l) is the matrix of



322 X. Qi et al.

activation in the l-th layer, where Z(0) = T . After passing message k times, we
concatenate the k vectors together. To make better use of the k vectors, we apply
Bahdanau attention mechanism [1] as follows:

Fi = vT
a tanh(waZ

(i)), i = 1, 2, ..., k. (5)

˜Z =
∑

FiZ
(i). (6)

Here va and wa are learned attention parameters, Fi means score of attention,
and ˜Z denotes the final representation of trajectory obtained from multi-layer
GCN.

4.2 Exploring Players’ Intentions

In MMORPGs, some fragments of normal players’ trajectories indicate the play-
ers’ intentions such as “attack enemies” and “move to some places”. Exploring
the players’ intentions from players’ trajectories, we exploit recurrent neural net-
works. Gated Recurrent Unit (GRU) introduced by Kyunghyun Cho et al. [5]
has a good performance on the task of natural language processing. The update
functions are written as follows:

zi = σ(Wz
˜Zi + Uzhi−1 + bz), (7)

ri = σ(Wr
˜Zi + Urhi−1 + br), (8)

ĥi = tanh(Wh
˜Zi + Uh(ri � hi−1) + bh), (9)

hi = (1 − zi) � hi−1 + zt � ĥi. (10)

Here ˜Zi is the item embedding of i-th item of timestep ti in the trajectory, W,U, b
are the learnable parameters. σ(·) means the sigmoid function, � represents the
element-wise multiplication operations, ĥi denotes the candidate hidden state,
and hi, zi and ri are respectively the hidden state, update gate vector, and reset
gate vector.

4.3 Training and Inference

To generate the trajectory vector, we use the mean of hidden state hi of GRU
as trajectory vector:

˜h =
n

∑

i

hi/n. (11)

After getting the trajectory vector ˜h, we apply a softmax to get the output
vector of the model ŷ:

ŷ = softmax(Ws
˜h), (12)
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where ŷ denotes the probabilities distribution of being a game bot and Ws is the
learned parameters. The loss function is defined as cross-entropy of the prediction
and the ground truth as follows:

L(y, ŷ) =
N

∑

i=1

yi log(ŷi) + (1 − yi) log(1 − ŷi). (13)

Here y denotes the one-hot encoding vector of the ground truth. After calculating
the above formula, we use the backpropagation algorithm to train our model.

5 Experiments

In this section, we first introduce the datasets, baseline, and evaluation metrics.
Then we compare the proposed model with the baselines and analyze the results.

5.1 Experiment Settings

Datasets. We use three real-world datasets to evaluate the performance of our
proposed model. We collect a large amount of original trajectory data from two
MMORPGs in distinct genres released from NetEase Games, including one PC
game and one mobile game. To be specific, the PC game is Justice5, a martial
game based on Wen Rui’an’s novel The Four Great Constables (Si Da Ming
Bu). And the mobile game contains two significantly different scenes. Hence,
we specifically separate them as two independent datasets here, named rookie
and battle. All the original trajectory data is generated from players’ logs while
labels are obtained by manual annotation from multiple game experts. On this
basis, for each dataset, we select 5000 players’ trajectories as a train set and
1000 players’ trajectories as a validation set, respectively.

Evaluation Metrics. Due to category imbalance in the datasets, we utilize Area
Under the Precision-Recall Curve (PR-AUC) to evaluate all methods. A high
PR-AUC suggests that the evaluating model has a strong ability to distinguish
positive and negative samples.

Parameter Setup. For the fair competition, we set up the same parameters for
all models. We find that the performance of models gets better as l,m and the
layers of GB-GNN k become larger. Due to the limitation of memory of GPU,
we set the parameters l and m to 20, k to 12, dimension of hidden vector d to
64. All parameters are initialized by Gaussian distribution. We use a mini-batch
Adam optimizer to optimize these parameters, setting the initial learning rate
to 0.003, with a batch size of 32.

5 https://leihuo.163.com/en/games.html?g=game-1nsh.

https://leihuo.163.com/en/games.html?g=game-1nsh
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Table 1. The performance of the methods.

Method Justice rookie battle

Metrics PR-AUC PR-AUC PR-AUC

GRU 0.6854 0.8632 0.6050

Transformer 0.7228 0.8477 0.6503

XGBoost 0.7362 0.7702 0.4442

GCN 0.7669 0.6854 0.6012

maLstmFcn 0.7894 0.8542 0.7264

GB-GNN 0.8558 0.8937 0.7350

5.2 Baselines

In this work, we use players’ trajectories to detect game bots, however, there are
a lot of work detecting game bots by trading networks of virtual items or players’
profiling [18]. The previous methods are unsuitable for detecting game bots using
players’ trajectories. To demonstrate the performance of our model, we choose
several sequential models and some data mining methods for comparison:

– GRU [5]: GRU is an RNN-based model to exploit temporal information.
– Transformer [21]: A transformer is based solely on attention mechanisms.
– XGBoost [4]: XGBoost is a scalable tree boosting system, which is used widely

by data scientists to achieve state-of-the-art results.
– GCN: GCN is a powerful neural network architecture on graph-structured

data. We employ a multi-layers (7-layer) GCN as a baseline.
– maLstmFcn [9]: The model integrates CNN, LSTM, and attention mecha-

nisms to exploit spatial and temporal information.

5.3 Comparison with Baseline Methods

The performance in terms of PR-AUC metrics on three datasets is shown in
Table 1, and we highlight the best results in boldface. Our proposed method
achieves the best performance compared with the other state-of-the-arts on all
datasets, which verifies the effectiveness of GB-GNN.

In the Justice dataset, GCN has a better performance than GRU, which
indicates that the trajectories of the game bots in the Justice dataset have more
repetitive patterns. The maLstmFcn obtains an excellent result, which suggests
CNN has a promising ability to capture repetitive patterns of game bots. Our
proposed method GB-GNN has the most excellent results, which suggests the
simple repetitive patterns of trajectories mainly consist of a certain number of
nodes as shown in 1 and a specific layer of GB-GNN is capable of exploring the
repetitive patterns. In the battle dataset, the performance of GCN is similar to
the GRU, however, GCN exceeds GRU in the Justice dataset, which suggests
that GCN with a specific layer is capable of specific repetitive patterns but
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Fig. 4. Performance of each layer of GB-GNN.

fails to capture multiple patterns. As a comparison, GB-GNN still has the best
performance, which indicates that the attention mechanism employed in GB-
GNN can make use of the information extracted by each layer of GB-GNN. In
the rookie dataset, GB-GNN has an absolute advantage over the other methods
but GCN has the worst performance, which suggests that GNN is capable of
exploring the repetitive patterns but the sequential model is also critical to
capture the patterns of game bots.

5.4 Comparison with Each Layer of GB-GNN

GB-GNN aims at utilizing different layers to capture different repetitive patterns
as shown in Fig. 1. We evaluate the idea by removing the attention mechanism of
GB-GNN and using the output of each layer of GCN to detect game bots. More
specifically, when layers of GB-GNN is 12, we will extract the output of i-th
(i = 1, ..., 12) layer of GNN and detect game bot respectively. The performance
of each single-layer model is shown in Fig. 4.

We find GB-GNN outperforms all the single-layer models in the three real-
world datasets. There are two differences between these models on the datasets.
One is that the improvement in terms of PR-AUC of GB-GNN over single-layer
GNN is different on the different datasets, the improvement is the largest on the
Justice dataset, while on the rookie dataset, the improvement is not very obvious.
The other difference is that layer of the best single-layer GNN is different on the
different datasets. The layers of the best performance of the single-layer GNN in
the Justice dataset are 11, while the best performance is obtained in the other
two datasets when layers are 7 and 3, respectively.

The first difference is caused by the different motion patterns of the game
bots on the different datasets, as shown in Fig. 1, which shows the typical motion
patterns of game bots on the Justice, battle, and rookie datasets, respectively. As
a result of the difference in game bot patterns, the improvement of GB-GNN on
the three datasets is different. Secondly, we take a motion trajectory of a game
bot in the battle dataset shown in Fig. 1c as an example to explain why layers
of the best single-layer GCN are different in the datasets. The motion trajectory
falls in seven fixed regions of a screen. The best-performing single-layer GNN is
7-th layer GCN. Combined with the propagation mechanism of GNN, we can
speculate that the information of seven specific regions will be shared when layers
of GCN are equal to 7, which helps the model to detect game bots better.
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Fig. 5. The coefficients of each layer of GB-GNN.

To explore whether GB-GNN chooses the most effective layer, we obtain the
coefficients θi in the GB-GNN model, as shown in Fig. 5. On the battle dataset,
θi of 1-th layer is the smallest and θi of 7-th layer is the largest, which indicates
that GB-GNN almost makes no use of information of 1-th layer and utilizes
information of 7-th layer mostly. And game bot detection not only relies on the
information obtained from a single layer of GNN but also the information of
other layers.

6 Conclusion

In this paper, we propose GB-GNN to detect various motion patterns of game
bots. We evaluate GB-GNN on three real-world datasets, our proposed method
achieves state-of-the-art results over other baselines. We also analyze the struc-
ture of the model and find that our proposed model can effectively capture the
motion patterns of the game-bot and extract the complex graph features for the
game-bot detection. Our method can be utilized to detect game bots and can
be also used to detect trajectory with local patterns, such as detecting human
behavior based on data collected from mobile phone sensors.
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Abstract. We introduce a simple and effective regularization of knowl-
edge gradient (KG) and use it to present the first sublinear regret bound
result for KG-based algorithms. We construct online learning with regular-
ized knowledge gradients (ORKG) algorithm with independent Gaussian
belief model, and prove that ORKG algorithm achieves sublinear regret
upper bound with high probability facing bounded independent Gaussian
multi-armed bandit (MAB) problems. The theoretical properties of regu-
larized KG and ORKG algorithm are analyzed, and the empirical charac-
teristics of ORKG algorithm are empirically validated with MAB bench-
mark simulations. ORKG algorithm shows top-tier performance compa-
rable to select MAB algorithms with provable regret bounds.

Keywords: Knowledge gradient · Online learning · Regret analysis

1 Introduction

This paper considers the problem of making best possible decisions facing uncer-
tainty, in which a decision-making agent repeatedly chooses from a set of deci-
sions and then observes an outcome from which a bounded quantifiable reward
can be derived. We assume that the agent knows the set of possible decisions,
which is finite and remains the same over the time horizon in which the agent
choose and learns. If such an agent is evaluated on how well it finds out which
choice incurs the best reward, disregarding the rewards incurred by its choices
while learning, the agent is facing a ranking and selection (R&S) problem.

Knowledge gradient (KG) is an algorithm proposed to solve R&S prob-
lems with independent Gaussian model assumption [4], and later with different
assumptions such as correlated Gaussian model [5], Gaussian process model [15],
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binary cost function [22], locally nonlinear parametric models [9], and repeated
noisy measurements [8]. Empirical effectiveness of KG-based algorithms has been
demonstrated in diverse fields where R&S problems can be applied: for example,
drug discovery [12], chemical engineering [3], fleet management [10,21], COVID
responses [19], and clinical trials [20].

However, R&S problem disregards the reward incurred by the choices made
by the agent while it is learning. As such, R&S problem is ill-suited to model
online learning problems, in which every single reward incurred by the agent
counts, and 2) the remaining number of choices the agent must make may be
unknown. Little work has been done to utilize KG in online learning, where
a most notable approach assuming the agent knows the remaining number of
choices [13,14]. In this paper, we present a new approach to utilize KG to solve
online learning problem with unknown time horizon.

Novel contribution of this manuscript is summarized as follow. We present
Online learning with Regularized Knowledge Gradients (ORKG) algorithm with
independent Gaussian belief, a novel online learning algorithm that uses knowl-
edge gradient. We provide theoretical analysis of ORKG, including the proof of
ORKG’s regret upper bound of O(

√
KT ln(KT )) in stochastic MAB problems

with K bounded independent Gaussian arms, which is the first sublinear regret
bound for knowledge gradient based algorithms. We also perform empirical val-
idation of the theoretical properties of ORKG and empirical sensitivity analysis
of the key hyperparameters of ORKG. Lastly, we verify empirical performance
of ORKG in Gaussian stochastic MAB problems against other well-known MAB
algorithms with provable regret bounds.

2 Problem Setting

We consider “online” sequential decision problem in which a decision-making
agent faces partial information stochastic MAB problem, in particular with
bounded Gaussian stochastic arms and unknown total number of decisions to
make. For each time index t ∈ {0, 1, · · · , T − 1} with unknown finite time hori-
zon T , the agent must make a decision, denoted by x, among K < ∞ mutually
independent arms that can be indexed by i ∈ {1, 2, · · · ,K}, and then observe
a bounded random reward/contribution Ct from respective arm’s distribution
with mean μi and standard deviation σi that are unknown to the agent. We use
xt for decision made at time t, and X as the set containing all possible decisions.
Hence, ∀t : xt ∈ X , and |X | = K.

The goal of the agent is twofold: 1) to learn the best arm i∗ whose reward
distribution has the largest mean (i.e. μi∗

= maxi

{
μi

}
=: μ∗ using the obser-

vations incurred by past decisions, and 2) to control the impact of inevitable
suboptimality caused by choosing arms that are not the best arm without know-
ing the best arm a priori. Note that the term “online” is not the same as in
online convex optimization, but instead is related to the second aspect of the
goal of the learning agent – that the performance of the agent while it is learning
(i.e. “online”) is important, as opposed to batch learning such as R&S problems
where only final performance matters.
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The belief state Bt at time t, for KG-based algorithms with indepen-
dent Gaussian belief model, is defined as the sufficient information to model
Gaussian rewards incurred by each action x ∈ X . Hence, we define Bt :=
{ (μ̄x

t , σ̄x
t )|x ∈ X}, as the set of mean parameter estimates μ̄x

t and standard devi-
ation parameter estimates σ̄x

t for all x ∈ X .
Under independent Gaussian belief model, KG of choosing x at time t can

be efficiently computed [6] using the following closed form formula:

νKG,x
t := σ̃x

t (ξx
t Φ (ξx

t ) + φ (ξx
t )) , (1)

where Φ(·) and φ(·) are the cumulative distribution function and the probability
density function of standard Gaussian distribution, respectively. ξx

t is defined as:

ξx
t := −

∣∣∣μ̄x
t − maxx′ �=x μ̄x′

t

∣∣∣

σ̃x
t

, (2)

where σ̃x
t := σ̄x

t /

√
1 + (σε/σ̄x

t )2 . σε is the standard deviation of the zero-mean
Gaussian measurement noise assumed to be found on all observed reward C(x)
for all x ∈ X . Most KG-based algorithms have σε as a hyperparameter.

Using KG as-is to solve online learning problems is expected to fail, because
R&S problem disregards the rewards caused by a fixed, known number of choices
which it considers as the learning process. From this perspective, KG algorithm
for online learning problems (OKG) is proposed [13]. OKG algorithm chooses
action xt at time t as:

xt =

{
arg maxx∈X

{
μ̄x

t + (T − t) νKG,x
t

}
(t < T )

arg maxx∈X {μ̄x
t } (t ≥ T )

, (3)

where T is the total number of choices to make in the online learning problem.
Naturally, OKG algorithm requires knowing the true time horizon T , after which
it exploits learned information and choose the action with best expected mean
reward.

3 Online Learning with Regularized KG

We present Online learning with Regularized KG (ORKG) with independent
Gaussian belief, a novel online learning algorithm with knowledge gradient, in
Algorithm 1. Compared to OKG algorithm [13], ORKG introduces two key inno-
vations: 1) standardizing and regularizing knowledge gradient; 2) adaptively
learning exploration parameter ρt. ORKG contains two key hyperparameters
κR > 0 and 0 < δ < 1, and we use κR = 0.01, δ = 0.01 as their default values.
These hyperparameters are explained in theoretical analysis of ORKG (Sect. 4)
and their default values are justified in empirical sensitivity analysis of ORKG
(Sect. 5.2).
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Algorithm 1. ORKG with Independent Gaussian Belief
1: Initialize belief state: {μ̄x

0 , σ̄x
0}x∈X

2: for t = 0, 1, 2, · · · do

3: Compute standardized KG: κx
t ← ν

KG,x
t
σ̄x
t

� Compute νKG,x
t by (1)

4: Compute regularized KG: νRKG,x
t ← σ̄x

t max (κR, κx
t )

5: Compute coefficient ρt ←
√

2 ln
(

2|X|
δπt

)
1

max{κR,minx∈X κx
t }

6: Choose action: xt ← arg max
x∈X

{
μ̄x

t + ρtν
RKG,x
t

}
7: Observe Ct+1 ∼ C(xt)
8: Update μ̄x

t+1, σ̄
x
t+1 for x = xt using observation Ct+1 � Use update rules in [6]

As in step 6 of Algorithm 1, ORKG algorithm chooses action at time t as:

xt = arg max
x∈X

{
μ̄x

t + ρtν
RKG,x
t

}
, (4)

where ρt :=
√

2 ln
(

2|X |
δπt

)
1

max{κR,minx∈X κx
t } , in which δ ∈ (0, 1) and πt is a

sequence satisfying
∑∞

t πt = 1, for example, πt := 1
(t+1)2

6
π2 . With this ρt,

ORKG balances the exploitation action to maximize μ̄x
t , the current estimate

of mean reward incurred by action x and the exploration action to maximize
νRKG,x

t , the regularized knowledge gradient of action x at time t. It is notable
that ORKG does not need to know the time horizon T ; whereas OKG algorithm
explicitly requires knowing the true T as shown in its decision rule (3). This
property allows ORKG to be easily applied to online learning problems where
explicit end-of-horizon is unknown or changes over time.

With carefully constructed decision rule, ORKG controls the exploration-
exploitation dilemma in online learning problem with unknown horizon, and
achieves sublinear regret upper bound as shown in Theorem 1.

Theorem 1. In stochastic MAB problems with bounded independent Gaussian
arms, ORKG algorithm with independent Gaussian belief has regret upper bound:

RT ≤p

√

8 |X |T ln
(

2 |X |T
δπT−1

)
LRKGσε,

with probability 1 − δ, where 0 < δ < 1, and LRKG < ∞ is a constant uniformly
bounding smoothness of regularized KG surface.

Our proof strategy, which is inspired from GP-UCB algorithm [17], is as follow:
first, the deviations of Gaussian rewards are taken with union bounds to bound
squared one-step regret with high probability, given δ and κR, and then we
sum up one-step regrets and bound the regret R(T ) and derive ρt shown in
Algorithm 1. The smoothness constant LRKG is analyzed in greater detail in
Sect. 4.2, and complete proof of Theorem 1 is given in appendix A.7.
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Therefore, ORKG algorithm with independent Gaussian belief has a sublin-
ear regret upper bound of O

(√|X |T ln |X |T
)

with probability 1 − δ, when its
modeling assumption matches the problem specification.

4 Theoretical Analysis

4.1 Regularization of Knowledge Gradient in ORKG

In this section, we define the regularization of KG used in ORKG algorithm, and
analyze the theoretical property of the regularized KG on which the sublinear
regret bound of ORKG depends.

Conceptual summary of the regularization of KG in ORKG algorithm is as
follows: 1) “standardize” KG into a unitless value, 2) force it to have a fixed
uniform bound from below, 3) then give back its unit to match KG. Step 1 is
achieved by computing standardized KG, and steps 2 and 3 are done in comput-
ing regularized KG from standardized KG.

Definition 1. κx
t , standardized knowledge gradient of an action x ∈ X at time

t is defined for all x ∈ X as:

κx
t :=

νKG,x
t

σ̄x
t

, (5)

where knowledge gradient νKG,x
t is computed from belief state Bt.

κx
t is “standardized” KG, in a sense that it has the same unit as ξx

t :

κx
t =

σ̄x
t√

(σ̄x
t )2 + (σε)2

︸ ︷︷ ︸
unitless

(ξx
t Φ (ξx

t ) + φ (ξx
t ))

︸ ︷︷ ︸
same unit as ξx

t

, (6)

where ξx
t is as defined in (2), Φ is the cumulative distribution function, and φ is

the probability density function of standard normal distribution.
We introduce the following regularization method, designed to achieve a

needed property for a sublinear upper bound of the regret of ORKG, and at
the same time easy to interpret.

Definition 2. νRKG,x
t , the regularized KG for making a decision x at time t

given belief state Bt, is defined as

νRKG,x
t := σ̄x

t max {κR, κx
t } , (7)

where κR > 0 is the regularizing parameter, which is a small arbitrary constant
uniform lower bound on κx

t for all x, t, and κx
t is standardized KG computed at

time t given belief state Bt according to Definition 1.

Note that from this regularization originates κR, one of the two hyperparameters
of ORKG algorithm. κR stands for the uniform lower bound on how small κx

t

can get for all x, t.
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4.2 Smoothness of Regularized KG Surface

In ORKG algorithm facing stochastic MAB with finite number of bounded
Gaussian independent arms, νKG,x

t can be efficiently computed for all x ∈ X
given Bt. To represent the “surface” of KG with respect to x at t, we consider
νKG

t =
[
νKG,1

t , νKG,2
t , · · · , νKG,K

t

]
as a piecewise linear function measured at

x = 1, 2, · · · ,K. We define a smoothness constant for the surface of KG as:

Definition 3. LKG,x
t , the smoothness constant of KG for action x at time t, is

defined as:

LKG,x
t :=

νKG,x
t

minx′∈X νKG,x′
t

. (8)

LKG,x
t represents the worst case relative difference between KG of x at t and

smallest KG across all x at t, up to permutation of X , in the unit of the value
of smallest KG at t. It has trivial lower bound of 1, and upper bound of ∞ at
t → ∞, suggesting that the KG “surface” may have a very sharp point.

On the other hand, the surface of regularized KG, whose smoothness constant
is shown in Definition 4, has a smoothness bound as shown in Lemma 1.

Definition 4. LRKG,x
t , the smoothness constant of regularized KG for action x

at time t, is defined, analogous to that of KG (Definition 3), as:

LRKG,x
t :=

max {κR, κx
t }

max
{
κR,minx′∈X κx′

t

} . (9)

Lemma 1. There exists a finite constant LRKG such that

LRKG,x
t ≤ LRKG < ∞ ∀x ∈ X ,∀t ∈ {0, 1, · · · } . (10)

Existence of a constant LRKG is needed to establish the sublinear regret upper
bound of ORKG, as the constant appears in the regret bound in Theorem 1. We
provide the proof of Lemma 1 in appendix A.3.

5 Empirical Verification

In this section, we present multifaceted empirical verification of the performance
of ORKG algorithm in online learning. We use Python package smpybandit
[1] to implement all stochastic multi-armed bandit (MAB) benchmarks, on an
AMD Ryzen 3900x CPU with 64GB of RAM. Benchmarks are randomized and
repeated 100 times, and the sample mean and standard deviation from all repeats
are reported. For each benchmark scenario, the best result in sample mean and
all runner-up results within 1 standard deviation of the best result are boldfaced.
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5.1 ORKG Compared to Other KG Algorithms

First, we demonstrate how the theoretical improvements of ORKG is realized, by
comparing empirical performance of KG based algorithms in bounded Gaussian
stochastic MAB problems. We compare ORKG algorithm against KG with inde-
pendent Gaussian belief algorithm (KG) [6] and KG for general class of online
learning problems algorithm (OKG) [13]. We also test ε-greedy algorithm with
constant ε(t) = 0.01 as a widely known benchmark algorithm frequently seen
in applications. The key differences of the algorithms are outlined in Table 1.
We use σε = 0.1 as the value of the common hyperparameter among the KG
algorithms for fair comparison.

Table 1. Comparison of algorithms used in Sect. 5.1

Decision rule Belief state Hyperparameters Regret bound

ε-greedy μ̄x
t w.p. 1 − ε μ̄x

t ε(t) N/A

KG νKG,x
t μ̄x

t , σ̄x
t σε N/A

OKG μ̄x
t + (T − t)νKG,x

t μ̄x
t , σ̄x

t σε, T N/A

ORKG μ̄x
t + ρtν

RKG,x
t μ̄x

t , σ̄x
t σε, δ, κR O

(√|X | T ln |X | T
)

We test the algorithms on the stochastic MAB benchmark problems with 5,
10, and 20 arms generating Gaussian rewards, whose mean parameter μx sam-
pled equally distanced in [−5, 5], with low variance scenario of σ2

x = 0.1 and
high variance scenario σ2

x = 1 for all actions x. For each algorithm, we sum up
observed regrets from t = 1, · · · , 10000, and report their mean and standard devi-
ations from 100 independent repeats in Table 2. ORKG shows expected behav-
ior of controlling the cumulative regret throughout all tested settings, whereas
other KG algorithms without sublinear regret bounds mostly show large regret.
OKG, even when provided with additional information on the true time horizon
T = 10000, achieves results comparable to ORKG only in 5 arms setting, not in
the harder settings with 10 and 20 arms. KG, intended to solve R&S problem,
shows worst performance in terms or regrets as expected. Note that ε-greedy,

Table 2. Cumulative Regrets in Gaussian Stochastic MAB. Lower is Better.

MAB setting Algorithms

Arms Variance ORKG OKG KG ε-greedy

5 High 215 ± 102 204 ± 96 33100 ± 256 8830 ± 8200

5 Low 17 ± 9 12 ± 12 33200 ± 235 6570 ± 8110

10 High 1060 ± 85 2580 ± 3210 39600 ± 355 14700 ± 11100

10 Low 40 ± 9 1020 ± 2840 40600 ± 241 17400 ± 11900

20 High 2210 ± 105 5950 ± 3900 39900 ± 774 19600 ± 10500

20 Low 96 ± 10 6210 ± 4690 44400 ± 264 21100 ± 14500
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a widely used algorithm in practice, shows extremely large standard deviation,
suggesting hit-or-miss performance in online learning.

5.2 Sensitivity Analysis of ORKG

ORKG introduces new hyperparameters δ and κR compared to other KG algo-
rithms as shown in Table 1. Since those hyperparameters play critical role in the
sublinear regret bound of ORKG, we analyze empirical sensitivity of ORKG to
δ and κR, one by one, tested on Gaussian MAB benchmarks. In the main paper,
we present results with 10 arms and high variance only, and full results are found
in appendix (Figs. B.4 and B.5).

First, we vary κR ∈ {0.0001, 0.001, 0.01, 0.1, 1} while fixing δ = 0.01, and
report the time evolution of cumulative regret against t, averaged over 100
repeats, as trajectories shown in Fig. 1.

Fig. 1. Sensitivity of ORKG to κR in Gaussian MAB (K = 10, σ2 = 1, δ = 0.01).

It is evident that ORKG shows robust regret controls regardless of wide
range of κR, and retains robust advantage over KG and OKG. Considering the
intuitive role of κR in ORKG to enforce the lower bound of KG and regularizes
the smoothness of the KG surface, the subtle sensitivity to κR is theoretically
expected, and can be interpreted as follows: changing κR can change the values
of the ORKG decision rule (4) transiently when exploration happens, visualized
as minor difference in early-stage trajectories (T < 103) of ORKGs with different
κR values in Fig. 1.



336 D. Lee and W. B. Powell

We recommend the default value of κR = 0.01, based on theoretical under-
standing of the value should be small enough to become the lower bound of
KG, as the intuitive meaning of KG is the expected improvement from a single
reward. Also, κR can be tuned with a priori information or at problem formu-
lation stage: if the gap between the largest mean and the smallest mean of the
rewards are known or can be enforced by clipping rewards, then κR can be set
to be at least sufficiently smaller than the gap.

Next, we vary δ ∈ {0.0001, 0.001, 0.01, 0.1, 0.9} while fixing κR = 0.01, and
report the time evolution of cumulative regret against t, averaged over 100
repeats, as the trajectories shown in Fig. 2.

Fig. 2. Sensitivity of ORKG to δ in Gaussian MAB (K = 10, σ2 = 1, κR = 0.01).

It is notable that δ affects the behavior of ORKG in mid-range 102 < T < 104

to vary, and in most cases, the impact appears to be transient as the regret is
controlled for δ ≤ 0.1 cases. Drastically different behavior of ORKG is observed
for δ = 0.9 case, and this is expected according to the role of δ in ORKG: the
probability δ of encountering a reward deviates more than the estimated mean
plus exploration bonus term scaled by ρt (as given in (4)). Intuitively, larger δ
makes ORKG more cautious before greedily exploiting, since δ is the probability
of a rare event of facing unexpected rewards after choosing the action according
to ORKG decision rule (4), and this is empirically shown by ORKG with δ = 0.9
case in Fig. 2. Therefore, it is reasonable to set δ in ORKG as a relatively small
value even if δ ∈ (0, 1) is theoretically allowed, as δ adjusts how much ORKG
should expect the rare events would happen. We recommend the default value
of δ = 0.01, as 1% appears to be a good reference point for encountering “rare”
events; if more frequent surprises are expected, larger δ is recommended.
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5.3 ORKG Performance Validation Against Other MAB Algorithms

We validate empirical performance of ORKG against other MAB algorithms with
provable regret bounds, on stochastic Gaussian MAB benchmark problems set
up the same way as described in Sect. 5.1. Both classic algorithms and cutting-
edge algorithms for MAB are compared against ORKG in this validation, with
abbreviated names as follow: UCB [11], kl-UCB [7], EXP3++ [16], TS [18], and
BG [2]. Detailed rationale of choosing these algorithms are given in appendix
Sect. B.1. For each algorithm, we sum up observed regrets from t = 1, · · · , 10000,
and report their mean and standard deviations from 100 independent repeats in
Table 3.

Table 3. Cumulative regrets in Gaussian stochastic MAB. Lower is better.

MAB Setting Algorithms

Arms Variance ORKG UCB kl-UCB TS (G) EXP3++ BG

5 High 215 ± 102 247 ± 90 573 ± 2320 246 ± 94 1090 ± 113 235 ± 105

5 Low 17 ± 9 30 ± 10 15 ± 10 41 ± 37 919 ± 67 36 ± 12

10 High 1060 ± 85 1060 ± 88 1920 ± 2590 1420 ± 698 2920 ± 198 1070 ± 99

10 Low 40 ± 9 75 ± 11 41 ± 10 644 ± 1240 1920 ± 138 85 ± 12

20 High 2210 ± 105 2260 ± 68 3240 ± 1930 4590 ± 2210 5480 ± 212 2240 ± 72

20 Low 96 ± 10 182 ± 9 91 ± 10 3010 ± 2490 3470 ± 226 181 ± 12

As shown by boldfaced results across all scenarios, ORKG reliably performs
well in all tested Gaussian MAB benchmark scenarios, with the cumulative regret
of ORKG is on par with the top-performing algorithm within each scenario;
whereas other algorithms show some scenario preferences in which they perform
well. Both UCB, a classic algorithm, and Boltzmann-Gumbel (BG), a cutting
edge algorithm are the runner-ups, closely followed by kl-UCB, an improved
UCB with tighter bound that shows scenario preference different from UCB.
We conjecture that the unexpectedly poor performance of EXP3++ may be
an unwanted artifact of general-purposing EXP3 algorithm that is originally
designed for adversarial MAB problems to have sublinear regrets for stochastic
MAB problems as well. Thompson sampling (TS) also show unexpectedly poor
performance in many-arms scenario, and we think that 10000 samples, although
they are sufficiently many for 5 arms case, are not sufficient enough for 10 and 20
arms case, as there are more Bayesian estimates for TS to learn as the number of
arms grow. All algorithms tested have regret bounds for Gaussian MAB problems
tighter than the bound of ORKG we present in Theorem 1, and this empirical
validation suggests existence of tighter regret bounds for ORKG.
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6 Discussion

The simple regularization method for KG used in ORKG algorithm allows the
first KG-based algorithm with sublinear regret bounds, yet this approach may
be too simple to tighten regret bounds of ORKG on par with other stochas-
tic MAB algorithms. Despite the theoretical gap in regret bounds, we witness
impressive empirical performance of ORKG in MAB benchmarks with correct
model specification. Notably, the empirical validations is performed with rela-
tively few samples from MAB perspective, which suggests ORKG can perform
well in real world applications where the number of samples are limited. Also,
ORKG gives new insight to a long-standing question in KG literature on how to
trade off exploration-exploitation correctly in online learning, and at the same
time, ORKG allows interdisciplinary discussion between KG and MAB litera-
ture by providing the first regret bound result of KG-based algorithm in MAB
problems.

7 Conclusion

We present a simple and effective method to regularize knowledge gradient (KG)
that allows novel asymptotic regret analysis of KG-based algorithms with inde-
pendent Gaussian belief model. Using regularized knowledge gradients, we con-
struct ORKG, a KG-based online learning algorithm, and present its sublinear
regret bound in partial information Gaussian MAB problem. We provide empir-
ical validation of ORKG, and verify that ORKG algorithm performs comparable
to select MAB algorithms with tighter regret bounds in Gaussian MAB bench-
marks. Our result opens up an interesting stage for further research in KG from
the perspective of MAB literature.
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Abstract. Coherence is an important aspect of text quality and is crucial for
ensuring its readability. It is essential for outputs from text generation systems
like summarization, question answering, machine translation, question genera-
tion, table-to-text, etc. An automated coherence scoring model is also helpful in
essay scoring or providing writing feedback. A large body of previous work has
leveraged entity-based methods, syntactic patterns, discourse relations, and tradi-
tional deep learning architectures for text coherence assessment. However, these
approaches do not consider factual information present in the documents. The
transitions of facts associated with entities across sentences could help capture
the essence of textual coherence better. We hypothesize that coherence assess-
ment is a cognitively complex task that requires deeper fact-aware models and can
benefit from other related tasks. In this work, we propose a novel deep learning
model that fuses document-level information with factual information to improve
coherence modeling. We further enhance the model efficacy by training it simul-
taneously with Natural Language Inference task in multi-task learning setting,
taking advantage of inductive transfer between the two tasks. Our experiments
with popular benchmark datasets across multiple domains demonstrate that the
proposed model achieves state-of-the-art results on a synthetic coherence eval-
uation task and two real-world tasks involving prediction of varying degrees of
coherence.

1 Introduction

Coherence is a crucial metric for text quality analysis. It assimilates how well the sen-
tences are connected and how well the document is organized. Coherent documents
have clear topic transitions that are discussed throughout the text with a smooth flow
of concepts, typically in an increasing order of complexity. Ideas are first introduced in
preceding sentences and are referred to later in document. Connectives are often used to
assist the structure and for smooth transitions within the document. Overall, coherence
leads to better clarity.

M. Gupta—The author is also a Principal Applied Scientist at Microsoft.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13281, pp. 340–353, 2022.
https://doi.org/10.1007/978-3-031-05936-0_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05936-0_27&domain=pdf
https://doi.org/10.1007/978-3-031-05936-0_27


Fact Aware Multi-task Learning for Text Coherence Modeling 341

Coherence is vital for multiple Natural Language Processing (NLP) applications
like summarization [3,44], question answering [51], machine translation [38,55], ques-
tion generation [10], language assessment for essay scoring [8,16,46], story genera-
tion [34], readability assessment [41,45] and other text generation [22,26,43].

Many formal theories of coherence [2,19,33] have been proposed leading to further
development of various coherence models. Based on such theories, multiple text coher-
ence models like entity-grid [4] and its extensions have been proposed. Other linguistic
approaches for text coherence include coreference resolution, discourse relations, lex-
ical cohesion, and syntactic features. However, feature engineering is decoupled from
the prediction task thus limiting model performance. Recently, various models have
been proposed which leverage deep learning architectures like convolutional neural net-
works (CNNs), recurrent neural networks (RNNs), long short-term memory networks
(LSTMs). Transformer [50] based approaches [23–25] have also been proposed that
achieve better results on coherence modeling and its downstream tasks.

However, these approaches do not consider the factual information present in the
document. Recent work has demonstrated usefulness of fact triples 〈subject, verb,
object〉 for improving result on various NLP tasks, such as summarization [20], Ques-
tion Answering (QA) [47], Natural Language Inference (NLI) [1] and language model-
ing [53]. In this work, we propose a novel architecture that fuses document-level infor-
mation with factual information to improve coherence modeling. Further, we enhance
the accuracy of coherence prediction by jointly modeling coherence and Natural Lan-
guage Inference (NLI) in a multi-task learning (MTL) setting.

Overall, in this paper, we make the following main contributions. (1) We investi-
gate the effectiveness of novel fact-aware MTL architecture. (2) We assess the extent
to which the information encoded in the network generalizes to multiple domains and
demonstrate the effectiveness of our approach not only on popular sentence order dis-
crimination task but also on more realistic task like predicting coherence of varying
degrees in people’s everyday writings. (3) Experiments on popular benchmark datasets
(GCDC and WSJ) indicate that our proposed methods establish SOTA across multi-
ple (task, dataset) combinations. (4) On an automated essay scoring (AES) task, we
demonstrate that addition of coherence signal from our model significantly improves
AES accuracy.

2 Related Work

Entity-Grid Based Methods: Discourse coherence has been studied widely using both
deep learning as well as non-deep learning models. Barzilay et al. [4] proposed the
entity grid model, which is based on Centering Theory [19]. It captures the distri-
bution of discourse entities and transition of grammatical roles (subject, object, nei-
ther) across the sentences. Several extensions were proposed by utilising entity specific
features [13], modifying ranking scheme [17] or transforming problem into bipartite
graph [35]. The entity grid method as well as extensions suffer from two main draw-
backs: (1) they use discrete representation for grammatical roles and features, which
prevents the model from considering sufficiently long transitions due to the curse of
dimensionality problem. (2) Feature engineering is decoupled from the prediction task,
which limits the model’s capacity to learn task-specific features.
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Other Feature Engineering Methods: Besides entity grid, other linguistic approaches
for text coherence include coreference resolution, discourse relations, lexical cohe-
sion, and syntactic features. Elsner et al. [13] proposed a maximum-entropy based
discourse-new classifier that classifies mentions of all referring expression as first men-
tion (discourse-new) or subsequent (discourse-old) mentions. Louis et al. [32] proposed
a coherence model based on syntactic patterns by assuming that sentences in a coher-
ent discourse should share the same structural syntactic patterns. Other approaches
have used syntactic patterns [32], lexical cohesion [40,46] or capture topic shifts via
HMMs [5].

Deep Learning Methods: Recently, multiple deep learning approaches have been pro-
posed. Li et al. [29] propose a neural framework to compute the coherence score of
a document by estimating a coherence probability for each clique of L sentences. Li
et al. [30] propose generative methods to capture global topic information. Nguyen et
al. [42] and Mohiuddin et al. [37] transform entity-grid based methods into deep learn-
ing versions that obtain better results than traditional counterparts. Farag et al. [15]
propose a hierarchical attention model with multi-task learning objective. Xu et al. [56]
and Moon et al. [39] show that modeling local coherence with discriminative models
could capture both the local and the global contexts of coherence. Guz et al. [21] pro-
pose an RST-Recursive model, which takes advantage of the text’s RST features. Farag
et al. [14] extend some of the previous discriminative models using BERT (Bidirec-
tional Encoder Representations from Transformers) [11] embeddings. Recently, Trans-
former [50] based approaches [23–25] have been proposed that achieve better results.
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Fig. 1. An overview of our proposed fact-aware multi-task learning architecture. M distinct facts
extracted from the document are fed to Fact Encoder individually to get permutation invariant
representation. Fact-aware document encoder combines the document representation with M
factual representation to obtain the fact-aware document representation.
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3 Proposed Model

Given a document D, our goal is to assess its coherence according to the downstream
task (binary classification, multi-class classification or regression task). Figure 1 pro-
vides an overview of our novel fact-aware multi-task learning model. It consist of three
components: (i) Fact extractor to extract facts from textual content, (ii) Fact-aware doc-
ument encoder that fuses the textual information with factual information, and (iii)
Multi-task learning (MTL) framework that add auxiliary objective of textual entail-
ment prediction to coherence objective. We discuss these components in detail in the
following.

3.1 Fact Extractor

We leverage MinIE, an Open Information Extraction (IE) system [18] to generate a
set of facts for each sentence. Open IE systems aim to exploit linguistic information
including dependency relations in sentences to extract facts in a knowledge-agnostic
manner. A fact is essentially an ordered 3-tuple 〈subject, verb, object〉 extracted from a
particular sentence. A single sentence can produce multiple facts. Consider the sentence
“They are trying to determine whether it was used to attack Steenkamp, if she used the
bat in self-defense.” Two facts that can be extracted from this sentence are (“it”, “was
used to attack”, “Steenkamp”) and (“she”, “used bat in”, “self-defense”). Each of the
three components of a fact triple can contain multiple words.

For a given document D we pass the textual content through fact extractor (MinIE)
to extract in-domain facts. Let M be the number of distinct facts obtained from the
document D using MinIE.

3.2 Fact-Aware Document Encoder

This module follows a hierarchical structure with the following two encoders at the bot-
tom level: (i) document encoder, and (ii) fact encoder. Each encoder uses a transformer
model. Document encoder and fact encoder share weights. For ith fact triple obtained
from fact extractor for given document D, we create linear fact string by concatenating
the subject, predicate and object delimited by separator token (SEP). The linear fact
string is then fed to fact encoder FEi individually to produce permutation invariant
fact representation fi. The document encoder encodes the document expressed using
standard sub-word tokens to obtain document-level representation T . These fact and
the document representations, T and fi respectively, form the input for the fact-aware
document encoder. Finally, we obtain fact-aware document representation as the CLS
token vector from the last layer of the fact-aware document encoder. This is then fed to
a fully-connected layer with ReLU, and then to a task specific output layer.

3.3 MTL Framework

When multiple related prediction tasks need to be performed, multi-task learning
(MTL) has been found to be very effective. We experimented with various Natural
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Language Understanding (NLU) tasks as auxiliary task and empirically found MTL
combination of textual entailment and text coherence task provides better generaliza-
tion and robustness. For a given a pair of sentences, the textual entailment task aims to
predict whether the second sentence (hypothesis) is an entailment with respect to the
first one (premise) or not. We share the fact-aware document encoder weights across the
two tasks. Task specific layers for each task are conditioned on the shared fact-aware
document encoder. For the sentence entailment task, we form input by concatenating the
hypothesis and premise with sentence separator token SEP placed between them. For
both the tasks (coherence and entailment), we use a fully-connected layer with ReLU,
and then a softmax output layer. The final loss is computed as a sum of the individual
losses for the two tasks. In the multi-task learning, we use mini-batch based stochastic
gradient descent (SGD) to learn the parameters of our model (i.e., the parameters of all
shared layers and task-specific layers) as shown in Algorithm 1.

Algorithm 1: Training a fact-aware MTL model
Model trainable parameters : θ (initialized to pretrained weights)
Set the max number of epochs: epochmax.
for epoch in 1, 2, . . . , epochmax do

Merge coherence and entailment dataset: Dglobal = Dcoh ∪ Dentail

Shuffle Dglobal

for batch in Dglobal do
Initialize losses: Lcoh = 0, Lentail = 0
if batchcoh ∈ batch then

Lcoh = Compute text coherence loss on batchcoh

if batchentail ∈ batch then
Lentail = Compute text entailment loss on batchentail

Combine loss: Ltotal = Lcoh + Lentail.
Update the gradients and θ

4 Evaluation Tasks and Datasets

We experiment with two popular benchmark datasets: Wall Street Journal (WSJ)
and Grammarly Corpus of Discourse Coherence (GCDC). GCDC is a real dataset
while WSJ is a synthetic dataset. We use the Recognizing Textual Entailment (RTE)
dataset [52] for training the auxiliary task head for our MTL model (2490 train and 277
validation instances) for experiments on GCDC. For WSJ, we found MTL to perform
better when we use the Multi-Genre Natural Language Inference (MNLI) dataset [54]
(21560 train and 6692 validation instances) for training the auxiliary task. We also eval-
uated the efficiency of proposed architecture on one downstream task: Automated Essay
Scoring (AES). For AES task we use Automated Student Assessment Prize (ASAP)
dataset. We make the code and dataset publicly available1.

WSJ Sentence Order Discrimination Task. The WSJ portion of the Penn Tree-
bank [13,42] is one of the most popular datasets for the sentence order discrimina-
tion task. It contains long articles without any constraint on style. Following previous

1 https://www.dropbox.com/s/wolrmesgr4k1lf8/fact-aware-mtl-text-coh.zip.

https://www.dropbox.com/s/wolrmesgr4k1lf8/fact-aware-mtl-text-coh.zip


Fact Aware Multi-task Learning for Text Coherence Modeling 345

work [4,42], we also use the sections 00–13 for training and 14–24 for testing (doc-
uments consisting of only one sentence are removed). We create 20 permutations per
document, making sure to exclude duplicates or versions that happen to have the same
ordering of sentences as the original article. We labeled these permuted documents as
negative samples. The dataset is created by pairing the original document and the per-
muted document. The task is to rank the original document higher than the permuted
one in terms of coherence. We present the basic statistics of the dataset in Table 1.

We evaluate model performance on this dataset using pairwise ranking accuracy
(PRA) between original text and its 20 permuted counterparts, similar to previous work.
PRA calculates the fraction of correct pairwise rankings in the test data (i.e., the original
coherent text should be ranked higher than its permuted non-coherent counterpart).

For this task, the coherent and incoherent document representations are obtained
by using proposed fact-aware document encoder using the architecture shown in Fig. 1.
Further, on top of these representations, we apply Siamese network [7] as illustrated in
Fig. 2. The document encoder for the coherent as well as the incoherent document, share
weights. Both the document representations are separately connected to a dense layer
with shared weights. Outputs of the dense layers are used to calculate margin ranking
loss.

Table 1. Basic statistics of the WSJ dataset.
#Docs represents the number of original arti-
cles and #Synthetic Docs represents the num-
ber of original articles and their permuted ver-
sions.

#Docs #Syn. Docs Avg #Sents Avg #Words

Train 1376 29720 21.0 529.8

Test 1090 21800 21.9 564.3

Coherent 
Document

Incoherent 
Document

Document 
Encoder

Document 
Encoder

Dense

Dense

Margin 
Ranking 

Loss (MRL)

Fig. 2. Overview of Siamese neural approach
applied for sentence order discrimination task.
Document encoder weights are shared. Dense
layer weights are also shared.

GCDC 3-Way Classification. The GCDC dataset contains emails and reviews written
with varying degrees of proficiency and care [28]. The WSJ dataset contains docu-
ments that have been professionally written and extensively edited. In contrast to WSJ,
the GCDC dataset contains writing from non-professional writers in everyday contexts.
Rather than using permuted or machine generated texts as examples of low coherence,
GCDC has real sentences in which people try but fail to write coherently. GCDC is a
corpus that contains texts from four domains, covering a range of coherence, each anno-
tated with a document-level coherence score. Specifically, the dataset contains texts
from four domains: Yahoo online forum posts, emails from Hillary Clinton’s office,
emails from Enron and Yelp business reviews. We present the basic statistics of the
dataset in Table 2.

Given a document, the task is to classify it into one of the three different labels (high,
medium and low) which denotes the textual coherence level of the given document.
For each of these domains, a fixed split of 1000 and 200 was used for train and test
respectively as specified in [28]. Of the 1000 documents, we use 200 documents for
validation and remaining 800 for training. For our experiments, we use the consensus
rating of the expert scores as calculated by [28], and train our models for all the four
domains. To evaluate model performance, we use 3-way classification accuracy.
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Table 2. Basic statistics of the GCDC dataset.
For each of these domains, a fixed split of
1000 and 200 was used for train and test
respectively as specified in [28]

#Docs Avg #Words Avg #Sents Low, medium,
high instances
(%)

Yahoo 1200 162.1 7.5 46.6,17.4,37.0

Clinton 1200 189.0 6.6 28.2,20.6,51.2

Enron 1200 196.2 7.7 29.9,19.4,50.7

Yelp 1200 183.1 7.5 27.1,21.8,51.1

Table 3. Statistics of ASAP dataset.

Prompt #Essays Genre #Avg
length

Range of
scores

1 1783 Argumentative 350 2–12

2 1800 Argumentative 350 2–12

3 1726 Response 150 0–3

4 1772 Response 150 0–3

5 1805 Response 150 0–4

6 1800 Response 150 0–4

7 1569 Narrative 250 0–30

8 723 Narrative 650 0–60

ASAP Automated Essay Scoring. Automated Student Assessment Prize (ASAP)
dataset is taken from the Kaggle competition2 which was organized and sponsored by
the William and Flora Hewlett Foundation and ran on Kaggle from 10-Feb-12 to 30-
Apr-12. The essays are associated with scores given by humans and categorized in eight
prompts. Table 3 summarizes some properties of this dataset. The task is to assign an
automatic score for a given essay, aiming to replicate human scoring results. Essays
are segregated into different prompts based on essay topic and genre. We normalize
all score range to within [0, 1]. The scores are re-scaled back to the original prompt-
specific scale for calculating Quadratic Weighted Kappa (QWK) scores. The reader can
refer [48] to get more details on QWK. We conduct the evaluation in prompt-specific
fashion as done in [48].

For this task, we follow previous studies [36,57]. First, we obtain the essay’s feature
vector v1 by training a Longformer model for AES task, and take CLS token represen-
tation from the last layer. Next, without any AES-task-specific finetuning, we obtain a
coherence vector v2 produced by our model finetuned on WSJ task. The concatenation
of v1 and v2 is now “coherence augmented representation” of the essay. This represen-
tation is passed to a linear layer with sigmoid activation for final essay scoring. We hope
that augmentation by v2 obtained from our model will improve AES scoring accuracy.

5 Experiments

5.1 Baselines

For WSJ and GCDC Related Tasks. We perform extensive comparisons with the
following baselines. While Flesch-Kincaid grade level (FKGL) [27] is a readabil-
ity measure, previous work has treated readability and text coherence as overlapping
tasks [4,35]. For coherence classification, Mesgar et al. [35] search over the grade level
scores on the training data and select thresholds that result in the highest accuracy.
Entity grid (EGRID) [4] builds an entity grid which is a matrix that tracks entity men-
tions over sentences. Random forest classifier is trained over features extracted from
entity grid. CNN-Egrid [42] is a local coherence model that employs a CNN that oper-
ates over the entity grid representation. LCNN-Egrid [37] extends CNN-Egrid with lex-
ical information about the entities. In Local Coherence Model (LC) [29], sentences are

2 https://www.kaggle.com/c/asap-aes/.

https://www.kaggle.com/c/asap-aes/
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encoded with a recurrent or recursive layer and a filter of weights is applied over each
window of sentence vectors to extract scores that are aggregated to calculate overall
document coherence score. Paragraph sequence (PARSEQ) [28] contains three stacked
LSTMs to represent sentence, paragraph and document. Hierachical LSTM [15] is very
similar to PARSEQ, but with attention and uses BiLSTMs. Coh+GR [15] extends Hier-
achical LSTM by training it to predict word-level labels indicating the predicted gram-
matical role (GR) type at the bottom layers of the network, along with the document-
level coherence score. Coh+SOX [15] is same as Coh+GR where, for each word, we
only predict subject (S), object (O) and ‘other’ (X) roles. Seq2Seq [30] consists of
two LSTM generative language models and uses the difference between conditional
log likelihood of a sentence given its preceding/succeeding context, and the marginal
log likelihood of the current/next sentence to assess coherence. Local Coherence Dis-
criminator (LCD-L) [56] uses max-pooling on the hidden state of the language model
to get the sentence representation. A representation for two consecutive sentences is
then computed by concatenating the output of a set of linear transformations applied
to the two sentences. This is fed to a dense layer and used to predict a local coherence
score. Coh+GR_BERT [14] is similar to Coh+GR, except that BERT embeddings are
used instead of GloVe embeddings as input to BiLSTMs. LCD_BERT [14] is similar
to LCD-L but uses averaged BERT (instead of GloVe) embeddings as the sentence rep-
resentations. We also included LCD_RoBERTa which similar to LCD_BERT but uses
RoBERTa embeddings instead of BERT. Unified [39] uses a combination of LSTMs
and CNNs. Inc-lex-Coh [24] extracts sentence representations using a pretrained lan-
guage model and combines the semantic centroid vector with semantic similarity vec-
tor to obtain coherence output. They also created another variant Avg-XLNET-Doc that
encodes an text content at the document level and averages the encoded representa-
tions. We created RoBERTa variant of this model Avg-RoBERTa-Doc where we used
RoBERTa embedding instead of XLNET.

For AES/ASAP Task. We perform extensive comparisons with the following base-
lines. EASE is publicly available, open-source3 software which ranked third amongst
154 participants in the ASAP competition. It uses manual feature engineering with
Support Vector Regression (SVR) and Bayesian Linear Ridge Regression (BLRR).
EASE+cohLSTM [36] combines the feature vector computed by EASE, and the coher-
ence vector produced by LSTM-based coherence model to obtain a more reliable repre-
sentation of an essay. Constraint MTL [9] uses a constrained multi-task pairwise prefer-
ence learning approach that enables the data from multiple tasks to be combined effec-
tively. Attention based RCNN [12] uses hierarchical sentence-document model to rep-
resent essays, using the attention mechanism to learn the relative importance of words
and sentences. SkipFlow [49] models coherence using the similarity between multiple
states of an LSTM over time with a bounded window.

5.2 Experimental Settings and Reproducibility Information

All experiments were run on a machine equipped with four 32GB V100 GPUs. For
all our models, we use 12-layer models, and embedding layer was frozen except for

3 https://github.com/edx/ease.

https://github.com/edx/ease
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Table 4. Sentence order dis-
crimination task Pairwise Ranking
Accuracy (PRA) results on WSJ

Model PRA

Baselines LC 74.10

PARSEQ 74.10

Seq2Seq 86.95

CNN-Egrid 88.69

Unified (ELMo) 93.19

Coh+GR 93.20

LCD-L 95.49

Coh+GR_BERT 96.10

LCD_RoBERTa 96.45

LCD_BERT 97.10

Ours Vanilla Transformer 97.34

Fact-aware Transformer 97.81

Fact-aware MTL Trans 98.22

Table 5. 3-way classification accuracy results on GCDC.

Models Yahoo Clinton Enron Yelp Average

Baselines EGRID+coref 41.5 48.0 47.0 49.0 46.4

EGRAPH+coref 42.5 55.0 44.0 54.0 48.9

LCNN-Egrid+coref 51.0 56.6 44.7 54.0 51.6

FKGL 43.5 56.0 52.5 55.0 51.8

Coh+SOX 50.5 58.5 51.0 – 53.3

Hierachical LSTM 55.0 59.0 50.5 – 54.8

PARSEQ 54.9 60.2 53.2 54.4 55.7

LC 53.5 61.0 54.4 – 56.3

PARSEQ (A) 58.5 61.0 53.9 56.5 57.5

Coh+GR 56.0 62.0 56.0 – 58.0

Inc-lex-Coh 57.3 61.7 54.5 59.0 58.1

Avg-RoBERTa-Doc 60.0 65.3 55.0 58.8 59.8

Avg-XLNet-Doc 60.5 65.9 56.9 59.0 60.6

Ours Vanilla Trans. 58.1 63.9 55.3 57.6 58.7

Fact-aware Trans. 59.2 67.2 56.3 58.5 60.3

Fact-aware MTL Trans. 60.7 67.4 56.4 59.0 60.8

Table 6. Experimental results on ASAP dataset of our approach versus the baseline methods.
Results are reported in terms of the quadratic weighted kappa (QWK) measure, using 5-fold
cross-validation. Best QWK for each prompt is highlighted in bold.

Models Prompts

1 2 3 4 5 6 7 8 Average

Baselines CohLSTM 0.669 0.634 0.591 0.710 0.639 0.716 0.729 0.641 0.666

EASE (SVR) 0.781 0.630 0.621 0.749 0.782 0.771 0.727 0.534 0.699

EASE (BLRR) 0.761 0.606 0.621 0.742 0.784 0.775 0.730 0.617 0.705

EASE+CohLSTM 0.784 0.654 0.663 0.788 0.793 0.794 0.756 0.646 0.735

Constraint MTL 0.816 0.667 0.654 0.783 0.801 0.778 0.787 0.692 0.747

Attention based RCNN 0.822 0.682 0.672 0.814 0.803 0.811 0.801 0.705 0.764

SkipFlow 0.832 0.684 0.695 0.788 0.815 0.810 0.800 0.697 0.765

Ours Longformer 0.824 0.660 0.693 0.820 0.795 0.810 0.817 0.701 0.765

Longformer+Fact aware MTL Trans. 0.822 0.674 0.696 0.821 0.798 0.812 0.822 0.699 0.768

the sentence order discrimination task on WSJ. For fact-aware document encoder, we
used pretrained model for the fact encoders and document encoder, and a randomly
initialized RoBERTa for fact-aware document encoder. For all experiments we cap the
maximum number of facts to 100.

For all experiments, we run 10 epochs except ASAP where we use 5-fold cross
validation, weight decay of 0.01 and use a dropout of 0.1. We use Adam optimizer for
experiments on GCDC, and use AdamW for WSJ and ASAP experiments. For all the
baseline models, we report results from their original papers. For all of our models,
the reported results on WSJ and GCDC dataset, are the mean of 10 runs with different
random seeds. Margin for the margin ranking loss is set to 1. For MTL framework, cat-
egorical cross entropy loss was used for the auxiliary task. We use Longformer based
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models for WSJ and ASAP dataset to handle the long input documents. For Long-
former, we fixed max sequence length to 2048. For RoBERTa, we fixed it to 512. We
use learning rate of 2e−5 for all experiments. We use batch size of 2 for all the models
on all the tasks.

For model proposed for Automated Essay Scoring (ASAP), we use 5-fold cross
validation to evaluate all systems with a 60/20/20 split for train, dev and test sets. We
use the splits provided by [48] and closely follow the same experimental procedure. We
train our models on ASAP using mean square error (MSE) for 10 epochs and select the
best model based on the performance on the validation set.

5.3 Results

Tables 4 and 5 show the results for the two text coherence tasks for WSJ and GCDC
datasets respectively. Broadly we observe that our proposed approach significantly out-
performs baselines, establishing a new SOTA across all tasks. Across all tasks, the
results using our method are statistically significantly better compared to the best base-
line with p ≤ 10−3 at 95% confidence.

Sentence Order Discrimination Results: Table 4 shows results for the sentence order
discrimination task for WSJ dataset. We make the following observations: (1) Fact
aware transformer outperforms vanilla transformer model as it can incorporate the fac-
tual information flow (subject in discourse) in addition to textual information which
helps it to correctly determine the coherent sentences. (2) fact-aware MTL model out-
performs other variants as the auxiliary task helps in better generalization over test set.

3-Way Classification Results: Table 5 shows 3-way classification results on GCDC.
Wemake the following observations: (1) The Fact-aware model performs better than the
vanilla model across all the domains, demonstrating that transitions of facts associated
with entities across sentences benefit the model in capturing textual coherence signals.
(2) Out of the three gold coherence labels (low, medium, high) all the models have
difficulty in correctly classifying documents of medium level coherence, which can be
attributed to the smaller number of training examples for that particular class.

AES Results: From Table 6 we observe that Vanilla Longformer finetuned on ASAP
dataset performs better than or comparable to previous baseline approaches. Among
our models, the “coherence augmented representation” from Fact aware MTL obtains
the best result. To understand this a little better we computed the correlation between
the coherence score predicted by the Fact aware MTL Transformer and the essay scores
in ASAP dataset. We found it to be 0.48 and 0.53 for Longformer and Longformer with
fact aware MTL respectively, thereby explaining why our model outperforms vanilla
Longformer model.

Qualitative Analysis: We also explore our model qualitatively, examining the coher-
ence scores assigned to some artificial miniature discourses that exhibit various kinds
of coherence. The score varies from 0 to 3 and higher score denotes higher level of
textual coherence. (1) Case 1: Lexical Coherence. The examples in Table 7 (type = LC)
suggest that the models handle lexical coherence, correctly favoring the first over the
second, and the third over the fourth and fifth examples (for all our models except the
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Table 7. Qualitative analysis: Lexical Coherence (LC), Temporal Order (TO), Center-
ing/Referential Coherence (CRC) examples. Ours = Fact-aware MTL.

Type S. No Text Vanilla Ours

LC 1 Pinochet was arrested. His arrest was unexpected 1.81 2.76

2 Pinochet was arrested. His death was unexpected 1.67 1.56

3 Mary ate some apples. She likes apples 1.45 2.30

4 Mary ate some apples. She likes pears 1.47 1.45

5 Mary ate some apples. She likes Paris 1.36 1.27

TO 1 Washington was unanimously elected president in the first two national
elections. He oversaw the creation of a strong, well financed national
government

1.93 2.79

2 Washington oversaw the creation of a strong, well-financed national
government. He was unanimously elected president in the first two
national elections

1.88 2.36

CRC 1 Mary ate some apples. She likes apples 1.45 2.52

2 She ate some apples. Mary likes apples 1.31 2.49

3 John went to his favorite music store to buy a piano. He had frequented
the store for many years. He was excited that he could finally buy a
piano. He arrived just as the store was closing for the day

2.38 2.86

4 John went to his favorite music store to buy a piano. It was a store John
had frequented for many years. He was excited that he could finally
buy a piano. It was closing just as John arrived

2.45 2.67

fact-aware one). (2) Case 2: Temporal Order. We show an example of temporal order
in Table 7 (type = TO). (3) Case 3: Centering/Referential Coherence. We show a few
examples of Centering/Referential Coherence in Table 7 (type = CRC). We observe that
our model provides intuitive results while the Vanilla Transformer does not. This sug-
gests that straight-forward adaptation of Transformer models for coherence assessment
may not be the best approach.

6 Conclusion

In this paper, we proposed a fact-aware MTL model for text coherence assessment. The
proposed model incorporates factual information with document-level information to
capture transitions of facts associated with entities across sentences. We observe that
our Fact aware approaches outperform existing models on synthetic data (WSJ) as well
as real-world data (GCDC). Our work also demonstrates that inductive transfer between
tasks: textual coherence assessment and textual entailment, provides better generaliza-
tion and robustness. Coherence vector obtained from our proposed coherence models
also improves the effectiveness of simple models on the automated essay scoring down-
stream task. In the future, we plan to extend this work to evaluate the text coherence in
an open domain setting.
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Abstract. Traditional classification problems often assume that the
number of classes present in the data is finite. This may hold true for
the training data, but in real life, the risk of encountering unknown sam-
ples is ubiquitous. Classifying these unknown samples into one of the
target classes can have drastic effects in some situations like security
systems or body sensors. To address this problem, recently, open set
recognition models that can correctly classify the known samples and
detect the unknowns simultaneously, are proposed. In contrast to the
existing models where unknown detection depends on the classification
model, we propose, to the best of our knowledge, an open set recognition
model for time series classification that works independent of the classi-
fier by employing class-specific barycenters. Specifically, DTW distance,
and the cross-correlation between the class-specific barycenters, and the
input are used for detecting the unknown classes during testing. Our
extensive experimental evaluation on the UEA multivariate time series
archive with 30 datasets shows that the proposed open set recognition
architecture deployed on top of the InceptionTime outperforms the state-
of-the-art open set recognition models by an average of 22% in terms of
macro F1 score.

Keywords: Open set recognition · Time series classification · Machine
learning

1 Introduction

The success of machine learning based solutions for various classification prob-
lems is undeniable. Most of the time, the number of target classes is assumed
to be finite, and solutions for these problems are derived in such a way. How-
ever, in real-life applications, there is always a risk of encountering samples from
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unknown classes that are not seen during the training. This will, inevitably, lead
to a situation where the classifier will classify those unknown samples as one of
the target classes, which is of course wrong (e.g. Fig. 1b). Such wrong predictions
can have drastic effects in certain situations, e.g. security systems, body sensors,
machinery maintenance. To address this problem, open set recognition (OSR)
models that can correctly classify the known samples and detect the unknowns at
the same time are proposed in the past decade, starting with [15]. Even though
OSR has received a lot of attention in recent years, the majority of the studies
in this field focuses on computer vision problems, and best of our knowledge,
there is no other work for open set recognition that focuses on the time series
classification (TSC) task.

(a) (b) (c)

Fig. 1. Comparison between traditional classification (Fig. 1b) and open set recognition
(Fig. 1c). Figure 1a shows the distribution of the original dataset.

This study focuses on proposing a methodology for achieving a solution for
the open set recognition problem regarding the TSC tasks, that is generally
applicable to multiple datasets and that can ideally work with different clas-
sifiers. The proposed method uses class-specific time series barycenters, i.e. the
centroids representing a cluster of time series, for unknown detection. The DTW
distance and the cross-correlation between a class-specific barycenter and an
input determine whether the input belongs to the given class or not. As for the
classifier, the proposed method benefits the state-of-the-art time series classi-
fication model InceptionTime [7]. Thus, the proposed method is referred to as
Open Set InceptionTime (OS-InceptionTime or OS-IT). As the unknown detec-
tion methodology is independent of the classifier, it can be used alongside any
other time series classification algorithm.

The scientific contribution of this study thesis is threefold:

– The first-ever open set recognition method that is specifically designed for
time series is introduced. This answers the research question: How can the
open set problem be solved for the time series classification tasks?

– It is shown that artificially created unknown samples can simulate the actual
unknowns to some extent, eliminating the need for handpicking and thus,
fully automating the training process. This answers the research question:
Can the training procedure be fully automated for the proposed method?
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– The proposed model is evaluated on 30 datasets to demonstrate that it is
a generally applicable solution for open set problems regarding the various
type of TSC datasets and can be used with any classifier. This answers the
research question: Is the proposed method generic enough to be applied for
different types of TSC datasets?

2 Background and Problem Definition

Let fc be a traditional closed set classifier that takes a time series sequence x
with L number of time steps and M number of dimensions (also referred as
channels or variables) and assigns this input x a label y, deciding among the K
number of known classes, i.e. fc : RL×M → {1, ...,K}. An open set model fo,
on the other hand, has an extra possible class K + 1 to assign for the unknown
samples, fo : RL×M → {1, ...,K,K + 1}. The data that are seen during training
that belong to the one of the known classes are referred to as the known samples
and they are denoted with Dk. A subset of Dk is used for training.

In most of the open set approaches, some sort of data that can represent
the unknowns are either needed to train the model, or more commonly, to
optimize the unknown detection thresholds after the training. These types of
unknown samples that are used during the training will be referred to as the
known unknowns. They are denoted with Da, having a vector of K+1 values as
their labels. The last type of samples is the unknowns that are not a part of the
training. They are referred to as the unknown unknowns. They may or may not
appear during the testing in real-life applications. They are denoted with Du.
Since all the samples that do not belong to the Dk are treated as unknowns,
Da can be considered as a subset of the Du as well. In short, an ideal open set
classifier f for an input x should predict the correct class label k for known
samples, and K + 1 for the unknowns as follows:

f(x) = ŷ =

{
k for x ∈ Dk, k ∈ {1, ...,K}
K + 1 for x ∈ Du

(1)

3 Related Work

Barycenters. There are multiple ways to compute barycenters. The first one,
Euclidean, is simply the arithmetic mean of each point in time. It is much faster
to compute than the others, however, it does not provide a meaningful represen-
tation enough since it does not take shifts in time into account like the DTW
(Dynamic time warping) based methods. The second one, originally proposed in
[13], is an iterative averaging method to compute the barycenters under DTW.
The aim is to minimize the DTW distance between the center (average sequence)
and the actual sequences in the given class or dataset. Expectation-maximization
or stochastic subgradient methods are used to find optimal solutions with this
method. Unlike the DBA (DTW Barycenter Averaging) approach, soft-DTW,
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introduced in [3], uses a differentiable loss function to solve this minimization
problem, which makes it much more easier to obtain the optimal result. In
other words, the soft-DTW method is able to find more accurate and smoother
barycenters for sequential data. Thus, for this study, barycenters are computed
using the soft-DTW geometry. An example result of this calculation can be seen
in Fig. 2.

Time Series Classification. After their proven success [10], convolutional
neural networks (CNNs) attracted a great amount of attention from the TSC
community who were looking for scalable alternatives to traditional ensemble
classifiers such as HIVE-COTE [11] or BOSS [14]. In [6], authors experimented on
several CNN based deep learning solutions for TSC and reported that Fully Con-
nected Neural Networks (FCNs) and deep Residual Networks (ResNet) achieved
the best performances overall. More recently, following the footsteps of [6], Incep-
tionTime method is proposed in [7] and shown to achieve state-of-the-art per-
formance, on par with HIVE-COTE.

Open Set Recognition. In the last decade, the popularity of the open
set recognition (OSR) domain has grown significantly after [15] revealed that
unknown samples can generate high activation scores for some of the known
classes in closed set classifiers. The first application of OSR on deep networks was
[2], where authors introduced a novel OpenMax layer. During testing, this Open-
Max layer replaces the final softmax layer, which enables the classifier to have
a probability distribution with an extra class probability for the unknown class.
Directly extending the OpenMax paper, [8] proposes G-OpenMax, which utilizes
a generative adversarial network (GANs) to generate samples of unknown classes.
The trend of using generative models for OSR tasks continued with Class Condi-
tioned Auto-Encoder for Open-set Recognition (C2AE) [12] and Classification-
Reconstruction Learning for Open-Set Recognition (CROSR) [18], both using
slightly different auto-encoder networks, and are similar in the way that both
of them uses EVT to decide on the reconstruction thresholds. CGDL [16] can
be considered the state-of-the-art OSR method with a generative network. It
uses a variational auto-encoder (VAE) which is forced to approximate different
Gaussian models for different known classes. Another alternative approach, [5]
introduces two novel loss functions for unknown detection, that maximize the
entropy of the unknown samples, namely Entropic Open-Set Loss and Objecto-
sphere Loss. The only OSR paper for time series is [9], however, they are using
a specific dataset for combustion engines rather than one of the popular TSC
benchmark datasets, and they perform open set recognition to label each time
step, but not the time series as a whole sequence.

4 Methodology

The unknown detector of the proposed model consists of two separate criteria
to minimize the chance of missing unknown data. The first one is the DTW
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(a)

(b)

Fig. 2. Barycenters for the AtrialFibrillation dataset for the classes 0 and 1. The sam-
ples that belong to that class are in the background in gray.

similarity. It is basically the sum of squared distances between a barycenter and
a sample, computed after aligning both time series using DTW. If the distance
between a sample and the barycenter is above a certain threshold for all the
known classes, that sample is considered unknown. In cases where the intraclass
variation is high, barycenters are usually not able to represent meaningful pat-
terns regarding that class. In such cases, an out-of-class sample that looks like
a horizontal line along the mean can have a smaller distance, especially in low
dimensional time series, than a sample that actually belongs to that class. For
this reason, a second criterion is added to the unknown detector.

The second criterion is the cross-correlation (a.k.a sliding dot product) of a
sample and a barycenter. Similar to the convolution operation, cross-correlation
is mainly used for searching an input sequence for a given filter (usually a shorter
filter representing a feature). In this case, the barycenter functions as the filter
and slid through the input sample to calculate the cross-correlation. The idea
behind this approach is that out-of-class samples should generate much lower
cross-correlation values. Cross-correlations are computed for each dimension of
the data separately. If a sample generates a lower cross-correlation value for at
least one of the dimensions for a specific class, then, it is rejected by that class
for extra safety.

Compared in isolation, the cross-correlation criterion works usually better
than the distance criterion. However, there are some datasets where the cross-
correlation threshold does not work well. Hence, combining the two yields better
results in most of the datasets used in this study. The formulas for defining the
thresholds are quite straightforward. In Eqs. 2 and 3, τdist

k and τ cc
k represent the

distance and the cross-correlation thresholds for a known class k. For each k,
median distance to the barycenter of the class μ̃dist

k , median maximum cross-
correlation μ̃cc

k with the barycenter, and their standard deviations σdist
k and σcc

k

are computed using the train samples belonging to the class k. Median values
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are chosen here over the means in order to reduce the effect of the outliers within
the class.

τdist
k = μ̃dist

k + α · σdist
k , for k ∈ {1, ...,K} (2)

τ cc
k = μ̃cc

k − β · σcc
k , for k ∈ {1, ...,K} (3)

The crucial values in these equations are hyper-parameters α and β, since
they determine the magnitude of the thresholds. A grid search among the com-
binations of possible values (ranging from 0 to 5) is performed using the whole
train set in order to find the optimal values. The full outline of the inference
procedure can be seen in Algorithm 1.

Since this study aims to propose a generic solution that is applicable to mul-
tiple datasets, the actual unknown samples are not used in this stage to prevent
cherry-picking. Instead, an artificial set of unknown data (known unknowns) are
generated for each dataset (see Algorithm 2) and used to evaluate the open set
performance of the model. The aim of the grid search is to find optimal hyper-
parameters that can help detect the unknowns while maintaining high accuracy
for the known samples. To do this a simple formula (Eq. 4) is used to assess the
performance after every iteration. Then, the combination of hyper-parameters
with the highest score s(α, β) is chosen.

s(α, β) = λ4 · accX · accA
accX + accA

(4)

λ =
accX

accclosed set
(5)

Given a train set X and artificially created known unknown data matrix A,
accX stands for the accuracy of the model with the given hyper-parameters for
the original train samples (known classes) X. Similarly, accA is the accuracy
for detecting the known unknown samples, i.e. the recall for the (K + 1)th
(the label for unknowns) class. The λ functions as a penalization parameter
to prevent the model from sacrificing too much from accX to increase accA.
This is undesirable for most cases since detecting unknowns will not worth it
if the classification accuracy drops dramatically. In other words, λ puts more
importance on the classification accuracy than the unknown detection in this
trade-off. It is calculated by simply dividing accX by accclosed set, the accuracy
of the closed set model.

The proposed method employs the InceptionTime model, state-of-the-art
deep learning ensemble of five CNNs with Inception modules [17] (see [7] for
an in-depth explanation) as the classifier. Since the unknown detector is inde-
pendent of the classifier, InceptionTime can easily be replaced with any other
classification model. This also means that the training procedure of the classifier
is also separate from the unknown detector. InceptionTime is trained the same
way as in [7].
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Algorithm 1: Testing procedure for the OS-InceptionTime.
Input: Test sample x
Input: Classifier f()
Input: Barycenters for each known class B = {b1, ..., bK}
Input: Unknown detection thresholds τdist

k and τ cc
k

1 Predict an initial label: ŷ = f(xr)
// Unknown detection part

2 Calculate distances and cross-correlations for k ∈ {1, ..., K} do
3 Calculate the DTW distance: dk = DTW (x, bk)
4 Calculate the cross-correlation: ck = max(correlate(x, bk))

5 end

6 if dk > τdist
k or ck < τ cc

k , ∀k ∈ {1, ..., K} then
7 Modify the predicted label to be the unknown class: ŷ = K + 1
8 end
9 return ŷ

Algorithm 2: Known unknowns generation algorithm.
Input: Train samples X
Input: A mean μ, and a standard deviation σ for the random noise

1 Define augmented data matrix A = X
2 for i ∈ N do
3 Generate a random noise: noise ∼ N (μ, σ2)
4 Add the noise to the original sample: Ai += noise

5 end
6 Define splitting index cut idx = L/2
7 Define temp1 = A1:N,1:cut idx to store the first halves of every sample
8 Define temp2 = A1:N,cut idx:L to store the second halves
9 Switch the places of the first and second halves:

A = concatenate(temp2, temp1)
10 Reverse the order of the time steps and dimensions: A = flip(A)

11 return Da = {A,
−−−→
K + 1}

5 Experiments

5.1 Datasets

The 30 multivariate time series classification datasets from the UEA archive are
used for all the experiments in this work. Background information about these
datasets can be seen in [1]. The unknown datasets are also chosen from the
archive. They are presented in Table 1 alongside the Openness score for each
test scenario. Openness takes percentage values between 0% and 100%, where
0% represents a completely closed set problem. For each known dataset, two
other datasets from the archive were used as the unknowns. In order to avoid
cherry-picking, datasets were picked according to their sizes and shapes. The
most similar ones have been used to keep the integrity as much as possible after
resampling to match the shape of the original known dataset.
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Table 1. The chosen unknown datasets for each train set and the openness score of each
open set problem. The hybrid dataset refers to the artificially created dataset forged
by concatenating PEMS-SF, InsectWingbeat, FaceDetection, FingerMovements, and
HandMovementDirection along their last axes.

Training dataset Unknown dataset 1 Openness Unknown dataset 2 Openness

ArticularyWordRecognition PEMS-SF 7.15% SpokenArabicDigits 9.46%

AtrialFibrillation HandMovementDirection 26.15% Heartbeat 18.35%

BasicMotions SpokenArabicDigits 35.11% InsectWingbeat 35.11%

CharacterTrajectories Handwriting 22.73% PhonemeSpectra 29.29%

Cricket SelfRegulationSCP1 5.72% SelfRegulationSCP2 5.72%

DuckDuckGeese Hybrid dataset* 8.71%

EigenWorms MotorImagery 12.29% Cricket 34.06%

Epilepsy CharacterTrajectories 47.48% PhonemeSpectra 59.18%

EthanolConcentration SelfRegulationSCP2 14.72% Cricket 38.28%

ERing NATOPS 20.53% FaceDetection 10.56%

FaceDetection InsectWingbeat 48.36% PEMS-SF 42.26%

FingerMovements FaceDetection 24.41% InsectWingbeat 48.36%

HandMovementDirection Heartbeat 14.72% DuckDuckGeese 24.41%

Handwriting Epilepsy 4.49% CharacterTrajectories 15.60%

Heartbeat PEMS-SF 42.26% DuckDuckGeese 36.75%

JapaneseVowels NATOPS 15.15% FingerMovements 7.42%

Libras NATOPS 9.95% LSST 14.46%

LSST FaceDetection 4.96% SpokenArabicDigits 15.27%

InsectWingbeat DuckDuckGeese 12.29% PEMS-SF 15.48%

MotorImagery DuckDuckGeese 36.75% PEMS-SF 42.26%

NATOPS FingerMovements 10.56% FaceDetection 10.56%

PenDigits LSST 19.68% FaceDetection 6.75%

PEMS-SF DuckDuckGeese 16.33%

PhonemeSpectra FaceDetection 1.87% SpokenArabicDigits 6.38%

RacketSports JapaneseVowels 35.11% LSST 35.11%

SelfRegulationSCP1 SelfRegulationSCP2 24.41% Cricket 51.49%

SelfRegulationSCP2 Heartbeat 24.41% MotorImagery 24.41%

SpokenArabicDigits InsectWingbeat 19.68% FaceDetection 6.75%

StandWalkJump MotorImagery 18.35% Cricket 43.80%

UWaveGestureLibrary HandMovementDirection 12.71% PhonemeSpectra 46.55%

5.2 Experimental Results

3 baselines are considered to compare and evaluate the results of the proposed
method for open set recognition. The first baseline is the most primitive one
among all. It is an ensemble of small binary CNN models for each known class in
the dataset (One-vs-All), with two convolutional layers followed by max pooling
and two fully connected layers.

The second baseline replaces the softmax layer of the vanilla InceptionTime
network with the OpenMax layer introduced in [2].

The last baseline is the class conditional VAE with the probabilistic ladder
net architecture, proposed in the CGDL paper [16]. Unlike the original model,
which was designed for images, 1D convolutions are used for this case.
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The performance measure for the closed set classification (without the involve-
ment of the unknown data) is the classification accuracy. The values for the perfor-
mancemetrics are obtained after running the algorithm three times for each testing
scenario and then averaging the results. Macro F1 score, on the other hand, comes
in handy when evaluating the open set performance of the models with unknown
samples included in the test set, and it is the standard metric for open set papers. It
will be used to evaluate the overall performance of the open set algorithms. Table 2
presents the open set performances of the algorithms for each dataset. For almost
two thirds of the datasets, the proposed algortihm achieves better results than
the other baselines. Detailed results for the OS-InceptionTime are given in Table 3
alongside with the optimal hyper-parameter values.

Table 2. Comparison of the open set macro F1 scores for each dataset using the
unknowns from Table 1

Dataset OvA-CNNs OM-IT LCVAE OS-IT

ArticularyWordRecognition 0.98 0.57 0.85 0.96

AtrialFibrillation 0.19 0.70 0.39 0.18

BasicMotions 0.77 0.81 0.52 0.82

CharacterTrajectories 0.91 0.88 0.98 0.96

Cricket 0.83 0.75 0.90 0.68

DuckDuckGeese 0.33 0.25 0.35 0.64

EigenWorms 0.08 0.45 0.40 0.85

Epilepsy 0.58 0.79 0.60 0.82

EthanolConcentration 0.16 0.36 0.24 0.38

ERing 0.90 0.32 0.58 0.86

FaceDetection 0.40 0.44 0.15 0.54

FingerMovements 0.24 0.35 0.00 0.62

HandMovementDirection 0.20 0.13 0.30 0.42

Handwriting 0.18 0.16 0.20 0.43

Heartbeat 0.28 0.42 0.16 0.53

JapaneseVowels 0.87 0.90 0.95 0.95

Libras 0.60 0.66 0.74 0.80

LSST 0.40 0.45 0.08 0.36

InsectWingbeat 0.55 0.64 0.03 0.65

MotorImagery 0.18 0.23 0.50 0.53

NATOPS 0.85 0.69 0.92 0.89

PenDigits 0.79 0.94 0.10 0.95

PEMS-SF 0.67 0.76 0.55 0.87

PhonemeSpectra 0.10 0.34 0.13 0.37

RacketSports 0.51 0.63 0.67 0.85

SelfRegulationSCP1 0.44 0.39 0.48 0.46

SelfRegulationSCP2 0.27 0.19 0.30 0.54

SpokenArabicDigits 0.74 0.92 0.67 0.98

StandWalkJump 0.31 0.25 0.45 0.17

UWaveGestureLibrary 0.77 0.67 0.73 0.79

Average Results 0.50 0.53 0.46 0.66



Open Set Recognition for Time Series Classification 363

Table 3. The results for the OS-InceptionTime algorithm. Open set results are aver-
aged for the unknown datasets given in Table 1.

Dataset Closed set classification Open set classification

InceptionTime
accuracy

OS-InceptionTime
accuracy

Performance
decrease (%)

Hyper-parameters
(α, β)

Open Set Macro
F1 score

Recall for the
Unknowns

ArticularyWordRecognition 0.99 0.92 −7.07 2.75, 3.25 0.96 1.00

AtrialFibrillation 0.27 0.00 −100.00 4, 0 0.18 1.00

BasicMotions 1.00 0.80 −20.00 1.75, 2.5 0.82 0.80

CharacterTrajectories 1.00 0.94 −6.00 2, 3 0.96 1.00

Cricket 0.99 0.58 −41.41 2.75, 2.75 0.68 1.00

DuckDuckGeese 0.62 0.50 −19.35 2.75, 4 0.64 1.00

EigenWorms 0.93 0.82 −11.83 2, 1.75 0.85 1.00

Epilepsy 0.97 0.79 −18.56 1.25, 1 0.82 0.81

EthanolConcentration 0.28 0.26 −7.14 1, 1 0.38 1.00

ERing 0.89 0.82 −7.87 2, 2 0.86 0.98

FaceDetection 0.67 0.39 −41.79 4, 2 0.54 1.00

FingerMovements 0.50 0.31 −38.00 4, 1.5 0.62 1.00

HandMovementDirection 0.32 0.27 −15.63 1.5, 1.5 0.42 1.00

Handwriting 0.50 0.38 −24.00 1, 1.25 0.43 1.00

Heartbeat 0.78 0.60 −23.08 1, 1.5 0.54 0.54

JapaneseVowels 0.98 0.93 −5.10 1.75, 2 0.95 1.00

Libras 0.88 0.75 −14.77 1, 1 0.8 1.00

LSST 0.45 0.45 0.00 0, 0.1 0.36 0.00

InsectWingbeat 0.71 0.67 −5.63 1, 1 0.65 0.92

MotorImagery 0.51 0.39 −23.53 1, 1.5 0.53 0.54

NATOPS 0.95 0.82 −13.68 2, 2 0.89 1.00

PenDigits 0.99 0.92 −7.07 1.5, 1.5 0.95 1.00

PEMS-SF 0.86 0.86 0.00 2.5, 3 0.87 1.00

PhonemeSpectra 0.37 0.34 −8.11 1, 1 0.37 1.00

RacketSports 0.89 0.76 −14.61 1, 1.5 0.85 1.00

SelfRegulationSCP1 0.78 0.41 −47.44 0.75, 0.5 0.46 0.61

SelfRegulationSCP2 0.51 0.37 −27.45 0.75, 1.5 0.54 0.86

SpokenArabicDigits 1.00 0.95 −5.00 1.5, 2.75 0.98 1.00

StandWalkJump 0.47 0.00 −100.00 2, 1.5 0.17 1.00

UWaveGestureLibrary 0.84 0.70 −16.67 1.5, 3 0.79 1.00

On average, the OS-InceptionTime sacrifices around 20% of the closed set
classification accuracy compared to the vanilla version. In return, however, it
achieves an outstanding performance for detecting the unknowns. The average
recall for detecting the unknowns is 0.926. In 46 test cases out of 58 (79.3%),
the proposed algorithm is able to detect all the unknowns with a perfect recall
value of 1.00. In 51 cases (88%), it can detect at least half of the unknowns, and
only in 7 cases (12%), it achieves 0.35 or less recall for the unknowns.

5.3 Discussion

The critical difference diagrams regarding the methods used in this work are pre-
sented in Fig. 3 separately for each evaluation metric. The ranks are calculated
using the Wilcoxon signed-rank test, which is used to compare repeated mea-
surements on the same samples (in this case, test datasets). Then Holm test is
used to reject the null hypothesis, i.e. the mean ranks for each pair of algorithms
are not significantly different from each other. According to the Fig. 3b, the pro-
posed Open Set InceptionTime model has the highest ranking by a significant
margin, clearly separating itself from the others. However, it lacks behind the
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(c)

Fig. 3. Difference diagrams of the mean ranks of the algorithms by each metric.

OvA-CNNs algorithms in terms of closed set accuracy, which is understandable
because it trades-off nothing to detect unknowns.

Future Work. Since all the datasets used in this work were multivariate, the
proposed method can be tested and validated on the UCR time series archive
with 128 univariate TSC datasets [4]. Moreover, to trade off less closed set accu-
racy, better alternatives/additions to the distance and cross-correlation thresh-
olds can be incorporated into the OS-InceptionTime, such as the difference
between the forecasting errors of known and unknown samples. Finally, par-
allelization can be introduced to speed up the grid search for hyper-parameter
optimization, as it takes the longest time to compute during the training phase
with the computational complexity of O(N2).

6 Conclusion

This study presents the first ever open set model for time series classification,
Open Set InceptionTime. The proposed method makes use of the class-specific
barycenters of the time series to detect unknowns, and combines it with a state-
of-the-art classifier. Moreover, an automated algorithm for creating the known
unknown data that is required to determine the unknown detection thresholds
is also presented in this work.

The experiments show that OS-InceptionTime achieves near-perfect results
for unknown detection, but it trades off closed set classification accuracy while
doing so. Thus, it can be considered as more suitable in situations where detect-
ing the unknowns are more vital than the classification accuracy of the known
samples. OS-InceptionTime is able to outperform all the other baselines that
are adapted from computer vision to the time series classification domain. The
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results are validated on 30 different datasets, which proves that the proposed
method is generic and applicable to various time series classification datasets.

Being the first work that develops a generic method regarding the open set
recognition for time series classification, this master thesis shall act as a baseline
for the future research in this field. The full implementation of the Open Set
InceptionTime algorithm in Python can be found publicly on the web1.
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Abstract. Deep learning methods are usually trained via a gradient-
descent based procedure, which can be efficient as it is not only end-
to-end but also suitable for large quantities of data. However, gradient-
based learning is vulnerable to adversarial attacks – which account for
unperceivable changes in the input data to misguide a trained model.
Though a plethora of work explored the adversarial learning (attacks
and defences) in image datasets, the exploration of adversarial learn-
ing in tabular datasets has seen little attention. In this work, we study
adversarial learning in tabular datasets. We investigate the role of dis-
cretization and demonstrate that discretizing numeric attributes offers
a strong defence mechanism. The main contribution of this work is the
proposition of two new defence algorithms for numeric tabular datasets,
that utilize cut-points obtained from discretization, to forge a defence
against various forms of adversarial attacks. We evaluate the effective-
ness of our proposed method on a wide range of machine learning datasets
and demonstrate that the proposed algorithms lead to a state-of-the-art
defence strategy on tabular datasets.

1 Introduction

At the heart of deep learning is a parametric model in the form of Artificial
Neural Network (ANN), which is trained by optimizing a differentiable objective
function. The error is propagated back through the network, and each weight of
the model is updated in an iterative gradient-descent optimization manner. This
end-to-end training process, as it is known, is efficient as it can process notably
large quantities of data in a strictly online or in some batch processing manner.
However, this gradient-based learning has a fundamental weakness – it opens
the door to adversarial attacks. The idea behind adversarial learning is that any
malicious entity, if, has access to model weights/parameters and can obtain the
respective gradients, then it can modify the input in a way, such that the desired
output can be obtained from the model [7]. E.g., for an input x to a given model
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f(x), r is an adversarial noise if f(x+r) �= f(x), where |r|≤ ε. It can be seen that
the only challenge for the attacker is that the noise (r) should be unperceivable.
Well, for high-resolution images, one can easily make unnoticeable changes in the
input data to fool the model. Therefore, in computer vision, adversarial attacks
are considered a serious threat, and a lot of research has focused on building
effective defence mechanisms [15].

Tabular dataset has some characteristics that challenge the plain application
of adversarial attacks. They can have categorical features, leading to values that
are unique and distinct, that is Y or N or High and Low, etc. Note, these values are
represented as whole numbers: 0, 1 or 2, etc. – i.e., either encoded as bin numbers,
or used in the one-hot-encoding format. Therefore, any changes to these values
can easily be detected. Let us formalize adversarial attacks on tabular data
in the following. We can denote the original unadulterated data as: Sdata =
[(x1,y1), · · · , (xm,ym)], where x ∈ Rn and y ∈ R. They are used to train the
model: f(·)θθθs,∇s

. When an adversarial attack occurs, the adversarial sample Sadv

is generated based on f(·)θθθs,∇s
, such that for each adversarial sample x̃ ∈ Sadv,

we have f(x)θθθs,∇s
= y �= f(x + r)θθθs,∇s

. The goal of the adversarial attack is
defined as maximizing the following objective function: Ladv(f(x + r)θθθs,∇s

,y),
where |r|≤ ε. Here, Ladv(f(x+ r)θθθs,∇s

,y) is known as the adversarial risk on x.
We define adversarial risk over model f(·) as: Ex∈Sdata(Ladv(f(x + r)θθθs,∇s

,y)).
Let us suppose that every feature in our dataset is categorical. As discussed

earlier, the final representation that we get for the features will only consist
of well-round numbers. Any adversary aiming to choose a small value of ε, can
easily be spotted1. Therefore, a simple strategy to defend against the adversarial
samples for datasets with categorical data only is:

– Perform Ceil or Floor operations as advocated in [2]. E.g., if xi is 3 and
ε = 0.15, the adversarial sample will have a value of 3.15, which will be
converted back to 3 with Floor operation. Note, an adversary can also set
ε = −0.15, leading to xi = 2.85. Now, if we perform the Floor operation,
we obtain a value of 2. Note, if the value 2 is allowed, it is fine; otherwise,
if the feature can only take values ≥ 3, the value 2 will violate the validity
constraint of the feature and can be detected easily.

What if a tabular dataset has continuous features? In our previous example,
if an adversarial sample has the values 3.15 or 2.85 – there is no way we can
determine if it is not a legitimate value. And, therefore, adversarial attacks on
numeric data can easily evade a manual inspection. Clearly, there is a need to
determine whether a numeric value is adversarial or not. How about discretizing
the feature and representing it as a categorical feature, or determining whether
it is adversarial based on its distance from the discretization cut-point? These
two questions will form the basis of our two proposed algorithms in this work.
Generally, discretization is only employed to convert continuous features into
categorical if a model can not handle continuous features. However, it has been

1 This is one reason, why adversarial attacks against tabular data are not prevalent
as compared to against image datasets.



Discretization Inspired Defence Against Adversarial Attacks 369

shown recently [11], that discretization can lead to significantly better perfor-
mance as well. In this paper, we show that it can be equally useful as a defence
mechanism for adversarial attacks. Though related techniques such as quantisa-
tion have been used in adversarial defence on image datasets [2], their efficacy
on tabular datasets is not well studied. Exploring what is the role, discretization
can play in warding-off adversarial attack on tabular datasets has been the main
motivation of this work.

In this work, we will devise defence strategies under two scenarios. The first
scenario is where we are allowed to modify the input data while training the
defence model. Here, we discretize the input continuous data – Sdata, and then
adversarially train the model on this new discretized data – Sd-data, as well as
adversarially generated data – Sadv. We demonstrate the efficacy of this strat-
egy by formalizing it in form of our first proposed algorithm named D2A3 –
Discretized-based Defence Against Adversarial Attacks. The second scenario is
where we are not allowed to modify the input features, and the input to the
model has to be original continuous features. For this case, we believe, again
discretization can offer an excellent defence mechanism, but rather implicitly. In
this work, we have proposed a new defence algorithm named D2A3N – Discretized-
based Defence Against Adversarial Attacks with Numeric Input – which lever-
ages the cut-points (boundaries) definition obtained from discretization on orig-
inal data and exploit the distance to cut-points to determine if a data point is
adversarial or not. We summarize the main contributions of this work as follows:

– We highlight the importance of discretization as a defence mechanism for
attacks on tabular datasets, and demonstrate that a simple discretization of
continuous features can be very effective towards multiple forms of adversarial
attacks.

– We propose two algorithms – D2A3 and D2A3N, which utilize discretization to
develop defence strategies for continuous features in tabular datasets. We eval-
uate the effectiveness of our proposed algorithms on a wide range of datasets,
and against various forms of attacks.

The rest of this paper is organized as follows. We will discuss the related work
in Sect. 2. Our proposed algorithms are presented and discussed in Sect. 3. We
do an empirical evaluation of our proposed algorithms in Sect. 4, and conclude
in Sect. 5, with some pointers to future works.

2 Background and Related Work

2.1 Tabular Data Adversarial Defence and Attack

There are three kinds of adversarial attacks that are common for tabular
datasets. LowProFool [1] is a white-box attack method in the tabular domain
for generating imperceptible adversarial examples. It is based on minimizing the
addition of (imperceptible) adversarial noise on the features via the gradient
descent approach. The gradients of the adversarial noise are used to guide the
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updates towards the opposite target class of the clean sample. At the same time,
the penalty of the perturbation is set proportionally to the feature importance
for confirming the minimal perceptibility of the adversarial noise. The benefit of
the LowProFool is that the success rate is largely guaranteed, even the adversar-
ial noise is imperceptible compared to many other white-box attack methods. It
is the state-of-the-art white-box attack method on tabular data [1]. DeepFool [6]
is another white-box attack method, and it works by adding adversarial noise to
the clean sample by finding the distance between the sample and the model deci-
sion boundary. In DeepFool’s formulation, the smallest adversarial noise can be
considered as the orthogonal projection between the sample and the class deci-
sion boundary (affine hyperplane). The advantage of the DeepFool compared to
other classical gradient-based white box attacks, such as FGSM, is that the adver-
sarial noise is more reliable and efficient as DeepFool always finds the generated
adversarial sample close to the decision boundary and therefore the target class
can be changed. The limitation of DeepFool is that the adversarial noise can be
large when the sample is far away from the model decision boundary [1]. FGSM [3]
is a classical white box attack method for image and typical numerical tabular
datasets. The idea behind FGSM is quite simple and straightforward. It relies on
adding the gradients into the original sample to create the adversarial sample.

Defence methods against tabular data adversarial attacks are still limited in
the current literature. A commonly used defence method for adversarial attack
on continuous data is Madry [5]. It leverages the adversarial training to mini-
mize the adversarial risk of the model. Trade [12] is another commonly used
defence method for continuous data which minimizes the regularized surrogate
loss instead of directly training adversarially.

Finally, Thermometer [2] is another defence mechanism that relies on idea
similar to discretization. The Thermometer discretization for tabular data on xi

with k cut-points can be expressed as: t(α = φew(fscale(xi)))l = 1, l ≥ α.
The fscale(·) is the min-max scaler to scale the value of xi into the range [0, 1].
The φew(fscale(xi)) is the quantization function that uses the equal-frequency
to obtain bin α on k cut-points. The array t(α)l has k dimensions and l is the
l-th dimension of the array. It can be seen that the Thermometer discretization
is similar to one-hot-encoding after equal-width discretization. However, in
contrast to one-hot encoding, Thermometer discretization can ensure that the
order remains the same after discretization.

2.2 Discretization as Defence and Discretization Methods

Discretization is a commonly used and well-studied technique in machine learn-
ing [13]. It is to convert a continuous feature into a set of discrete values, which
is usually done by sorting the data and then identifying some cut-points (also
known as boundaries), and placing the continuous data point based on which
bin does it fall into [14]. Each bin is labelled a number in range: {0, 1, . . . , k},
where k is the total number of bins.

A simple illustration of how discretization can lead to a defence is shown in
Fig. 1, where one of the data points (in red) is maliciously tampered (Fig. 1a). It
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(a) Numeric feature, adversarial data in red. (b) Cut-points after discretization, with ad-
versarial sample closer to cut-points.

(c) Replacing the adversarial sample with
the median of the bin.

(d) Data after discretization.

Fig. 1. Illustration of discretization as a defence against adversarial attack. (Color
figure online)

can be seen that if we have the feature in a continuous format, there is no way
for us to differentiate between these red data points and the others. However, let
us suppose that we have obtained some boundaries (δ1, . . . , δ4) after running a
discretization algorithm. We conjecture that the proximity of the data points to
the boundaries can be an indication of an adversarial example. This can be seen
in Fig. 1b, where this proximity is measured as a distance, ε. In practice, once the
boundaries are identified, the data is discretized as the bin-number or represented
with one-hot-encoding. In our example, the malicious red data will be assigned
a value of 2, as shown in Fig. 1d. Now, if we just use bin-number (and train the
original model) or do a one-hot-encoding (and train a modified model that takes
in many more features as input) – the adversarial data is neutralized, which
means that whatever the malicious intent of the attacker was, we have scaled
it back to a value that our model expects (in our example, that is {0, 1, 2, 3}).
Additionally, instead of using the bin-number, one can only replace the value of
the adversarial data to the median of the bin, and keep all other data points
the same – as depicted in Fig. 1c. This will help us in training a model that still
takes as input the data in original format.

In Support of Discretization as Defence. We know that in ANN models,
with all linear activation functions, the loss function tends to be linear with
respect to the inputs as well. In such case, when the input x with the model
f(x) = σ(w�x) is under adversarial attack with x + r, we have:

f(x + r) = σ(w�(x + r)) = σ(w�x + w�r)

It can be seen that w�r determines the success of adversarial attack. Even
though, non-linear functions are typically used in deep ANN models, such as Relu,
they are only piece-wise linear. Much of the work in designing a defence against
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Algorithm 1: Algorithm D2A3 and D2A3N Training
Input: Sdata = [(x1,y1), ..., (xm,ym)], Discretization type – C

1 Initial parameter θθθs of the model f(·)
2 Run discretization method C to obtain cut-points for each feature with Φ(·)
3 for iteration q ⊂ Q in training model f(·) do
4 for sample xt in batch X ⊂ Sdata and yt do
5 if D2A3 then
6 Discretize with one-hot encoding Φ(xt)
7 Train f(·) with Φ(xt) and yt via gradient descent to minimize:

Lθθθs,∇s(f(Φ(xt)),yt) ; // Training Loss

8 Obtain adversarial sample x̃t ∈ Sadv ; // Adversarial Training

9 Discretize with one-hot encoding Φ(x̃t)
10 Train f(·) with Φ(x̃t) via gradient descent to minimize:

Lθθθs,∇s(f(Φ(x̃t)),yt)
11 else
12 Train f(·) with xt and yt via gradient descent to minimize:

Lθθθs,∇s(f(xt),yt)
13 Obtain adversarial sample x̃t ∈ Sadv ; // Adversarial Training

14 Obtain data transformation: M(Φ(x̃t))
15 Train f(·) with M(Φ(x̃t)) via gradient descent to minimize:

Lθθθs,∇s(f(M(Φ(x̃t))),yt) ; // Adversarial Training Loss

16 return f(·), Φ(·), M(·)

adversarial attacks focus on how to break the linearity between inputs and the
output? [2]. Well, discretization followed by one-hot-encoding leads to a non-
linear model, and we claim that it can break the linearity between the input
and the output, and hence, can provide an effective defence mechanism against
adversarial attacks.

3 Methodology

3.1 D2A3 – Model Discretization as Defence

Our proposed algorithm D2A3, relies on discretizing the continuous features to
categorical features as input, and therefore, instead of using a model with contin-
uous input, the discretized model is trained and used in D2A3. One can utilize any
discretization method. The detailed pseudocode of D2A3 is given in Algorithm 1,
where it takes as input the training data Sdata, as well as the discretization
method C – equal-frequency, equal-width, MDL2. Of course, changing the
input data format can be considered as a limitation. We will discuss D2A3N in
the next section, which addresses this issue.

2 Note, we have combined the two proposed algorithms into one due to space con-
straints.
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Algorithm 2: Algorithm D2A3 and D2A3N Defence
Input: Sadv, Algorithm 1 Output: f(·), Φ(·)

1 , M(·) while In defence do
2 Load f(·)
3 for sample x̃ ∼ Sadv do
4 Discretize Φ(x̃)
5 if D2A3 then
6 One-hot encoding on Φ(x̃)
7 return f(Φ(x̃))θθθs,∇s

8 else
9 Obtain data transformation: M(Φ(x̃t))

10 return f(M(Φ(x̃t))θθθs,∇s

Let us discuss another salient feature of our D2A3, i.e., it relies on exploiting
adversarial learning to enhance its defence capability, by optimizing the following
objective function:

Lθθθs,∇s
D2A3 = arg min

θθθs,∇s

Training Loss
︷ ︸︸ ︷

Ext∼Sdata
Lθθθs,∇s (f(Φ(xt)),yt) +

Adversarial Training Loss
︷ ︸︸ ︷

Ex̃t∼Sadv
Lθθθs,∇s (f(Φ(x̃t)),yt) . (1)

It can be seen that our proposed objective function is composed of two parts:
min Lθθθs,∇s(f(Φ(xt)),yt) and minLθθθs,∇s(f(Φ(x̃t),yt). The motivation for Equa-
tion 1 is to achieve better performance for minimizing the empirical loss and also
add robustness to the model as recommended by the work of [4,9].3 As we dis-
cussed earlier, minimization of training loss – Lθθθs,∇s(f(Φ(xt)),yt), can leverage
the non-linearity of the discretization process and obtain a more accurate model
f(·) [10]. However, only adding discretization into model f(·) is not enough as
advocated in [4]. The adversarial training loss – minLθθθs,∇s(f(Φ(x̃t),yt), is fur-
ther added to add robustness to the model. It is based on the optimization prob-
lem which is to minimize the adversarial training loss given by the inner attack
type (i.e., maximizing the adversarial loss by finding the adversarial version of
input) [5]. During the defence, the input samples x̃t will be firstly discretized
and format with one-hot encoding as Φ(x̃t). The outline of D2A3 in defence mode
is given in Algorithm 2.

3.2 D2A3N – Input Discretization as Defence

Unlike D2A3, where the input of the model f(·) is discretized, in D2A3N, the input
to the model is the same as the original data format (continuous or categorical).
It still obtains the cut-point φα ∈ Φ(·) for each feature, using discretization
method C on original data Sdata. After discretization, we use Φ(·) to build a

3 The effectiveness of adversarial training loss component is also studied in ablation
study in Sect. 4.4.



374 J. Zhou et al.

defence strategy. The strategy revolves around finding the closest data points to
the cut-points. These data points are replaced with the median of the bin. This
is achieved by implementing the transformation function: M(.) as:

M(x̃t) =

⎧
⎨

⎩

arg min
α

‖x̃t − μ(Φ(·))α‖, |x̃t − φα|< ε,

x̃t, |x̃t − φα|≥ ε.
(2)

Here, μ(Φ(·))α denotes the median value of bin α and φα
i is its cut-points. In

addition, we maintain a constraint, i.e., the absolute value between the data and
the corresponding cut-point has to be smaller than the tiny constant value ε
(minimum threshold value to change the bin and fixed as constant during the
defence). Additionally, just like D2A3, the adversarial training is also augmented
here to add the robustness to the model to minimize the adversarial risk as:

Lθθθs,∇s
D2A3N = arg min

θθθs,∇s

Training Loss
︷ ︸︸ ︷

Ext∼Sdata
Lθθθs,∇s (f(Φ(x

t
)),y

t
) +

Adversarial Training Loss
︷ ︸︸ ︷

Ex̃t∼Sadv
Lθθθs,∇s (f(M(Φ(x̃t))),y

t
) (3)

When the D2A3N is used in defence (Algorithm 2), the input is discretized first
and then processed by the transformation function M(Φ(x̃t)) to map it back to
a numeric value.

4 Experiments

In this section, let us empirically verify the effectiveness of D2A3 and D2A3N. We
will first implement white-box attacks to compare the robustness of both D2A3
and D2A3N with state-of-the-art methods. Later, we will conduct an ablation
study to determine the effect of adding adversarial training to D2A3 and D2A3N.

4.1 Experimental Set-up

Datasets. We have used a total of 12 UCI classification datasets in our exper-
iment. Note, all datasets are numeric in our experiments. Out of 12 datasets,
5 datasets have more than 10K samples and are denoted as Large, whereas 3
datasets have between 5−10K samples and are denoted as Medium. The remain-
ing 4 datasets have less than 5K samples and are denoted as Small. The statistics
of the data are summarized in Sect. 4.1.

Adversarial Attack Setting and Evaluation Metric. We have made use
of 3 commonly used white-box attack methods, which are common for tabu-
lar datasets, i.e., – FGSM, Deepfool and LowProfool. For each attack method,
the architecture and the parameters of the target model are available, and the
adversarial samples are directly generated. The step size of the FGSM is 0.1, and
the maximum iteration for Deepfool and LowProFool is 50, which is the same
as the default setting in their original implementation.
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Table 1. Description of datasets.

Dataset m n c size Dataset m n c size

SkinSegmentation 245057 4 2 Large page-blocks 5473 11 5 Medium

connect-4 67557 43 3 Large wall-following 5456 25 4 Medium

letter-recog 20000 17 26 Large spambase 4601 58 2 Small

magic 19020 11 2 Large diabetes 768 9 2 Small

sign 12546 9 3 Large pid 768 9 2 Small

satellite 6435 37 6 Medium credit-a 690 16 2 Small

Regarding the evaluation metrics, we have made use of Accuracy which
generally determines the level of resistance of a defence mechanism against an
adversarial attack. Notably, the Standard Accuracy for normal manner (no
attack has occurred) and the Robust Accuracy for attack manner are used
separately [9]. Moreover, the Success Rate of an adversarial attack is also used
to measure the efficacy of the attack. According to the work [1], we define the
Success Rate as:

SR =
∑Z

i=1|f(xi + r) �= f(xi)|
Z (4)

which is a ratio of successfully crafted adversarial samples (e.g., the samples are
able to fool the model) and the total targeted samples (Z).

Experiment Configuration and Baselines. Each dataset is split into train
and test via 3-fold cross-validation. The models in D2A3 and D2A3N are trained
with 300 epochs and consist of a fully connected Artificial Neural Network (ANN)
with Relu activation on 5 hidden layers and 1 Softmax for the output layer. We
have used Thermometer encoding as a baseline for D2A3. Also, D2A3 is imple-
mented with three commonly used discretization methods i.e., Equal-Width
(D2A3-EW), Equal-Frequency (D2A3-EF), and the MDL (D2A3-MDL).

For D2A3N, as discussed in Sect. 3.2, we have used two commonly used
defence methods as baselines – Madry [5] and Trades [12]. Again, just like D2A3.
we have used three commonly used discretization methods for D2A3N, leading
to D2A3N-EW, D2A3N-EF and D2A3N-MDL respectively.

Other than baselines for D2A3 and D2A3N, we have presented results with
Clean model, which is the model without any defence mechanism. our code will
be released in https://github.com/tulip-lab/open-code.

4.2 Model Discretization (D2A3) Results

Let us compare the performance of D2A3 method with baseline methods by
considering the three commonly used white-box attack methods. Of course, these
attack methods have the full access to the architecture and parameters of the
model f(·), and can directly generate the adversarial samples depending on any

https://github.com/tulip-lab/open-code
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Table 2. Performance comparison for D2A3.

Models Standard Robust Accuracy (Avg) Success Rate(SR) (Avg)

Accuracy (Avg) FGSM DeepFool LowProFool FGSM DeepFool LowProFool

Clean 0.895 0.813 0.272 0.282 0.135 0.793 0.769

Thermometer 0.836 0.759 0.761 0.726 0.196 0.160 0.194

D2A3-EF 0.870 0.792 0.768 0.722 0.153 0.165 0.217

D2A3-EW 0.854 0.793 0.788 0.753 0.136 0.143 0.161

D2A3-MDL 0.918 0.897 0.884 0.869 0.000 0.025 0.030

attack method. This is one reason why the robust accuracy of the clean model
can deteriorate easily.

Table 2 shows the averaged comparison results on all datasets between D2A3
and other baseline methods, including the Clean model. Our experiment suggests
that FGSM as an attack method is not particularly effective for tabular datasets.
On the other hand, DeepFool and LowProFool are quite effective attack methods
which result in lowering the accuracy of the model quite significantly.

It can be seen that Thermometer method as a defence is quite effective against
the three forms of attacks. However, the difference between standard accuracy
and robust accuracy is quite large.

It can be seen that three variants of D2A3 lead to an effective defence mecha-
nism against three forms of attacks. It is important to note that since we are dis-
cretizing differently, hence the quality of model in terms of Standard Accuracy
is different. As expected, discretization based on mdl leads to the best results
in terms of standard accuracy (91.8%). Note, the more accurate the trained
model is, the higher the quality of the adversarial samples it can generate. Now,
it is encouraging to see that D2A3-MDL not only achieve a higher performance
on robust accuracy but also has the smallest difference between standard
accuracy and robust accuracy. A similar pattern can be seen in terms of
the success rate, where the success rates of the three attacks are 0%, 2.5% and
3% respectively. These results are extremely encouraging, as they demonstrate
that the model discretization algorithm D2A3 is an effective defence method
against white-box attacks for tabular datasets. In Sect. 4.4, we will discuss the
advantage of incorporating adversarial training loss within D2A3.

4.3 Input Discretization (D2A3N) Results

It can be seen from Table 3 that the overall performances of D2A3N trained with
three forms of discretization – D2A3N-EF, D2A3N-EW, and D2A3N-MDL is better
than the two standard baselines namely Madry and Trades. It is encouraging to
see that without changing the dimensionality of the model f(·), D2A3N can largely
help to resist the 3 kinds of adversarial attack. Particularly, the D2A3N-EW has
shown higher robust accuracy and lower success rate compared to D2A3N-EF
and D2A3N-MDL.
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Table 3. Performance comparison for D2A3N.

Models Standard Robust Accuracy (Avg) Success Rate(SR) (Avg)

Accuracy (Avg) FGSM DeepFool LowProFool FGSM DeepFool LowProFool

Clean 0.895 0.813 0.272 0.282 0.135 0.793 0.769

Madry 0.892 0.808 0.459 0.496 0.129 0.553 0.500

Trades 0.895 0.817 0.456 0.307 0.127 0.549 0.739

D2A3N-EW 0.881 0.839 0.683 0.536 0.103 0.291 0.458

D2A3N-EF 0.871 0.807 0.558 0.532 0.164 0.449 0.487

D2A3N-MDL 0.874 0.860 0.588 0.488 0.138 0.416 0.514

Table 4. Ablation study on adversarial training.

Model Robust Accuracy (Avg) Success Rate(SR) (Avg)

FGSM DeepFool LowProFool FGSM DeepFool LowProFool

D2A3 Adv. Train 0.897 0.884 0.869 0.000 0.025 0.030

With Out Adv. Train 0.862 0.883 0.847 0.039 0.025 0.064

D2A3N Adv. Train 0.835 0.609 0.518 0.115 0.385 0.486

With Out Adv. Train 0.753 0.579 0.495 0.218 0.429 0.519

The better performance of D2A3N-EW discretization is surprising but can be
explained. It is well known that EW discretization is more robust to the skewness
of the data [8]. Since adversarial training leads to the original data being skewed,
EW discretization based D2A3N is more robust to the adversarial attack.

4.4 Ablation Study on Adversarial Training

In this section, we conduct an ablation study to verify the effectiveness of the
adversarial training step.

In Table 4, both D2A3 and D2A3N are tested to obtain the robust accu-
racy and success rate with and without the adversarial training, denoted
as Adv.Train and With Out Adv. Train. It can be seen that without the adver-
sarial training, both D2A3 and D2A3N leads to a slightly worse robust accuracy
and success rate than with the adversarial training. This highlights the impor-
tance and necessity of the adversarial training within both D2A3 and D2A3N. It
is also interesting to see that even without adversarial training, the performance
of D2A3 and D2A3N is mostly better than the corresponding baselines in Tables 2
and 3.

5 Conclusion

In this paper, we studied the role of discretization in devising a defence strat-
egy against adversarial attacks on tabular datasets. We showed that not only
discretization can be effective, but it can also lead to better performance than
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existing baselines. We proposed two algorithms namely D2A3 and D2A3N, which
leverages the cut-points obtained from discretization to devise a defence strat-
egy. We evaluated the effectiveness of our proposed methods on 12 standard
datasets and compared them against standard baselines of Thermometer, Madry
and Trades. The effectiveness of D2A3 and D2A3N clearly demonstrate the impor-
tance of discretization in warding-off adversarial attacks on tabular datasets. As
future work, we are keen to explore theoretical justification over why mdl dis-
cretization is effective for D2A3 and why EW is better than the other two forms of
discretization for D2A3N. We are keen to extend our proposed methods to image
datasets as well.
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Science Fund of China (Project No. 71871090).
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Abstract. Recently, offline reinforcement learning has gained increasing atten-
tion. However, the safety of offline reinforcement learning has been ignored. It
poses a significant challenge to learn a safe and high-performance policy from a
fixed dataset that contains unsafe or unexpected state-action pairs without inter-
acting with the environment. Since the unsafe state-action pairs are usually sparse
in the behavior data collected by humans, it is difficult to effectively model infor-
mation about unsafe behaviors. This paper utilized the hierarchical reinforcement
learning framework to alleviate the sparsity issue by modeling unsafe behaviors
with hierarchical policies. Specifically, a high-level policy determines a prospec-
tive state, and a low-level policy takes action to reach the specified goal state. The
training objective of the high-level policy is to improve the expected reward that
the low-level policy collects when it moves toward the goal state and reduce the
number of unsafe actions. We further develop data processing methods to provide
training data for the high-level policy and the low-level policy. Evaluation exper-
iments about performance and safety are conducted in simulation environments
that return the rewards and unsafe costs obtained by agents during the interac-
tion. Experimental results demonstrate that the proposed algorithm can choose
safe actions while maintaining high performance.

Keywords: Safe reinforcement learning · Offline training · Hierarchical
policies

1 Introduction

Deep Reinforcement Learning (DRL) has made significant progress on a series of com-
plex control tasks [16]. DRL algorithms interact with an online environment or simula-
tor and learn from their own collected experience [2]. However, collecting data online
is difficult, risky, or costly in many real-world applications such as automatic driving,
healthcare, and recommendation systems [15]. Offline Reinforcement Learning (Offline
RL) is a promising method for learning a practical decision-making policy from a fixed
historical dataset without direct interactions with the environment [14]. Thus, offline
RL has excellent potential to play a role in the application scenarios mentioned above.

Recently, several offline RL algorithms have been proposed [2,7,9,10] which
achieve competitive performance against online DRL baselines [2]. However, in real-
world applications, historical behavior data collected by human operators or other

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13281, pp. 380–391, 2022.
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behavioral policies may contain some unsafe or unexpected state-action pairs. For
instance, drivers occasionally violate some trivial traffic rules when driving. Existing
offline RL methods will not partially sacrifice the performance to improve decision-
making safety when the dataset includes unsafe behavior.

A direct method to prevent the agent from taking unsafe actions or entering dan-
gerous states is utilizing the value-based off-policy RL algorithm and setting negative
rewards for unsafe actions [6,21]. Consequently, the agent will automatically learn to
avoid those unsafe actions with negative rewards to maximize the value function. How-
ever, the trained agents will face the problem of “sparse rewards” in the offline setting
since there are normally few unsafe state-action pairs in the dataset, and collecting dan-
gerous behavior data is often expensive. Therefore, efficient utilization of hazardous
behavior information in the offline setting becomes particularly meaningful.

In recent years, hierarchical RL has gained popularity in designing RL algorithms
that converge in complex or potentially sparsely rewarded environments [18,19,24].
Drawing inspiration from the recent hierarchical reinforcement learning (hierarchical
RL) literature, we propose an offline hierarchical RL framework to solve the problem
of the scarcity of unsafe or unexpected state-action pairs. In our proposed method, the
high-level policy sets sub-goals for the low-level policy while the low-level policy is
responsible for reaching the sub-goals set by the high-level policy. A decision-making
process of the high-level policy includes multiple interactions with the environment, and
the sparse reward signal of each interaction is accumulated as the reward of the high-
level policy. The input of high-level policy is a sequence of contiguous states. For each
unsafe state-action pair, we will build multiple sequences containing it by adjusting the
starting point of the sequence. In this way, the high-level policy can more effectively
model the information of unsafe behaviors.

Our key contributions are summarized as follows: (1) We propose an offline RL
algorithm that can learn to avoid the unsafe behaviors in the dataset. To effectively
model the information of unsafe state-action pairs, we utilize hierarchical policies to
predict the long-term safety risk of a state-action pair; (2) An adaptive weight is used to
regulate the training objectives of safety and performance to achieve a better trade-off.
(3) A data pre-processing method is proposed to obtain the datasets for the proposed
offline hierarchical policies; (4) Extensive experiments show the effectiveness of the
proposed method. We show that the proposed method achieves a competitive trade-off
between safety and performance compared with the online safe RL algorithm. Ablation
experiments demonstrate the effectiveness of various design choices in our method.

The rest of this paper is organized as follows. In Sect. 2, we first introduce the nec-
essary background and core ideas of hierarchical RL. We present the proposed method
in detail in Sect. 3. Experimental results are given in Sect. 4. Finally, we conclude this
paper in Sect. 5.

2 Preliminaries

2.1 Reinforcement Learning

In RL, the agent interacts with the environment and receives the reward signal. Through
careful exploration and trial and error, the agent can finally learn a decision-making
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policy that can maximize the received rewards. The interaction process is typically for-
mulated by a Markov decision process (MDP) (S,A,R, T, γ), where s ∈ S is the
state space, a ∈ A is the action space, r ∈ R is the reward, T (st+1|st, at) is the condi-
tional probability distribution that describes the transition dynamics of the environment,
and γ is a scalar discount factor. The essential goal of RL is to find an optimal policy
π(st) to maximize the expectation of discounted rewards Vπ(st) = Eπ[

∑∞
i=t γi−tri].

For a given policy π(st), we define the state-action value function as Qπ(st, at) =
Eπ[V (st)|st, at]. Thus the greedy optimal policy π∗(st) = argmaxaQ(st, at). Given
transition tuples (st, at, rt, st+1) collected from interactions with the environment, the
training objective is to minimize the Bellman error which can be expressed as the fol-
lowing:

(Qθ(st, at) − (rt + γ · Qθ(st+1, π
∗(st+1)))

2
. (1)

Offline Reinforcement Learning. In the offline RL setting, the agent can not inter-
act with the environment to collect data. The goal of offline RL is to train the agent
to maximize the cumulative discounted rewards with historical data from human oper-
ators or logs [2,10]. Off-policy RL algorithms learn from a data buffer that consists
of transition tuples collected during training. A simple offline RL method is inserting
the existing dataset into the buffer of the off-policy algorithms such as deep Q-learning
[7,9]. The difference between offline RL and off-policy algorithms lies in the incapable
of the offline RL to use the current policy to collect additional data during training.

Hierarchical Reinforcement Learning. Hierarchical RL has gained popularity in
recent years in designing RL algorithms that converge in complex environments [4].
Hierarchical RL is proposed to solve the complex control tasks with sparse reward. In
hierarchical RL, the high-level policy chooses the most suitable candidate from several
low-level policies [3,22] or sets sub-goals for a specific low-level policy [12,19,24].
Goal-conditioned hierarchical designs have emerged as a practical paradigm for hierar-
chical RL [18,19]. The low-level policy receives intrinsic rewards from the high-level
policy in every time step. The high-level policy makes decisions every c time step,
and the reward of high-level policy comes from a potentially sparsely rewarded envi-
ronment. The problem of sparse reward can be mitigated since a reward of high-level
policy is gathered among several time steps. In our methods, we utilize the idea of
hierarchical policies to alleviate the sparsity of unsafe state-action pairs.

3 The Proposed Method

In this section, we first introduce our data pre-processing method. Then we describe our
hierarchical training framework in detail. The pseudo-code for the algorithm is outlined
in Algorithm 1.

3.1 Data Pre-processing of Hierarchical Policies

Here we first define the form of state, action, and reward of the high-level and low-
level policies, for a behavior trajectory (t1, t2, t3, ..., tn) where tn = (sn, an, rn), we
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use (sh
n, ah

n, rh
n, sh

n+1) and (sl
n, al

n, rl
n, sl

n+1) to represent the transition tuples of the
high-level and low-level policies.

Fig. 1. t1 and t2 are two continuous trajecto-
ries. They go through the same state (s1t1 =
s1t1), but they have different subsequent states
(s2t2 �= s2t2).

Fig. 2. The demonstration of the high-level pol-
icy state-action pair.

The high-level policy needs to predict a future goal according to the current state.
In this paper, the goal means an expected future state. However, the state of one
time step may have different subsequent states (see Fig. 1). Thus, we employ behav-
ior sequences as states of the high-level policy: sh

n = (scn+1, scn+2, ..., scn+c), where
c is a hyper-parameter representing the length of the sequence and the next state
sh

n+1 = (sc(n+1)+1, sc(n+1)+2, ..., sc(n+1)+c). The final state scn+c in the sequence
is the sub-goal of the other states, which is also the action of high-level policy. The
reward of the high-level policy is the total reward of the sequence: rh

n = Σc
i=1rcn+i.

To distinguish unsafe behaviors in the dataset, we use a binary variable cost to rep-
resent whether a transition tuple contains an unexpected state-action pair. That is, we
use costh = Σc

i=1costcn+i to represent the number of unsafe actions or unexpected
state-action pairs contained in the sequence. We demonstrate the data composition of
the high-level policy state-action pair in Fig. 2.

For the low-level policy, sl
n = [sn, gn] where the sub-goal gn is the state of the

future. For instance, in Fig. 2, the low-level state sl
1, s

l
2, ..., s

l
c all have the sub-goal

of sl
c. The low-level policy interacts directly with the environment, and the action of

the low-level policy is the same as those in the original behavior data: al
n = an. The

low-level policy aims to achieve the given goal state, which is different from the goal
expected by the environment. Therefore, the reward from environmental feedback can-
not be directly used as the low-level policy’s reward. The reward of low-level policy
rl
n = sim(sn, gn), where sim measures the similarity between the two states. Here we
choose the negative Euclidean distance as our similarity measure. rl

n is called the intrin-
sic reward in the literature of hierarchical RL, [24] which guides the low-level policy to
achieve the given sub-goal.

3.2 Safe Offline Reinforcement Learning Through Hierarchical Policies

We utilize hierarchical policies to model the information of sparse unsafe state-action
pairs. Specifically, the high-level policy πh predicts a target state as a sub-goal for the
low-level policy, and the low-level policy πl takes actions to reach the given sub-goal.
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High-Level Policy. The design of the high-level policy is critical to safety and perfor-
mance. We use the actor-critic framework of TD3 to build our high-level policy. The
actor πh

θ2
(sh) outputs a sub-goal for the low-level policy every c time steps where c is

the length of the state sequence of the high-level policy.
Since the state of the high-level policy is a sequence of sub-states, we employ the

long short-term memory (LSTM) networks [11] to model the dynamic temporal behav-
ior. If the input of the πh

θ2
is sh = (sl

1, ..., s
l
t, ..., s

l
c), the output hidden state of LSTM

is computed as:

i(t) = σ
(
Wiss

l
(t) + Wihh(t−1) + Wicc(t−1)

)

f(t) = σ
(
Wfss

l
(t) + Wfhh(t−1) + Wfcc(t−1)

)

c(t) = f(t) � c(t−1) + i(t) � tanh
(
Wcss

l
(t) + Wchh(t−1)

)
(2)

o(t) = σ
(
Woss

l
(t) + Wohh(t−1) + Wocc(t−1)

)

h(t) = o(t) � tanh
(
c(t)

)
,

where W∗ represents the network parameters, � is the element-wise product, σ is the
sigmoid function, i(t) is the input gate, f(t) is the forget gate, c(t) is the memory cell,
and o(t) is the output gate. In the subsequent calculation process, we only use the last
hidden state h(c).

For the critic network, h(c) is concentrated with ah and be fed to a linear layer
fqh to get Qh

φ2
(sh, ah). To make the agent learn the safe decision-making policy, we

further define the parameterized cost function Ch
φ3
(sh, ah) to estimate the cumulative

discounted cost. Thus, a safe and efficient agent should take actions that can get a high
Qh

φ2
value and a low Ch

φ3
value. The action with maximum Qh

φ2
− Ch

φ3
value will be

chosen in the decision-making stage, according to the greedy strategy. Since the tasks
of predicting Qh

φ2
and Ch

φ3
are similar, we formulate them as a multi-task learning

task and utilize the shared-bottom model [17] to reduce redundant model parameters.
Specifically, the expert networks of Qh

φ2
and Ch

φ3
share the bottom of [h(c), a

h].
In order to prevent the actor from being dominated by the value of Qh

φ2
or Ch

φ3
, we

add an adaptive weight λ to Ch
φ3
. When the Qh

φ2
value is small and the Ch

φ3
value is

large, we can set a large λ to punish this situation. Conversely, if Qh
φ2

value is large, we
set a relatively small λ to reduce the penalty of the Ch

φ3
value. Formally, λ is defined as:

λ =

{
1

Qh
φ2

, Qh
φ2

> 0

1 , Qh
φ2

≤ 0
, (3)

where we choose the action with the largest weighted value Qh
φ2
(sh, ah) − λ ·

Ch
φ3
(sh, ah) as the final action.
We define Qh

φ2,φ3
= Qh

φ2
(sh, ah) − λ · Ch

φ3
(sh, ah), and rλ = rh − λ · ch. During

the training stage, πh
θ2

is trained to maximize the estimated value of Qh
φ2,φ3

with φ2 and
φ3 fixed:

min
θ2

−Qh
φ2,φ3

(sh, πh
θ2
(sh)), (4)
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Algorithm 1. Hierarchical Safe Offline Reinforcement Learning
Input: Collected trajectory behavior data D.
Parameter: Parameters of actor and critic in high-level policy and low-level policy: θh

actor ,
θh
critic,θ

l
actor , θ

l
critic.

Output: Trained parameters.

1: pre-processing D with methods mentioned in Sect. 3.1 and get Dl and Dh.
2: Train high-level policy with Dh.
3: while no convergence do
4: Update θh

actor and θh
critic alternately to minimize actor loss Eq. 4 and critic loss Eq. 5.

5: end while
6: Use trained high-level policy to generate and replace half of sub-goals in the Dl.
7: while no convergence do
8: Update θl

actor and θl
critic to minimize actor loss and critic loss of the low-policy.

9: end while
10: return θl

actor , θ
l
critic,θ

h
actor , θ

h
critic.

and Qh
φ2,φ3

is trained through temporal difference learning:

min
φ2,φ3

(
Qh

φ2,φ3
(sh

t , ah
t ) − (rλ

t + γ · Qh
φ2,φ3

(sh
t+1, π

h
θ2
(sh

t+1))
)2

. (5)

Low-Level Policy. The low-level policy is built upon the continuous control algorithm
of TD3 [8]. Compared with recent off-policy algorithms that aim to alleviate the dis-
tributional shift, TD3 has stable and powerful performance although it is not tailored
for offline RL [2]. The actor πl

θ1
and critic Ql

φ1
are all building with deep neural net-

works. The actor πl
θ1
(sl

t) maps the low-level state sl
t to a specific action al

t, and the
critic Ql

φ1
(sl

t, a
l
t) estimates the cumulative discounted reward of the state-action pair

(sl
t, a

l
t). It is noted that the sub-goal is included in the low-level policy state. During the

training stage, πl
θ1

maximizes the estimated value of Ql
φ1
(sl

t, π
l
θ1
(sl

t)) with φ1 fixed.
Ql

φ1
(sl, al) is updated through temporal difference learning like Eq. 5.

3.3 Parameter Combination of Hierarchical Policies

Since our high-level policy and low-level policy are trained separately with different
datasets, we will save the network parameters of different training rounds during the
training process. After the training, we need to test each combination of the param-
eters of the high-level policy and the low-level policy obtained to determine the best
parameter combination.

The effects of two different parameter combinations are demonstrated in Fig. 3.
They have the same high-level policy and different low-level policies. Although the
final states of the two low-level policies have the same distance d3 from the sub-goal
given by the high-level policy, the distance between the final state of the two low-
level policies and the optimal state may be very different (d2 > d1). However, it is
time-consuming to evaluate each parameter combination. Therefore, we use a more
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Fig. 3. The effects of two different parameter combinations. We assume that the distributions
involved all obey Gaussian distribution, yellow region represents the distribution of the sub-goal
given by the high-level policy, green region represents the distribution of the state reached after
c steps of the low-level policy. d∗ represents the distance between the two states. (Color figure
online)

straightforward method that uses the trained high-level policy to meddle the low-level
data to alleviate the mismatch between hierarchical policies.

Specifically, we first train the high-level policy until the loss function converges
and the Qh tends to be stable. Then, we use the learned high-level policy to gener-
ate and replace part of the sub-goals in the low-level policy data. The proportion of
replaced sub-goals is a hyper-parameter. This method can enhance the robustness of
the low-level policy to the distribution mismatch between the optimal sub-goal and the
predicted sub-goal from the high-level policy. We call this method hierarchical policies
adaptation (HPA). To assess the effectiveness of HPA, we conduct ablation experiments
in Sect. 4.3.

4 Experiments

4.1 Experiment Settings

Safety Gym environments is a set of tools for facilitating research about safe RL [20],
which uses the OpenAI Gym [5] interface and MuJoCo [23] physics simulator to con-
struct environments with extensive layout randomization. In the environment of Safety
Gym, there exists a goal and some traps. An agent interacts with a Safety Gym environ-
ment and receives the value of reward and cost. The reward represents the quality of the
agent’s action, and the cost represents whether the agent has entered a trap. Safety Gym
can select different components to build the environment. Users only need to formulate
the robot, task, and difficulty level. In this paper, we choose the robots of Point and
Car, tasks of Goal and Button with the difficulty of 0,1 to construct our environments.
Examples of these environments and other implementation details are introduced in the
Appendix.
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(a) PointGoal1 (b) PointButton1

(c) CarGoal1 (d) CarButton1

Fig. 4. Reward-cost trade-offs for CPO, SO-DDPG, SO-TD3 and the proposed HSORL. Upper-
left corner (high reward, low cost) is preferable.

Our experiments use datasets collected by a partially-trained DDPG [16]. However,
the goal in Safe Gym only appears randomly in a small area, and thus the trajectory
of a trained agent will also always appear in this small area. Therefore, it is difficult to
generalize the model to the region far away from the goal with offline training. Thus,
we add the Gaussian noise to the goal’s position when the behavior policy collects the
data. We do not make any additional modifications to the environments.

4.2 Comparative Analysis

Experiments of Safety. In this subsection, we construct experiments to evaluate the
safety of the proposed method in environments of difficulty 1. When the agent hits an
obstacle or enters a trap, the environment will return an unsafety cost 1. It is expected
that the agent can get fewer costs and more rewards from the environment.

To demonstrate the effectiveness of the proposed hierarchical training framework
for modeling information of unsafe state-action pairs, we compared HSORL with the
safe offline RL methods without hierarchical policies. To be specific, we add the cost
function to DDPG and TD3 and train their actor and critic models following Eqs. 4 and
5. In this way, we get safe offline DDPG (SO-DDPG) and safe offline TD3 (SO-TD3) as
our baselines. We choose the same hyper-parameters with experiments in Sect. 4.2. All
the cost functions have the same network structure as the Q-function. We also consider
the online safe exploration algorithms of CPO [1] which can be used as a dominant
baseline [2].
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(a) PointGoal0 (b) PointButton0

(c) CarGoal0 (d) CarButton0

Fig. 5. The horizontal axis represents the number of training batches and the vertical axis repre-
sents the average value received from the environment. For HSORL, the horizontal axis denotes
the low-level policy training batches.

In Fig. 4, we demonstrate the average values of rewards and costs that each algo-
rithm obtained from the environments. As expected, CPO achieves the best trade-off
between rewards and costs in most environments. However, CPO must interact with the
environment to learn the safe decision-making policy, which is not feasible in safety-
critical applications. Our proposed offline method can achieve a similar cost in every
environment with a slightly lower reward compared with CPO. Compared with SO-
TD3, HSORL can obtain more rewards when the cost is the same as CPOs, which
validates that HSORL is capable of effectively modeling information of unsafe behav-
iors. Since SO-DDPG can not learn a practical policy in the environments of difficulty
1, the trained agent can only do some meaningless actions near the initial state. Thus
both the reward and the cost of SO-DDPG are very few. The empirical results prove that
the proposed hierarchical offline training framework can achieve an appropriate perfor-
mance while effectively avoiding unsafe actions when learning from a fixed dataset that
contains unsafe behavior.

Experiments of Performance. Although the proposed method mainly focuses on the
safety of offline RL, it still shows strong competitiveness in maintaining qualified per-
formance. To verify the performance of the proposed method, we choose baselines of
continuous control agents of offline DDPG, and offline TD3, which proved to be com-
parable to algorithms designed specifically to learn from offline data [2], and recently
proposed SOTA offline RL algorithms of CQL [13]. We build actor-critic CQL based
on the details given in paper [13]. To demonstrate the performance of the proposed
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Table 1. Ablation experiment results.

Method Average
cost

Average
reward

SO 107.21 20.09

HSO 96.37 18.86

HSO+AW 62.19 17.87

HSO+HPA 79.10 19.12

HSO+LSTM 102.24 20.53

HSO+AW+HPA+LSTM 57.22 19.98
Fig. 6. The parameters of different high-level
policies and low-level policies in different
training epochs are used for online perfor-
mance test. The number in the box is the mean
reward of 20 online experiments with different
random seeds.

methods trained on a fixed dataset without interactions with the environment, we col-
lect data from environments of difficulty 0 that do not contain traps and dangerous
states. Then we train our HSORL agent with λ = 0 and other baseline algorithms with
the same datasets.

We demonstrate the average rewards among 10 episodes received from the environ-
ments during training in Fig. 5. Every episode includes 10000 time steps. As illustrated,
offline TD3 outperforms CQL and achieves the best performance in every environ-
ment. HSORL achieves comparable performance with offline TD3 and CQL while out-
performing offline DDPG in most environments. The empirical results show that our
method has powerful offline learning performance.

4.3 Ablative Analysis

In this section, we conduct ablation experiments to understand the importance of various
design choices of HSORL. The basic model is named SO, which has the same struc-
ture as SO-TD3. Then, by adding hierarchical policies into consideration, this becomes
HSO. After that, we add external components to HSO. AW stands for the adaptive
weight, HPA stands for the hierarchical policies adaptation, and LSTM stands for long
short-term memory. Table 1 displays the results of variations of our model.

Hierarchical Policies. Firstly, we evaluate the benefit of hierarchical policies to model
information about unsafe behaviors. As seen in Table 1, HSO incurs fewer safety vio-
lations than the SO, with a slight sacrifice in reward. It means that HSO can make a
trade-off between safety and performance.
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Long Short-Term Memory. In this variant, we use 2-layers feed-forward networks to
replace the LSTM. Since LSTM is influential in modeling sequence information, HSO-
LSTM achieves the choicest performance compared with the other variants. However,
it has a similar cost to SO.

AdaptiveWeight. Since we have two optimizer objectives in the critic, we use adaptive
weight to prevent one of them from being dominant. We notice that the safety validation
will significantly increase when replacing the adaptive weight with constant 1.

Hierarchical Policies Adaptation. Finally, we access the advantage of HPA compared
to the method that traverses all parameter combinations. We randomly take 10 parame-
ter combinations and choose the best for no-HPA variants. HSO-HPA achieves a better
trade-off between safety and performance compared with HSO.We also drop HPA from
HSORL and traverse all parameter combinations (Fig. 6). Compared with the inefficient
traversing-based method, our HPA-based method achieves a reward of 16.37, similar to
the best performance of the no-HPA method.

5 Conclusion

Recently, significant efforts have been dedicated to promoting the performance of
offline reinforcement learning. However, behavior data scene in real-world scenarios
inevitably contains sparse unsafe or unexpected state-action pairs, which may mislead
the agents into undesirable states. To address this issue, we propose a novel offline
training framework in conjunction with hierarchical policies to model the sparse unsafe
behaviors effectively. Extensive experiments have been conducted to verify the effec-
tiveness of the proposed framework on avoiding unsafe actions. Moreover, the results
suggest that our method can achieve the best trade-off between safety and performance
compared to a wide range of online and offline RL baselines.
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Abstract. Speech Emotion Recognition (SER) affective technology
enables the intelligent embedded devices to interact with sensitivity. Sim-
ilarly, call centre employees recognise customers’ emotions from their
pitch, energy, and tone of voice so as to modify their speech for a high-
quality interaction with customers. This work explores, for the first time,
the effects of the harmonic and percussive components of Mel spectro-
grams in SER. We attempt to leverage the Mel spectrogram by decom-
posing distinguishable acoustic features for exploitation in our proposed
architecture, which includes a novel feature map generator algorithm,
a CNN-based network feature extractor and a multi-layer perceptron
(MLP) classifier. This study specifically focuses on effective data aug-
mentation techniques for building an enriched hybrid-based feature map.
This process results in a function that outputs a 2D image so that it can
be used as input data for a pre-trained CNN-VGG16 feature extractor.
Furthermore, we also investigate other acoustic features such as MFCCs,
chromagram, spectral contrast, and the tonnetz to assess our proposed
framework. A test accuracy of 92.79% on the Berlin EMO-DB database
is achieved. Our result is higher than previous works using CNN-VGG16.

Keywords: Speech Emotion Recognition (SER) · Mel spectrogram ·
Convolutional Neural Network (CNN) · Voice signal processing ·
Acoustic features

1 Introduction

The general motivation of SER systems is to recognize specific features of a
speaker’s voice in different emotional situations to provide a more personal and
often superior user experience [6]. For example, a Customer Relationship Man-
agement (CRM) team can use SER to determine a customer’s satisfaction by
their voice during a call. Emotions are universal, although their understandings,
interpretations and reflections are particular and partially associated with cul-
ture [1]. Unlike speech recognition, there is no standard or integrated approach
for recognising emotions and analysing them through human voices [30].
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The fundamental challenge of SER is the extraction of discriminative and
robust features from speech signals. Features used for SER are generally cat-
egorized as prosodic, acoustic, and linguistic features. The prosodic features
include pitch, energy, and zero-crossings of the speech signal [16,19,28]. The
acoustic features describe speech wave properties including linear predictor coef-
ficients (LPC), mel-scaled power spectrograms (Mel), linear predictor cepstral
coefficients (LPCC), power spectral analysis (FFT), power spectrogram chroma
(Chroma), and mel-frequency cepstral coefficients (MFCC) [5]. In SER, the Mel
spectrogram, MFCC, and chromagram are the most effective in decoding emo-
tion from a signal [22].

Among the most common speech feature extraction techniques, this paper
addresses a principal question in Emotion Recognition (ER): How can we max-
imise the advantage of the Mel spectrogram feature to improve SER? This study
presents a novel implementation of emotion detection from speech signals by pro-
cessing harmonic and percussive components of Mel spectrograms and combining
the result with the log Mel spectrogram feature. Our primary contribution is the
introduction of an effective hybrid acoustic feature map technique that improves
SER. First, we employ CNN-VGG16 as a feature extractor of emotion identifier,
then utilise the MLP networks for classification task. Furthermore, we tune the
MLP network parameters using the random search model hyperparameter tech-
nique to obtain the best model. Based on empirical experiments, we assert that
a data augmentation strategy using an efficient prosodic and acoustic feature
combination analysis is the key to obtaining state-of-the-art results since input
data represents more diversity with enriched features; these characteristics lead
to better model generalisation.

2 Related Works

Early traditional SER models relied on modification and optimisation of Support
Vector Machine (SVM) classifiers to predict emotions such as anger, happiness,
and sadness, among others [15,23,25]. Wu et al. [31] implemented a traditional
machine learning method based on EMO-DB [3] database. The authors proposed
novel sound features named Modulation Spectral Features (MSFs) that com-
bined prosodic features, and they ultimately obtained 85.8% validation accuracy
for speaker-independent classification using a multi-class Linear Discriminant
Analysis (LDA) classifier. Similarly, Milton et al. [21] proposed another classical
machine learning method for SER by using a combination of three SVMs to
classify emotions in the Berlin EMO-DB. Furthermore, Huang et al. [13] intro-
duced a hybrid model called a semi-CNN, which used a deep CNN to learn fea-
ture maps and a classic machine learning SVM to classify seven emotions from
EMO-DB. The authors utilised spectrograms as the input for their proposed
model and achieved 88.3% and 85.2% test accuracy for speaker-dependent and
speaker-independent classification, respectively.

The idea of exploiting pre-trained CNN image classifiers [7] for other tasks
involves leveraging transfer learning methods in SER. Surprisingly, using speech-
based spectrograms as the input images for pre-trained image classifiers produced
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competitive results when compared with other well-known traditional methods.
Badshah et al. [2] extracted spectrogram speech features, which were then visu-
alised in 2D images and passed to a CNN; this approach achieved a 52% test
accuracy on EMO-DB. Demircan and Kahramanli [8] developed several different
classifiers and obtained test accuracies 92.86%, 92.86%, and 90%, respectively
on SVM, KNN and ANN. Additionally, Wang et al. [29] worked on MFCCs fea-
ture and proposed an acoustic feature called the Fourier Parameter (FP), which
obtained 73.3% average accuracy with an SVM classifier. Furthermore, many
similar studies were conducted on different databases. Popova et al. [24] used a
fine-tuned DNN and CNN-VGG16 classifier to extract the Mel spectrogram fea-
tures in the RAVDESS dataset [17] and obtained an accuracy of 71% [24]. Satt
et al. [27] presented another multi-modal LSTM-CNN and proposed a novel fea-
ture extraction method based on the paralingual data from spectrograms. The
authors obtained 68% accuracy on the IMOCAP [4] database.

In recent years, some works proposed the use of hybrid feature map tech-
niques as input data for CNN-based networks. Meng et al. [20] proposed a feature
extraction strategy for Log-Mel spectrograms that extracted a 3D voice feature
representation map by combining log Mel spectrograms with the first and second
derivatives of the log MelSpec of the raw speech signal. The authors proposed
a CNN with a multimodal dilated architecture that used a residual block and
BiLSTM (ADRNN) to improve the classifier accuracy. In addition, the ADRNN
further enhanced the extraction of speech features using the proposed attention
mechanism approach. The model achieved a remarkable performance of 74.96%
and the 90.78% accuracy of the IEMOCAP and EMO-DB databases. On the
other hand, Hajarolasvadi et al. introduced a 3D feature frame technique for use
as input data to the network by extracting an 88-dimensional vector of voice
features including MFCCs, intensity, and pitch. The model can reduce speech
signal feature frames by applying k-means clustering on the extracted features
and selecting the k most discriminant frames as keyframes. Then, the feature
data placed in the keyframe sequence were encapsulated in a 3D tensor, which
produced a final extracted feature map for use as input data for a 3D-CNN-based
classifier that used the 10-fold cross-validation method. The authors achieved a
weighted accuracy of 72.21% on EMO-DB. Zhao et al. [33] proposed a multi-
modal 2D CNN-LSTM network and extracted the log of the Mel-spectrograms
from the speech signals for use as input data. The outcome of their work is state-
of-the-art with the accuracy of 95.89% for speaker-independent classification on
the Berlin EMO-DB.

3 Methodology

This section explains the work procedures used to build the hybrid feature map
representation in our model. We compute the average of the signal’s harmonic
and percussive components and combine the result with the log Mel spectrogram
feature. The proposed hybrid feature map method can be generalised with other
supervised classifiers to obtain better prediction accuracy.
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3.1 Proposed Hybrid Features: Harmonic and Percussive
Components of Mel Spectrogram

Essential features in speech signal processing are the spectrograms on the Mel
scale, chromograms [12], spectral contrast, the tonnetz [12] and MFCCs [32].
Since the average length of the recorded voice samples are four seconds, we digi-
tise each original utterance signal at an 88 KHz sample rate using the Hanning
window function [11] shown in (1) to provide sufficient frequency resolution and
spectral leakage protection. Next, we apply Mel filter banks to the spectrogram
by shifting 0.4 ms in a window time of 23 ms so that the output is a group of
FFTs located next to one another. The Hanning window is described in (1),

Hm(n) = 0.5[1 − cos(
2π.n

M − 1
)] = sin2(

π.n

M − 1
) 0 ≤ n < M − 1 (1)

where M represents the number of points in the output window, which is set to
128 and n denote the number of specific sample point from the signal. Finally,
we construct the Mel spectrogram by multiplying the obtained energy matrix of
the Mel scaled static with the STFT results formulated in (2),

LMS(m) =
f(m+1)∑

k=f(m−1)

log(Hm(k) . |X(k)|2) (2)

where |X(k)|2 represents the energy spectrum in the kth energy block, H(k)
is a Mel-spaced filter bank function, m represents the number of filter banks,
and k points to the number of FFT coefficients. LMS represents the log Mel
spectrogram. To perform Mel spectrogram feature extraction, we use Librosa
tools [18] to set the size of Mel filterbanks as 128, the window size as 2048 and hop
length as 512. Figure 1 shows the Mel spectrogram of sample voices exhibiting
five emotions from the EMO-DB dataset. It is clear that the amplitude and
frequency of each emotion image have a high distinction from other samples.

The first feature map is built by applying a decomposition process to the
Mel spectrum using the popular method in [9]. The decomposition method can
be formulated such that the harmonic sh and percussive sp components are
separated from the input signal s by applying a STFT on the frames to obtain
spectrogram S of signal s as shown in definitions (3) and (4),

s = Sh + Sp (3)

S(n, k) :=
N−1∑

r=0

s(r + nH) . ω(r) . e(
−j2π.k.n

N ) (4)

where S denotes a spectrum of signal s in kth Fourier coefficient on the mth

time frame, ω : [0 : N − 1] := {0, 1, ..., N − 1} is a sine windowing function that
represents the window length N , H represents the hop size value, n indicates
current frame number and N is the length of the discrete Fourier transform. We
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Fig. 1. The above sample Mel spectrograms clearly illustrate the distinction between
amplitude and frequency in each emotion. The red colours represent frequencies that
contribute more than orange and white colours. (Color figure online)

can obtain the harmonic and percussive components of the spectrum by applying
a median filter in the horizontal (time-domain) and vertical (frequency-domain)
direction on spectrum S. Finally, we extract the first feature map by obtaining
the mean of both components as shown in the following summarised formulas in
(5), (6) and (7)

Ĥ = Ŝ
⊗

MH (5)

and
P̂ = Ŝ

⊗
MP (6)

obtained by

F2(LMS) =
(Ĥ + P̂ )

2
(7)

where
⊗

denotes the multiplication element of the median filter in MH , which
is the horizontal direction filtering used to obtain the Ĥ harmonic components
of the original spectrogram Ŝ. Subsequently, MP represents the vertical median
filtering results MP , which is the percussive component of the original spectro-
gram, Ŝ shown in (4). Figure 2 shows the harmonic and percussive components
as two distinctive spectrograms in the 128 Mel filterbank.

The second feature map is extracted by applying the log of the Mel spectro-
gram obtained in (2) to measure the sensitivity of the Mel spectrogram output
value fluctuation concerning changes in the voice signal amplitude. A sample 2D
hybrid feature representation in our work is visualised in Fig. 3, which clearly
shows that each sample feature map is combined in a two-dimensional image.
This specific feature combination improves the prediction accuracy in a simple
full contact neural network classifier based on our empirical experiments.
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Fig. 2. The harmonic and percussive components of the Mel spectrograms for a sample
neutral emotion

Fig. 3. Visualising an achieved 2D hybrid feature maps from the Berlin EMO-DB

3.2 Model Architecture and Training

We use the CNN-VGG16 [26] as a feature extractor to learn from high dimen-
sional feature maps since the network can learn from small variations that occur
in the extracted features maps. However, the high-capacity memory storage
requirements for a simple classification task can be considered a partial limi-
tation of VGG16 applications.

The details of the proposed architecture are shown in Fig. 4; the architecture
consists of an VGG16 and MLP network, which serve as an feature extractor and
emotion classifier, respectively. First, the subsamples are extracted from a fixed
window size and then feature maps are built using the proposed feature map
function. Therefore, the input to the VGG16 feature extractor is a 2-D feature
map in the dimension of (128× 128× 2). The input to the MLP classifier is a
2048 one-dimensional vector generated by VGG16. The MLP classifier includes
four fully connected layers with the ReLU activation function and softmax in
the output layer. Dense 1 and 2 have a 1024 input with a 0.5 dropout value,
and dense 3 and 4 are set to 512 input with 0.3 dropouts. The ADAM optimiser
with a learning rate of 0.0001 is selected for our architecture design.
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Fig. 4. Model architecture, which includes a 2D hybrid feature map built using the
harmonic and percussive components, as well as the log of the Mel spectrogram in
the feature map generator function. The features are extracted using a CNN-VGG16
network. Finally, the MLP network classifies seven emotions.

4 Experimental Analysis

This section analyses the experimental configuration and the result of the feature
extractor and MLP classifier on EMO-DB [3]. The sample voices are randomly
partitioned and 80% are used for the training set and 10% for the validation and
test set for the speaker-independent classification task. We apply an oversam-
pling strategy to compensate the minority classes and increase the voice samples
before feeding them to the feature extractor network during the pre-processing
phase. The classifier is trained on 128 epochs with a batch size of 128 and used an
Nvidia GPU. The window size is set to 2048 with (128× 128) bands and frames
to obtain each subsample length = 2.9 s. Then, the subsamples are created in
each defined data frame. Finally, 167426 signal subsamples and 9717 feature
maps are obtained from a sample rate of 88 KHz. Based on the time-frequency
trade-off, large frame size is chosen to obtain high-frequency resolution rather
than time resolution since analysing the frequency of speech signal enables us
to decode emotion. Several time-consuming experiments are conducted to assess
the effectiveness of the proposed hybrid feature, which aims to find the best data
augmentation through feature combination.

4.1 Results Analysis

To assess our enriched feature representation method in the MLP classifier,
the result of evaluation metrics such as the confusion matrix and test accuracy
are observed on different sample rates and feature map dimensions (bands and
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frames). We also evaluate our model output based on the setting of various param-
eters in the feature map function. For example, the prediction accuracy results
based on somedifferent parameters setting are shown inTable 1. These results indi-
cate that the superior result is achieved on feature map dimensions of 128× 128
with a sample rate of 88200, Since the highest subsample length of 2.9 s is achieved
and more sample points can contribute in each subsample.

Table 1. The emotion classifier accuracy based on different feature map representation
dimensions and signal sampling ratios

Band Frame Sample rate Accuracy

32 32 88200 71.92%

128 128 44100 87.04%

128 128 22050 88.54%

32 32 22050 89.54%

64 64 44100 92.02%

128 128 88200 92.79%

We examine the effect of the different number of subsamples from the signal
by increasing the window size and sample rate on ten different feature map rep-
resentations, including 1D, 2D, and 3D maps, and we then compare their results
with our hybrid feature extraction method. With respect to the primary research
question, it is found that we can take maximum advantage of the powerful Mel
spectrogram feature through harmonic and percussive components in emotion
recognition.

As shown in Table 2, the proposed hybrid feature map representation achieves
better results than other well-known feature combinations techniques. Further-
more, the results in Table 2 indicate that the accuracy increases in the high range
of the sample rate and window size in most represented methods since the fea-
ture map generator function handles more data points via a higher overlapping
between frames. Consequently, for most feature extraction methods, the VGG16
network can learn from better-enriched features when the sample rate is higher.
In contrast, an increased number of data points in the subsamples requires a
memory capacity in the gigabyte range to store the base, train, validation, test
feature map files in the pkl format. For instance, in our model, a signal sam-
pling rate of 88 KHz and a window size of 2048 occupy an approximately 3-GB
memory space to store the pkl files for analysing the whole voice files in the
EMO-DB; this requirement can limit its application.

The fluctuation in the prediction accuracy per emotion class is illustrated for
various feature representation methods in Fig. 5. The boxplot graph shows that
the model output is more reliable and stable when predicting seven emotions
using our proposed hybrid feature extraction “2D-log-MSS+Avg.HP” and two
more feature representations built by combining the delta of the Mel spectrogram
(MSS) and log Mel spectrogram or MFCCs features.
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Table 2. Evaluation of the prediction accuracy based on the different feature extraction
methods, sample rate and window size

Window size 512 1024 2048

Sample rate 22050 44100 88200

Feature extraction methods Acc % Acc % Acc %

1D-MFCCs 65.81 68.39 69.03

1D-Mel spectrogram 75.48 75.48 82.71

1D-Chromagram 80.01 80.13 81.29

1D-Tonnets 56.77 63.08 56.81

1D-Spectral 54.84 50.93 47.10

2D-MFCCs+Chromagram 83.87 83.23 91.59

2D-Mel spectrogram+MFCCs 88.39 85.16 85.81

2D-Mel spectrogram+Spectral 82.01 85.13 80.65

3D-Mel spectrogram+MFCCs+Chromagram 83.87 88.39 81.94

2D-log-MSS+Avg.HP (proposed) 92.02 89.54 92.79

Fig. 5. Variation in the prediction accuracy per emotion class for different feature
representation methods

The model’s confusion matrix in Table 3 shows that the network performs
better when recognising specific emotions (anger, sadness, happiness, and fear)
while its performance is comparatively poor when predicting emotions such as
neutral and boredom. Many experiments are conducted and the highest test
accuracy of 92.79% is achieved. The Python Keras based network implementa-
tion for the proposed model and more experimental results and visualisations
are available in our GitHub repositories1.

1 https://github.com/DavidHason/ser.

https://github.com/DavidHason/ser
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Table 3. Confusion matrix (%) of the model with an average accuracy of 92.71% on
the EMO-DB dataset

Emotion Anger Boredom Disgust Fear Happiness Neutral Sadness

Anger 94.92 0 0 0 5.12 0 0

Boredom 0 78.77 0 0 0 9.9 11.54

Disgust 0 0 89.47 0 9.8 0 0

Fear 0 0 0 96 0 0 3.85

Happiness 0 0 0 0 100 0 0

Neutral 0 12.81 0 0 0 88.87 0

Sadness 0 0 0 0 0 0 100

4.2 Model Comparison with Previous Works on EMO-DB

As shown in Table 4, our method achieves superior results compared with most
previous studies except for two works in terms of accuracy that are not signifi-
cantly higher than our results. However, their work frame is more sophisticated
than our proposed model. Zhao et al. [33] combined two 1-D and 2-D LSTM
CNN networks in the feature learning process. Demirican et al. [8] used a model
with three classifiers KNN, SVM and ANN to improve the prediction accuracy.
Nevertheless, the major advantage of our architecture comes from its simplicity
and generality, which can be employed for other acoustic features, as shown in
Table 2. Another advantage of the architecture is the capability of storing the
feature maps into cloud storage in pkl format that enables us to share them for
simultaneous analysis with other networks.

Table 4. Model comparison with previous works on EMO-DB

Previous works Learner Feature extraction method Accuracy

Badshah et al. [2] CNN log Mel spectrogram 52%

Popova et al. [24] VGG16 Mel spectrograms 71%

Hajarol et al. [10] CNN Mel spectrograms+MFCCs 72.21%

Wang et al. [29] SVM Fourier Parameter+MFCCs 73.3%

Huang et al. [13] CNN Spectrogram 85.2%

Issa et al. [14] VGG16 MFCCs+Chroma.+Mel spec.+Contrast+Tonnetz 86.10%

Meng et al. [20] CNN-LSTM log Mel spec.+1st & 2nd delta(log Mel spec.) 90.78%

Wu et al. [31] SVM Modulation Spectral Features (MSFs) 91.60%

Our model VGG16-MLP Harmonic-Percussive (HP)+log Mel spec. 92.79%

Demircan et al. [8] SVM LPC+MFCCs 92.86%

Zhao et al. [33] CNN-LSTM log Mel spectrogram 95.89%
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5 Conclusion

The key research question in this study focuses on leveraging Mel spectrogram
components in a hybrid-based feature engineering technique as well as propos-
ing a novel acoustic feature extraction method to improve emotion recognition.
The proposed feature map generator function extracts the harmonic and per-
cussive components by applying a median filter on the horizontal (time-domain)
and vertical (frequency-domain) directions of the spectrum, and is implemented
with a four-layer MLP classifier to predict emotions in the human voice. The
performance of the proposed hybrid feature technique is tested on the Berlin
EMO-DB and compared with other 1D, 2D, and 3D feature extraction methods.
To the best of our knowledge, this is the first study on speech emotion recog-
nition that combines this specific component of the spectrogram. The results
show that our work significantly outperforms most previous works due to its
achievement of a 92.79% test accuracy which is also a superior result in VGG16
feature learning methods. In future investigations, facial expression analysis and
linguistic features can be embedded into the framework to improve the emotion
recognition as an acoustic-only method is not constant across different languages
and cultures.
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Abstract. With distracted driving becoming one of the main causes of
traffic accidents, deep learning technology has been widely used in dis-
tracted driving detection, which achieves high accuracy when the train-
ing and test data are identically distributed. However, this assumption
cannot correspond to the real-world situation. In case of a small sam-
ple size, we usually utilize open datasets as training dataset. Thus the
training data distribution and test data distribution are different, which
may induce accuracy plummets. Concentrating on the unforeseen data
shifts encountered under different data distributions in distracted driv-
ing detection application, it is extremely desired to develop the detec-
tion technique with high robustness. In order to alleviate the issue about
data shifts encountered under different data distributions, we propose
an innovative method, SelectAug, to enhance images by applying the
selected important features of the images. The experimental evaluations
on the StateFarm dataset show that our method outperforms prior meth-
ods, demonstrating its efficacy in detecting distracted driving behaviors
scenes. Furthermore, our method also improves generalization perfor-
mance under different data distributions for distracted driving detection,
which allows open datasets to be applied to real-world scenarios.

Keywords: Deep learning · Data augmentation · Distracted driving
detection · Different data distributions

1 Introduction

Drivers are generally required to stay focused during driving, otherwise they will
face the risk of the traffic accidents. According to the National Highway Traf-
fic Safety Administration (NHTSA) [1], 3142 people died in traffic collisions on
United States due to the driver distraction in 2019. Most states in US now have
enacted laws against distracted driving behaviors such as texting and talking on
the phone. The distractions of driver are usually classified as visual, auditory,
manual and cognitive distractions. Visual distractions are considered as a behav-
ior that driver moves his eyes off the road, auditory distractions mean that the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13281, pp. 405–416, 2022.
https://doi.org/10.1007/978-3-031-05936-0_32
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driver is busy answering a cell phone or engaged in a talk. Manual distractions
refer to that the hands of the driver are not on the wheels. Cognitive distraction
is that the mind of the driver is occupied by other thoughts rather than driving.

Deep learning has attracted extensive attention from researchers in the
field of artificial intelligence during recent years. More and more deep learning
methods have been proposed in the distracted driving detection. Deep learning
requires a large amount of reliable data to achieve better performance. However,
deep learning often faces the situation of the lack of data in the real-world sce-
narios. In order to solve this problem, existing methods usually introduce open
datasets as the initial datasets to train the deep neural networks. Currently the
distributions between training data from open datasets and test data in real-
world scenarios are generally different, yet there are few studies focusing on this
problem. In computer vision field, most researches pay more attention to the
structural design of deep neural network [2–4] using open datasets. It has been
proved that when training and test data are from the same dataset, the model
trained by using deep learning will obtain high accuracy [5]. However, when a
mismatch occurs between the training data and the test data, the performance
of the model will decrease dramatically.

In this work, we propose a data augmentation method called SelectAug,
banding with distracted driving detection models to promote the accuracy for
different data distributions. Our method first extracts the important features of
the image by utilizing image segmentation technology, then the extracted fea-
tures are used to enhance the image in order to obtain the prominent regions
of the image. The augmentation method is mainly applied to improve the accu-
racy under different data distributions. It decreases the influence of background
information and enables models to focus more on the most important features
in the driving scenario. The main contributions of this paper are as follows:

1. We propose a data augmentation method in distracted driving detection to
solve the data insufficient problem in real-world scenarios. Compared with the
baseline methods and other augmentation methods, experiment results show
great improvement on the accuracy and generalization performance using
SelectAug in these cases.

2. Our method is designed for distracted driving detection, which implements
the Yolact++ [17] model trained as the upstream task and can automatically
segment important features in complex driving scenes thus avoiding a lot of
manual annotation work.

3. Extensive experimental evaluations on the StateFarm dataset show that the
models using SelectAug outperforms prior methods by a considerable margin
for distracted driving detection.

2 Related Work

2.1 Distracted Driving Detection

With distracted driving becoming one of the main causes of traffic accidents, dis-
tracted driving detection has gradually been paid more attention. In the early
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days, researchers determined whether a driver was distracted by the movement
of the eyes and head. [20,23,24] based on the movement of the eyes and head
detected behaviors of distracted driving. Currently, deep learning for action
recognition has become mainstream [14,15,19,21,22]. There are several open
datasets (SUE-DP dataset [27], StateFarm dataset [18] and AUC dataset [25])
that are exploited for the distracted driving detection. SUE-DP dataset includes
four types of distracted driving behaviors “grasping the steering wheel”, “oper-
ating the shift lever”, “eating,” and “talking on a cellular phone”. [26] used
machine learning to detect distracted driver behaviors in SUE-DP dataset. The
distracted driver detection dataset of the StateFarm is comprised of images
labeled with one of the following ten actions: safe driving, texting using the
right hand, talking on the phone using the right hand, texting using the left
hand, talking on the phone using the left hand, operating the radio, drinking,
reaching behind, hair and makeup, and talking to passengers. In [14–16], they
used deep learning technology to detect drivers’ behaviors. American University
in Cairo (AUC) distracted driving dataset is similar to StateFarm. In 2018, Eraqi
and Abouelnaga etc. [25] introduced the AUC dataset which combined three of
the most advanced methods in deep learning, namely inception module with
residual blocks and hierarchical recursive neural network, in order to improve
the performance of driver distraction detection.

Although at present a lot of attention has been paid to the distracted driving
detection field, most of these tasks [13–15,19–22,25] only focus on the accuracy
improvement under the same data distributions, rather than the different data
distributions. Due to the different data distribution (resolution of the camera on
different datasets, installation location, wide Angle, installation angle different,
or seat, steering wheel position is different), it causes a large decrease in the
accuracy of the model trained by open dataset in the real-world scenarios with
fewer samples.

2.2 Data Augmentation

Currently, data augmentation [5–7,11] has proven to be a crucial method for solv-
ing various challenges in the deep learning tasks, including image classification,
natural language understanding and semi-supervised learning. Data augmenta-
tion mainly is employed to reduce the over-fitting phenomenon of the network.
By transforming the training images, a network with the stronger generalization
ability will be obtained, which can better adapt to the application scenarios. Ran-
dom Erasing [7] and Cutmix [11] mask or modify randomly selected rectangular
regions of images. Mixup [6] combines two images to generate an unseen train-
ing sample. Augmix [5] utilizes reinforcement learning to find the best strategy
for selecting and combining label-invariant transforms. Although these methods
[5–7,11] increase the effective data size and promote diversity in training exam-
ples, the randomness and uncertainty of these data augmentation methods may
destroy the key features of images that is critical for detecting driving behav-
iors. Thus, a new data augmentation method is proposed for distracted driving
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(a) (b)

Fig. 1. The architecture of Network. The overall operation of the network is as fol-
lows: (a) In the selection module, the image segmentation network is used to segment
instances of an image and select the most important instances of the image according to
the rules we set, such as drivers, water cups and cell phones. These important instances
are mixed according to the position of the original image to obtain a SelectAug image.
Then the original image and the SelectAug image are weighted combined to obtain
the Aug image. (b) In the prediction module, the Aug images are input into the deep
neural network to obtain the results of image classification.

detection, which aims to enhance the selected key features of the images and
make other unimportant information be weakened.

3 Preliminaries

In the Section, we first introduce an augmentation method “SelectAug”, and
then illustrate the architecture of the network. We use the term “SelectAug” to
refer to a data augmentation method that enhances images by using selected
important regions which are obtained by image segmentation technology.

3.1 SelectAug

SelectAug is a kind of data augmentation method, which can improve the robust-
ness of the model and the uncertainty estimation of migration when training and
test data are mismatched.

The SelectAug aims to make the regions including important features
enhanced, while other regions will be weakened. In order to get the regions con-
taining important features, we apply the image segmentation model to segment an
image and obtain all instances of the image. However, many instances are unim-
portant for distracted driving detection, we only need to segment the instances
that are critical for identifying distracted driving behaviors. Thus SelectAug algo-
rithm is applied to solve the problem. Figure 1 shows that SelectAug consists of
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two main steps. Firstly, in the selection module, the image segmentation network
is used to segment key instances of images and select the most important instances
according to the stated rules. These important instances are mixed according to
the position where it is in the original image to obtain SelectAug image. Then,
we weighted it with the original image to get the augmentation image. The imple-
mentation details of SelectAug algorithm are as follows.

Algorithm 1. SelectAug
Require: Image segmentation model M , Image I, Classes Cn, Thresholds Tn;
Ensure: SelectAug Image SI ;
1: Initialize the selected objects Os;
2: Getting all objects Oall and their confidence values Conall by the model M ;
3: k = len(Oall)
4: for i from 1 to k do
5: if COi ∈ Cn & ConOi ≥ Tc then
6: Os ← Oi

7: end if
8: end for
9: Getting SI by mixing Os in an image according to the position of the image itself.

10: return SI

We input image segmentation model M which has been trained, an image I,
classes Cn we need in the distracted driving scene and the thresholds Tn. Each
class corresponds to a threshold Tc in the Tn. We segment the image I by using
the model M in order to get all objects Oall and their confidence values Tall. It
is assumed that the object Oi belongs to the class COi

and its confidence value
is ConOi

. If COi
is included in the classes Cn and its confidence value ConOi

is
greater than the threshold Tc of the class COi

, the object Oi will be selected. Oi

will be added to Os, where all the selected objects Os are combined according
to their positions in the original image, the SelectAug image SI is obtained. All
images are processed by this algorithm.

In order to decrease the error caused by the inaccurate image segmentation
model, we introduce the original image I and SI for weighted combination to
get the augmentation image Aug. The combination of SI and I is as follows:

IA = ws × Is + wo × Io (1)

where Is, Io and IA represent the SelectAug image, the original image and the
Aug image, ws and wo represent the weights of SelectAug image and the orig-
inal image. Because Is ∈ Io, Is ∈ IA when wo + ws = 1. In other words, it’s
certain that the regions that we select will be retained, while the other regions
become weaker with a decrease of wo when wo + ws = 1. Due to IA contains
all key instances of the original image, the influence of the inaccurate image
segmentation model will also be reduced.
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3.2 Architecture

The architecture of our method is shown in Fig. 1, including selection module
and prediction module.

Selection Module. Selection module enhances the original images so as to
obtain the Aug images. In this module, we select the Yolact++ [17] model which
has been trained on the COCO [10] dataset to segment images. We get the Aug
images by using the SelectAug method, which retains the key features of the
original image. The non-critical background information in original images will
be weakened, while the critical features will be retained. Thus the model will
focus on the regions including key features and model’s ability of identifying
critical features will be strengthened. Besides, it also reduces unnecessary noise
interference from background information.

Figure 3 shows the enhanced effect with different weighting schemes.

Prediction Module. After image processing, the convolutional neural network
is used as the backbone network, which can extract the features of images and
classify the images. ResNet50 [12] is applied as the backbone networks to predict
the driving behaviors of the drivers. Besides, we consider integrating VGG16,
ResNet50 and Xception [9,12,13] to achieve optimal prediction results.

4 Experiments

In this section, we first describe the experimental setting and implementation
details. Then we evaluate our models with quantitative comparisons to other
methods. Finally, we show the sensitivity analysis of the parameter to validate
the enhanced effect in different weights of the selectAug image.

4.1 Experimental Setting

Datasets. Our datasets mainly include two parts, the StataFarm dataset [18]
and Self-Collection dataset. In order to verify the feasibility of our work under
different data distributions, we need to collect Self-Collection dataset from the
real-world scenes which is mismatched from the StateFarm dataset. The State-
Farm dataset contains 22714 images (18277 images in the training set and 4,437
in the test set). The dataset consists of 10 classes (C0–C9, safe driving, texting
using the right hand, talking on the phone using the right hand, texting using the
left hand, talking on the phone using the left hand, operating the radio, drink-
ing, reaching behind, hair and makeup, and talking to passengers) as shown in
Fig. 2. The Self-Collection dataset includes 3,200 images, which are taken from
15 persons. This dataset is similar to the StataFarm dataset and it is only used
as a test dataset in order to ensure that the training and test datasets are dis-
tributed differently. Figure 2 shows some samples of our datasets. Pedestrians
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(a) C0 (b) C2 (c) C4 (d) C6 (e) C8

(f) C1 (g) C3 (h) C5 (i) C7 (j) C9

Fig. 2. Samples from StateFarm and Self-Collection datasets represent the ten classes
(C0–C9). The five samples (a–e) are from StateFarm dataset, and the others (f–j) are
from Self-Collection dataset. Pedestrians and other objects outside the window are
not filtered out in the Self-Collection dataset, and the images of the Self-Collection
dataset are taken from different cameras and angles. The Self-Collection dataset is
more complex and diverse.

and other objects outside the window were not filtered out in the Self-Collection
dataset, and the angle we took was also different from the StateFarm dataset.
Due to the images of the Self-Collection dataset were taken from different cam-
eras and angles, it was more complex and diverse. And we need to process the
StataFarm dataset by the SelectAug in order to obtain an enhanced dataset
Driver IMGS-PBP including all Aug Images.

Evaluation Metric. We use accuracy as an evaluation metric.

Accuracy =
TP + TF

TP + TF + FP + FN
(2)

Accuracy is closeness of the measurements to a specific value. This metric gen-
erally describes the ability of the classifier to predict the labels. Formula 2 is
the formula of accuracy, where TP = True positive, FP = False positive; TN =
True negative, FN = False negative.

−
M∑

c=1

yo,c log(po,c) (3)

Our experiment applies cross-entropy cost function as loss function as shown in
Formula 3. The purpose of the models is to minimize this value. In Formula 3, M ,
log and y respectively refer to the number of classes, the natural log and binary
indicator (0 or 1) if class label c is the correct classification for observation o.
And p refers to predicted probability that observation o belongs to class c.
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Table 1. Results comparison on StateFarm dataset.

Method Acc. (%) Loss

Yan et al. [16] 70.6 0.72

He et al. [9] 84.0 0.50

Hu et al. [15] 85.4 0.48

DD-RCNN [14] 86.0 0.39

Ours 90.1 0.33

Ours+Ensemble 95.1 0.15

4.2 Implementation Details

We use Yolact++ [17] model trained on the COCO [10] dataset to segment image
avoiding a lot of manual annotation work, and we apply VGG16 [9], ResNet50
[12] and Xception [13] as image classification network, which are pre-trained on
the ImageNet [8] dataset. We set person, water cup and mobile phone as selected
classes Cn. And we set Tn including the highest confidence value of the person
class and the top three in the water cup and mobile phone classes. Besides, we set
wo = 0.7, wo is the weight of selectAug image combined with the original image.
In order to ensure that the experiment is only affected by data augmentation,
we use the same hyperparameters for the StataFarm and Driver IMGS-PBP
datasets in the image classification network. The ratio of training dataset to test
dataset is 8: 2. We set lrate = 0.001, the drop = 0.5, and epochs drop = 40.
Besides, the early stopping and SGD strategies are used in all experiments.

4.3 Results

We experimented with the StateFarm dataset and the Self-Collection dataset.
We train models on the StateFarm dataset and Driver IMGS-PBP dataset. And
we test these models on the StateFarm dataset to evaluate the results under
the same data distribution. In order to obtain the results under different data
distributions, we test these models on the Self-Collection dataset.

Results Under the Same Data Distribution. In order to verify the effec-
tiveness of SelectAug on distracted driving detection, we designed relevant exper-
iments and compared them with previous methods on the StateFarm dataset.
Our method uses ResNet50 as backbone to detect driving behaviors. It should
be noted that Ensemble model uses hard voting of the VGG16, ResNet50 and
Xception models for classification. Compared with other methods, the accuracy
of our method is greatly improved. From Table 1, our method achieves state-
of-the-art accuracy under the same data distribution. Our method pays more
attention to the foreground information including key features, no longer pays
attention to the background information in the scene of distracted driving detec-
tion. Table 1 shows that the SelectAug has an excellent effect on improving the
accuracy of distracted driving detection.
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Table 2. Results under different data distributions.

Method Acc. (%) Loss

Vgg16 43.8 2.43

ResNet50 48.0 2.43

Xception 40.6 2.11

Ensemble 50.4 2.23

Ours+Vgg16 77.6 0.99

Ours+ResNet50 71.8 1.20

Ours+Xception 79.0 0.76

Ours+Ensemble 85.2 0.64

Table 3. SelectAug vs. other data augmentation methods

Model Acc. (%) Loss

RandomErasing [7] 35.2 4.83

MIXUP [6] 53.1 1.68

CUTMIX [11] 55.1 1.63

AUGMIX [5] 56.0 1.59

Ours 71.8 1.20

Ours+Ensemble 85.2 0.64

Results Under Different Data Distributions. In order to verify the accu-
racy and loss function of our method under different data distributions, we test
models on Self-Collection dataset. Since there is almost no method for different
data distributions of distracted driving detection scenarios in the past, we imple-
mented several recent classic image classification [9,12,13] models as the baseline
methods. Table 2 shows all baseline methods do not work well under different
data distributions. The experiment shows that all results using the SelectAug are
better than the baseline methods under different data distributions. SelectAug
retains the regions including key characteristics and weaken other regions, which
enables the model to learn the knowledge related to distracted driving detection.
Therefore, the models using our method have better generalization performance
and robustness under different data distributions.

SelectAug vs. Other Data Augmentation Methods. To make the compar-
ison fair, we carried out experiments using the same network and datasets. We
trained ResNet50 models for all methods on the StateFarm dataset and tested
the models on the Self-Collection dataset. From Table 3, our method achieves
state-of-the-art accuracy on Self-Collection dataset. Compared with other aug-
mentation methods, it shows that SelectAug augmentation is more suitable for
distracted driving scenarios under different data distribution. Most previous data
augmentation methods [5–7,11] may destroy the key features of original images,
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(a) ws=0 (b) ws=0.1 (c) ws=0.3 (d) ws=0.5

(e) ws=0.7 (f) ws=0.8 (g) ws=0.9 (h) ws=1

Fig. 3. The enhanced effects with different weight schemes. ws indicates the weight of
the SelectAug image in Aug Image.

Fig. 4. Accuracy and Loss of SelectAug in the different weights.

which create augmented images with wrong or ambiguous labels. The difference
of our method to theirs is that our method tries to retain key regions directly
and weaken others regions of original images whereas their methods just try to
make sure the augmented images which are enhanced randomly are similar to
the current training images. The method can increase the data volume and pro-
mote the diversity of data. At the same time, this method can preserve the key
areas of the image so that the newly generated images contain the key features,
so as to ensure that the newly generated images are effective data rather than
noise. Therefore, our method has significant improvement under different data
distribution in distracted driving detection scenarios.

4.4 Sensitivity Analysis of the Parameter

In the following experiments we show the influence about different weights of
SelectAug images under different data distributions. The weight represents the
proportion of the selectAug images when we weighted combine it with the origi-
nal image. Figure 3 shows the enhanced effect to images with different weighting
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schemes. Figure 4 shows the effects of our method under different weights of the
SelectAug image. When the weight = 0, it means that we input the original
images into the prediction module, the model is almost unusable under differ-
ent data distributions. When SelectAug is applied in the scene, the accuracy is
greatly improved. And our method works best when the weight equals to 0.7.
Thus we choose 0.7 as the weight of the selectAug image.

5 Conclusion

In this paper, we propose a novel augmentation method called SelectAug which
weighted combines the original images and the regions including important fea-
tures according to the spatial position, in order to solve the problem about data
shifts encountered under different data distributions. Throughout an extensive
evaluation, we have demonstrated that not only the accuracy of the model is sig-
nificantly improved under the same data distribution, the generalization perfor-
mance of the model also becomes better when the training data and the test data
are distributed differently by applying our method. The experimental results on
the StateFarm dataset show that our method outperforms prior methods by a
considerable margin. Furthermore, our method achieves good robustness under
different data distributions for distracted driving detection. Our method enables
models trained in open datasets to be used in real-world scenarios. In the future
work, we will consider to improve the generality of our method in other vision
tasks such as visual scene description and human object interaction detection.
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Abstract. To overcome high computational cost suffered by statistical
inference algorithms used in traditional topic models, recently, Varia-
tional AutoEncoder (VAE) frameworks have been proposed for topic
modeling. However, the vanilla VAE model is originally introduced for
unsupervised learning, which cannot meet more precise and customized
requirements. In addition, the approximate posterior distribution in VAE
is often selected as a Gaussian with a diagonal covariance matrix. This
unimodal choice may hinder the ability of representation of latent space.
In view of these limitations, in this paper, we propose to use Gaussian
mixture model and Householder Flows for topic modeling under semi-
supervised settings. We assume a document is associated with a mixture
of classes, and a class is modeled as a multivariate Gaussian over latent
topics. Specifically, an input document is encoded by a network into
a discrete distribution, which not only serves the classifier for predic-
tion, but also acts as mixing weights of Gaussian components. Another
network is adopted to learn the parameters of Gaussian components.
Additionally, Gaussian mixture is transformed by a Householder Flow
to produce a more general posterior distribution. The effectiveness of
the proposed model has been validated by the experiments performed
on several standard datasets.

Keywords: Topic model · Variational autoencoder · Semi-supervised
learning · Gaussian mixture model · Householder flow

1 Introduction

Topic models are proposed to summarize and cluster documents by unveiling
the patterns of words and phrases [6]. A wide range of real-world applications
could benefit greatly from topic modeling [2,27]. Arguably the most well-known
topic model is Latent Dirichlet Allocation (LDA) [7]. There are also numerous
variants that extend LDA [3,21]. However, the inference approaches adopted
by LDA and its variants suffer from heavy computational cost and burdensome
mathematical derivations, which reduces the scalability to large datasets [4].
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Fig. 1. A schematic of the basic assumption. First, a distribution over classes is associ-
ated with each document. Under each class, latent variables are modeled as a multivari-
ate Gaussian with a diagonal covariance matrix at first. After Householder transforma-
tions, these Gaussians become more complex distributions with non-diagonal covari-
ance matrices. The class weights are used to combine Gaussian mixture components.
They are also used to predict class labels.

In view of these limitations, neural networks (NNs) are introduced to under-
take the task of inference [22]. One typical example is Variational AutoEncoder
(VAE) [11]. It utilizes the neural network structure to encode continuous latent
variables, and the Stochastic Gradient Variational Bayes algorithm (SGVB) to
approximate true posterior distributions [11]. VAE uses an inference network to
approximate latent topic variables conditioned on input text [19,25]. However,
these VAE-based topic modeling approaches have two main limitations.

The first limitation is that the vanilla VAE is mainly proposed for learning
unlabeled data. However, an increasing number of demands for more precise,
customized and controllable topic models require researchers to utilize partially
labeled text data to build topic models under semi-supervised settings [18]. Par-
tially labeled data are not only valuable for performance [31], but also feasible
and practicable to obtain. Unfortunately, extending VAE-based topic models to
semi-supervised learning is often non-trivial, since the vanilla VAE is not appli-
cable to model both input labels and data simultaneously [11,24].

The second limitation is that the selected approximate posterior distribution
in VAE, usually a Gaussian with diagonal covariance matrix, is often not sophis-
ticated enough to model the true posterior [8]. This Gaussian distribution for
hidden variables in topic models is a rigid choice to represent the latent space,
since it cannot model multi-mode factors and correlated latent variables. A num-
ber of approaches have been proposed to increase the flexibility of variational
distributions to accommodate real-world applications, such as Structured VAE
[10], Auxiliary VAE [17], etc. Among them, the normalizing flow approach [26]
is proved to be intuitive, effective, and compatible to VAE framework.

To address the above limitations, in this paper, we propose SVAE-GH, a VAE-
based semi-supervised topic modeling framework with the combination of Gaus-
sian mixture model (GMM) and Householder Flows (HF), for a more flexible
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modeling of the latent space. SVAE-GH extends our previous model [30] by
introducing Householder Flows for a better topic correlation modeling. The basic
assumption is that each document is endowed with two types of latent variables,
class labels and latent topics. A document is associated with a mixture of classes
with different weights. A class-dependent latent topic is modeled as a multivari-
ate Gaussian distribution. By now, each Gaussian component is associated with
a diagonal covariance matrix, which means topics are uncorrelated between each
other. To improve the flexibility and to model topic correlations, a Householder
Flow is further applied to the Gaussian mixture distribution to produce more
complex approximate posteriors. The main idea is illustrated in Fig. 1. The effi-
cacy of the proposed model has been validated by the experiments performed
on three benchmark datasets, with comparisons to four baseline topic models.

2 Preliminaries

2.1 Variational Autoencoder

Given a dataset X = {x1, . . . ,xN}, generally, we intend to maximize the log-
likelihood ln p(X) =

∑N
i=1 ln p(xi). By introducing some latent variable z, the

likelihood can be marginalized as p(x) =
∫

pθ(x|z)p(z) dz. However, the inte-
gral of the marginal likelihood is often computational intractable. To overcome
this issue, the vanilla VAE proposes an inference procedure (an encoder) q(z|x)
to approximate the true posterior. And the so-called Evidence Lower BOund
(ELBO) will be maximized instead,

ln p(x) ≥ Eq(z |x)[ln p(x|z)] − DKL[q(z|x)‖p(z)] (1)

where p(x|z) is the decoder and p(z) is the prior, and KL denotes the Kullback-
Leibler divergence (KLD). During implementation, q is often assumed to be a
Gaussian with a diagonal covariance matrix, parameterized by neural networks.

2.2 Normalizing Flow

To construct more flexible latent variables, a series of invertible transformations
can be applied to the original variables. The invertible transformation is denoted
as an invertible function f . Suppose the probability density function (PDF) of
a continuous random vector X is p(x), and Y = f(X). The PDF of Y is

Y ∼ p(y) = p(x)
∣
∣
∣
∣ det

df

dx

∣
∣
∣
∣

−1

(2)

where |det J | denotes the absolute value of the determinant of the Jacobian.
If a series of invertible functions ft, t = 1, . . . , T are applied, we obtain a

normalizing flow. Suppose the initial random vector is z0, and its distribution is
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denoted as q0(z0). Then zT can be obtained by zT = fT ◦ · · · ◦ f1(z0), and the
distribution of the final random vector zT is

zT ∼ p(zT ) = q0(z0)
T∏

t=1

∣
∣
∣
∣ det

dft

dzt−1

∣
∣
∣
∣

−1

(3)

According to [23], any expectation EqT
[h(zT )] over qT can be represented as

the expectation over q0

EqT
[h(zT )] = Eq0 [h(ft ◦ · · · ◦ f1(z0))] (4)

Equipped with normalizing flow, the ELBO can be re-written as

ln p(x) ≥ Eq0(z0|x)[ln p(x|zT )] − DKL[q0(z0|x)‖p(zT )] +
T∑

t=1

ln
∣
∣
∣
∣ det

∂ft

∂zt−1

∣
∣
∣
∣ (5)

The first term on the RHS of Eq.(5) is the reconstruction error. However, dif-
ferent from the ELBO in vanilla VAE, the encoder models z0 given x, and the
decoder models x given zT . The second term acts as a regularization term.
The third term comes from the normalizing flow. In this paper, we adopt the
volume-preserving Householder Flow (HF) to model the transformation.

3 Methodology

Now we describe the principle of SVAE-GH. Some details can be found in our
previous work [30]. Here we highlight the differences brought by HF.

3.1 Problem Formalization

We denote a corpus, i.e., a collection of documents as X = {x1,x2, . . . ,xN},
where xi ∈ R

|V| denotes the vector that corresponds to the representation of the
i-th document, and V denotes the vocabulary. By introducing a latent variable
z ∈ R

K , where the dimension of latent space K is consistent with the number of
topics, xi is allowed to be parameterized and then sampled from the conditional
distribution p(xi|z). The dataset can be divided into a labeled set Xl and an
unlabeled set Xu. Xl is associated with its labels as Xl = {(xi, yi)}, where
yi ∈ {y1, y2, . . . , yM} is the label of corresponding xi. We intend to use VAE
to train a probabilistic model, to mimic the generation of X. Therefore, a) the
posterior p(yj |xi) will be used to predict class labels; b) the posterior p(zk|xi)
will be used to recover the latent topics of documents.

3.2 Variational Objective

Under the semi-supervised setting, the marginalization of p(x) can be factorized
by the chain rule of conditional probability as p(x) =

∫∫
pθ(x|y,z)p(y,z) dy dz
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by introducing both variable y and z. The likelihood pθ(x|y,z) will be learned by
an decoder network. And the posterior p(y,z|x) of prior p(y,z) will be approx-
imated by another distribution qφ(y,z|x), which will be modeled as an encoder
parameterized by φ. The KLD between the true posterior and qφ will be mini-
mized to get the objective.

If normalizing flows are not taking into consideration, one can refer to
Kingma’s work [12] to obtain the ELBO for labeled and unlabeled data. When
normalizing flow is considered, we need to slightly change the forms of objectives.

Specifically, we assume the factorization as p(y,zT ) = p(y)p(zT ). We also
factorize qφ as the product of the encoder of class labels qφ1(y|x) and the encoder
of latent variables q

(0)
φ2

(z0|x, y), where q
(0)
φ2

represents the initial distribution of
latent variable z0, which is a Gaussian with diagonal covariance matrix. φ1, φ2

and θ are the parameters for the encoder of the latent label variable, the encoder
of the latent topic variable and the decoder, respectively.

Since y can be observed in Xl, the ELBO of a single labeled sample is only
conditioned on z

log p(x, y) ≥ − L(x, y)

= Eq0(z0|x,y)

[
ln pθ(x|y,zT )

] − DKL

[
q0(z0|x, y) || p(y)p(zT )

]

+
T∑

t=1

ln
∣
∣
∣
∣ det

∂ft

∂zt−1

∣
∣
∣
∣

(6)

Following [12], a cross entropy objective is introduced to empower the model to
classify unlabeled data with only limited labeled data. Then the objective for all
(x, y) ∈ Xl is

Jl = Ep̃l
[L(x, y)] + Ep̃l

[− log qφ1(y|x)] = Ep̃l
[L(x, y)] + H[p̃l, qφ1 ] (7)

where p̃l is the empirical distribution of labeled data, H is the cross entropy.
The ELBO for one sample in Xu is

log p(x) ≥E
q
(0)
φ

[
log pθ(x|y,zT )

] − DKL

[
q
(0)
φ (y,z0|x) || p(y,zT )

]

+
T∑

t=1

ln
∣
∣
∣
∣ det

∂ft

∂zt−1

∣
∣
∣
∣

(8)

Here y cannot be observed and it is considered as a hidden variable. Equation(8)
can then be factorized and re-written as log p(x) ≥ Eqφ1

[−L(x, y)−log qφ1(y|x)
]
.

The objective for the whole dataset Xu is

Ju = Ep̃u(x)

[
Eqφ1

[L(x, y)] − Eqφ1
[− log qφ1 ]

]

= Ep̃u(x)Eqφ1
L(x, y) − H[y|x]

(9)

where H[y|x] denotes the conditional entropy of y given x.
Finally, the objective for the whole set X is J = Jl + Ju.
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Fig. 2. An overview of our modeling framework. Two encoders, φ1 and φ2, are imple-
mented separately, one for class probabilities and the other for the parameters of
Gaussian components. Latent variables are first sampled from the GMM, and then
transformed by a series of Householder matrices. After that, the decoder θ is used to
reconstruct documents.

3.3 Model Framework

An overview of our method is illustrated in Fig. 2. The framework consists of
basically three modules, a semi-supervised learning module, a Gaussian mixture
module and a Householder Flow module, which will be detailed below.

The basic assumptions about the generation procedure of a corpus of docu-
ments are given as follows.

– Each class corresponds to a Gaussian distribution on latent variables, which
represent the topics that guide the generation of documents.

– A document is assumed to be a mixture of several classes. And the weight for
each class corresponds to the weight of each Gaussian.

– The approximate posterior of the initial latent variable z0 is modeled as a
mixture of Gaussians with diagonal covariance matrices. And the final latent
variable zT is transformed by a Householder Flow from z0.

Encoder. As mentioned before, two encoders qφ1 and qφ2 will be imple-
mented for latent variable y and z0 separately. Specifically, multi-layer percep-
tron (MLP) will be used for both encoders. Parameter πφ1 , which is parameter-
ized by the first network, produces label y after a softmax function. It also acts
as the mixing weights for the generation of GMM variable z0,

q
(0)
φ2

(z0|x, y) =
M∑

j=1

πj(x;φ1)N
(
z0|μj(x, y;φ2),diag(σ2

j (x;φ2))
)

(10)

where μj and σ2
j are produced by the second inference network parameterized

by φ2. And the re-parametrization trick will be adopted for the sampling of z0.
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Then z0 will be transformed by H1,H2, . . . , HT to obtain a more complex
latent variable zT for the decoder to reconstruct the data.

Decoder. The decoder network pθ(x|zT ) will adopt the implementation used
in NVDM [19], in which a document will be decomposed as D words wd, where
wd is a one-hot representation of the d-th word. Then decoding a document will
be transformed as decoding D words by

pθ(x|zT ) =
D∏

d=1

pθ(wd|zT ) (11)

NVDM introduces a K × |V| matrix R to represent the correlations between
topics and the vocabulary. It uses a softmax regression model to evaluate the
score of a word given a topic. Details can be found in [19].

3.4 KLD Between Two GMMs

Equation (6) requires the computation of the KLD between a GMM with a
diagonal covariance matrix and a standard Gaussian. The details can be found
in [14]. We only show the final results here. The upper bound of L(x, y) is

L̃(x, y) = − Eq0(z0|x,y)

[
ln pθ(x|y,zT )

]

+
M∑

j=1

πj

[
log

πj

π̃j
− 1

2

K∑

k=1

(
1 + log σ2

jk − σ2
jk − μ2

jk

)] (12)

where πj is the mixture weight in Eq.(10), π̃j is any mixture weight of standard
Gaussians, μjk and σ2

jk are the parameters of the k-th coordinate of the j-
th mixture component of the approximate posterior GMM of the initial latent
variable z0, i.e., μj(x, y;φ2) and σ2

j (x;φ2) in Eq.(10), respectively.
Then the final objective becomes

J = Ep̃l
L̃(x, y) + Ep̃u

Eqφ1
L̃(x, y) + H[y|x] − H[p̃l, qφ1 ] (13)

To minimize the objective, some instantiations of the stochastic gradient descent
algorithm, such as ADAM will be used to obtain optimized network parameters.

4 Experiment

4.1 Datasets

Three public available benchmark datasets are used to perform our experiments,
including 20NewsGroup1, a news dataset covering 20 newsgroups with different
topics; IMDB2, containing the positive and negative polarized movie reviews; and

1 http://qwone.com/∼jason/20Newsgroups.
2 https://ai.stanford.edu/∼amaas/data/sentiment/.

http://qwone.com/~jason/20Newsgroups
https://ai.stanford.edu/~amaas/data/sentiment/
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Table 1. Dataset Statistics. Training and Testing show how the datasets are split. |V|
is the vocabulary size, and |Y | is the number of labels.

Dataset Total Training Testing |V| |Y |
20NewsGroup 18,846 11,314 7,532 2,000 20

IMDB 50,000 25,000 25,000 10,000 2

AGNews 127,600 120,000 7,600 5,000 4

AGNews [29]3, another dataset containing news articles from 4 classes. Details of
the descriptions and the statistics of these datasets can be found in corresponding
links and Table 1. To comply the convention of semi-supervised learning, the
labels of only 20% of training samples are kept.

4.2 Evaluation Metrics

To evaluate the performance of our model, we adopt two commonly-used metrics,
perplexity and Pointwise Mutual Information (PMI), to validate the performance
of topic models. Perplexity measures to what degree the predicted topic distri-
bution is consistent with test data. It is defined as a function of cross entropy

Perplexity = exp
( − 1

N

∑

i

1
Di

log p(xi)
)

(14)

where N is the number of documents, Di is the number of words in the i-th
document. This value of perplexity is often approximated by its upper bound
[19,20]. PMI [1] evaluates the co-occurrence probabilities of topic words as

PMI(ωi, ωj) = log
p(ωi, ωj)

p(ωi)p(ωj)
(15)

where p(ω) is the probability of seeing the topic word ω in a random document
in the test set. And the PMI of a topic is evaluated by summing the PMI of
the top ordered pairs of topic words,

∑
i<j PMI(ωi, ωj). For the whole dataset,

PMI is evaluated by averaging the PMI of each topic.

4.3 Comparison Methods

Four well-known topic models are chosen as our baselines. 1) LDA [7], the most
famous and well-known topic model based on statistical inference [9,16]. 2) CTM
[13], an extension of LDA by introducing topic correlations using logistic normal
distribution for topic mixtures [5,28]. 3) NVDM [19], a pioneer study that re-
formulates topic models as deep generative neural networks. NVDM significantly
improves model performance over statistical inference based models. 4) CHTM
[15] adopts HF to extend NVDM. The difference between CHTM and our method
is that we use GMM to model the latent space based on class latent variables,
while CHTM just uses a single Gaussian for topic modeling.
3 http://groups.di.unipi.it/∼gulli/AG corpus of news articles.html.

http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
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Fig. 3. Comparison results of Perplexity (the lower the better) and NMI (the higher
the better) with respect to the variations of the numbers of latent topics.

4.4 Parameter Settings

Encoder φ1 takes dense representations of documents as its inputs, which are
obtained by summing the pre-trained Glove vectors of words. On the contrary,
encoder φ2 takes sparse bag-of-words (BoW) representations as its inputs. Hence,
the dimensions of these two representations are different. For dense embeddings,
it is set to 100. For BoW, it is set to the vocabulary size of the dataset. The
sizes of the hidden layers of the MLP for both φ1 and φ2 are set to 500. The
number of nodes in the output layers of the MLP are consistent with the number
of labels. Then HF is applied. The length of HF is set to 10. The settings of the
decoder is the same as those used in NVDM, except that we use the transformed
latent variables to reconstruct document words. During training, learning rate,
batch size and the maximum epochs are set to 10−4, 64, and 1,000, respectively.
Other settings are identical to our previous work [30].

4.5 Comparison Results

According to the results shown in Fig. 3, we find that, (1) The proposed method,
SVAE-GH, achieves the lowest (best) perplexities under almost all settings.
For dataset 20NewsGroup and IMDB, SVAE-GH outperforms other 3 baselines
under all 5 settings of topic numbers (dimension of latent variable). For datasets
AGNews, SVAE-GH and NVDM achieve similar performance, and outperform
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Table 2. Ablation analysis of Perplexity. z0 stands for the method using only the
initial latent variable for decoder. zT stands for the method with HF transformations.

Perplexity

# of Topics 20NewsGroup IMDB AGNews

z0 zT z0 zT z0 zT

25 732 733 1962 1960 988 967

50 748 751 1984 1956 959 942

100 801 798 2064 1982 943 952

150 819 808 2114 1994 949 933

200 842 834 2153 2027 942 932

other 2 baselines. (2) With regard to PMI, all 3 NN-based methods outperform
Non-NN methods on datasets IMDB and AGNews, but Non-NN methods out-
perform NN-based methods on dataset 20NewsGroup. The reason is probably
related to the differences of the true structure of latent spaces represented by
different datasets. SVAE-GH performs better than NVDM, and shows similar
performance as CHTM, which indicates the effectiveness of introducing topic cor-
relations. (3) Non-NN-based methods, such as LDA and CTM, can not achieve
comparable results as NN-based methods, such as NVDM and our method. Fur-
ther, as the number of topics increases, non-NN-based methods show obvious
deviation of performance. On the contrary, NN-based methods, including SVAE-
GH, are robust to this parameter.

In conclusion, the proposed SVAE-GH exhibits effectiveness in topic model-
ing, especially under relatively small number of latent topics.

4.6 Ablation Study

Adopting GMM has been validated in our previous work [30]. In this paper,
we perform ablation experiments to examine whether there are gains when HF
is adopted. We compare the performance between using the initial latent vari-
able z0 and the transformed latent variable zT for decoding. The corresponding
perplexities are shown in Table 2, from which we discover that, by using House-
holder Flow, the performance of our model with respect to perplexity improves,
especially with IMDB and AGNews. With dataset 20NewsGroup, perplexities
are improved as the number of latent topics increases. In general, introducing
HF to latent space can remarkably improve the model’s performance under a
majority of conditions.

5 Conclusion

We propose SVAE-GH, a novel semi-supervised framework based on variational
autoencoder for topic modeling. We introduce Gaussian mixture model and
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Householder Flow to learn a more general and more flexible distribution for
latent space modeling. Specifically, we use two MLP neural networks for encod-
ing the parameters of the Gaussian components and the mixing weights of these
components separately. After learning the initial Gaussian mixture model with
diagonal covariance matrices, Householder Flows are adopted to transform the
distribution into a more general and flexible one. Transformed variables are then
sampled from the learned distribution for decoding and reconstructing original
documents. This model has been validated by the experiments performed on
three benchmark datasets, comparing to four baselines, including both none-
neural network-based and neural network-based methods. We hope that this
study could shed some light on neural topic modeling and related applications.
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Abstract. Temporal topic models often cannot effectively approximate
topics on social media data sets due to the noise levels inherent in these
types of data. Topic-noise models are important for modeling the short,
sparse, noisy posts that we see throughout social media platforms. We
propose using topic-noise models for temporal topic modeling, specifi-
cally D-TND (dynamic topic-noise discriminator). It enables topic and
noise distributions to be generated together, modeling both the rela-
tionships between words in documents and the evolution of words and
noise. We also propose Dynamic Noiseless Latent Dirichlet Allocation
(D-NLDA), which integrates D-TND’s time-dependent noise distribution
with the topic distributions of Dynamic LDA, and show its propensity
for improving dynamic topic models by effectively separating noise and
topics on two large Twitter data sets.

1 Introduction

Topic models are important unsupervised tools for quickly understanding large
textual data sets. They can be particularly useful when attempting to under-
stand the discussion surrounding a large number of social media posts [4,22,26].
A number of topic models have been designed specifically to more accurately
model social media data [5,16,21,27]. More recently, a class of topic models
called topic-noise models was proposed to jointly model topic and noise distri-
butions on social media data [8]. None of these models incorporate a temporal
dimension. Temporal topic models enable researchers to not only identify the
relevant underlying topics in a data set, but also to track the evolution of these
topics through time. Recently, there has been a renewed interest in temporal
topic models, with the publication of a graph-based dynamic topic model [12],
and an embedding-based dynamic topic model [10]. Even though these and other
dynamic topic models have been proposed, they do not explicitly model noise.

In this paper, we adapt a topic-noise model to a temporal social media setting,
with the goal of improving topic coherence by successfully removing noise from
evolving topics. We accomplish this by adapting a topic-noise model, Topic-Noise
Discriminator (TND) [8] to a temporal setting, Dynamic Topic-Noise Discrim-
inator (D-TND). D-TND takes advantage of the joint topic-noise distribution
generation of TND, while at the same time enabling the tracking of topics and

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13281, pp. 429–443, 2022.
https://doi.org/10.1007/978-3-031-05936-0_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05936-0_34&domain=pdf
https://doi.org/10.1007/978-3-031-05936-0_34
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noise through time by passing topic and noise distributions from one time period
to the next. We then propose a new temporal model, Dynamic Noiseless Latent
Dirichlet Allocation (D-NLDA), a temporal version of Noiseless Latent Dirich-
let Allocation (NLDA) [8] that integrates the proposed D-TND with Dynamic
LDA (D-LDA). The advantage of this approach is that the noise distribution
of D-TND and topic distribution of D-LDA evolve together, allowing for more
accurate filtering of noise, and better-trained topic-word distributions at each
time period. As we will see, D-NLDA is much greater than the sum of its parts.

The contributions of this paper are as follows. 1) We propose a new
temporal topic-noise model that models noise and topics over time. 2) We propose
a new temporal topic model that accounts for noise and generates higher quality
topic sets. 3) To improve scalability, we introduce a vocabulary limiting function
that reduces the vocabulary size of temporal data sets while maintaining topic
quality. 4) We conduct an empirical analysis, both quantitative and qualitative,
using two large Twitter data sets, that demonstrates the abilities of D-TND and
D-NLDA to scale to accommodate such data sets, and to successfully identify
high-quality topics. 5) We publish our model and evaluation code for others to
use to continue advancing research in the field of temporal topic modeling.1

The paper is organized as follows: Sect. 2 presents related literature. Section 3
defines the notation used throughout the paper, details the models that were used
in creating our proposed models, and presents our proposed models. Section 4
presents our quantitative and qualitative empirical analyses of our models.
Finally, Sect. 5 presents our conclusions.

2 Related Literature

2.1 Static and Social Media Topic Models

The most well-known topic model is Latent Dirichlet Allocation (LDA) [3]. The
basis upon which many topic models are built today, LDA is a bag-of-words
model that approximates topics by maximizing the likelihood of documents in a
k-dimensional Dirichlet distribution, where k is the number of topics. As docu-
ments are observed, words are probabilistically placed into topics and the prob-
ability distribution of each document over the topic set slowly changes to reflect
the co-occurrence of words within the data set. After the model is trained, words
that occur together in the same documents are more likely to be in the same
topic. The result is topics containing words that are related according to the
observed documents.

It has been apparent for some time that social media data sets require
specially-constructed topic models to deal with the noise levels, short length,
and sparsity of the data at hand. Biterm Topic Model detects topics, not from
unigrams, but from bigrams generated from text [27], decreasing the vocabu-
lary to improve quality. Self-Aggregating Topic Model (SATM) follows a similar

1 Our code can be found at https://github.com/GU-DataLab/gdtm.

https://github.com/GU-DataLab/gdtm
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vein, aggregating related short posts into longer pseudo-documents and generat-
ing topics from the pseudo-documents. GPUDMM [16] improves the coherence
of topics by sampling related words from an embedding space. Percolation-based
Topic Models (PTM) [5] detects topics in social media data using a graph struc-
ture. A word co-occurrence graph is broken down into small communities and
then built back up into small but coherent topics. For a more complete survey
of unsupervised topic models, including ones designed for social media, see [6].

Topic-Noise Models [8] jointly model topics and noise distributions in order
to more effectively remove noise from topics. Churchill and Singh propose a
topic-noise model called Topic-Noise Discriminator (TND), which adds a noise
distribution to LDA [3]. They use TND in an ensemble with LDA, called Noise-
less Latent Dirichlet Allocation (NLDA), to create low-noise topics in domain-
specific social media data sets. In this paper, we use the static TND and NLDA
as a starting point to build two dynamic models, D-TND and D-NLDA.

2.2 Temporal Topic Models

Topics over Time (TOT) [25] jointly models time and topics, allowing for a con-
tinuous timeline of topics as opposed to discretized time periods like in D-LDA.
Other early temporal topic models include MTTM [18], continuous DTM [24],
Topic Tracking Model [13], and MDTM [14]. Dynamic Topic Models (D-LDA) [2]
is a direct temporal adaptation of LDA [3]. Approximated probability distribu-
tions from a given time period are passed into the subsequent time period, in
order to track the evolution of topics over time. We will draw on this temporal
structure to create our dynamic topic-noise model, which incorporates a noise
distribution into the model.

Bhadury et al. optimize D-LDA using multithreading and an optimized
inference algorithm [1]. Topic Flow Model (TFM) [9] models temporal social
media data using a graph structure. It runs a directed depth-first search from
selected seed words to connected words and back to confirm mutual associa-
tion. Dynamic Embedded Topic Model (D-ETM) [10] takes the Embedded Topic
Model (ETM) [11], and adds a time-varying aspect. D-ETM runs ETM for each
time period in the data set, passing parameters into the next time period like
in D-LDA. The graph-based Dynamic Topic Model (GDTM) [12] is a scalable
dynamic topic model for social media. The model assigns documents to topics
based on the overlap of documents’ graph representations, and partitions the
documents based on graph density. One issue with GDTM is that it does not
output the most probable words per topic, instead opting to output partitioned
documents. Because of this, it is not directly comparable to models such as
DTM, D-ETM, and our proposed models. In our experiments, we test our mod-
els against D-LDA, TFM, ToT, and D-ETM. The largest difference between our
models and this previous work is that we explicitly model noise as a separate
distribution. None of these other dynamic models do that.
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3 Approach

In this section, we define our notation (Sect. 3.1) and review D-LDA, TND, and
NLDA (Sect. 3.2). We then describe how we adapt the topic-noise models TND
and NLDA to a dynamic setting to produce D-TND (Sect. 3.3) and D-NLDA
(Sect. 3.4). We then propose a method for improving the scalability of dynamic
topic models, with the goal of producing dynamic models capable of handling
large social media data sets (Sect. 3.5).

3.1 Notation

Let D represent a dataset consisting of M documents, where D =
{d0, d1, . . . , dM−1}. A document d is a group of N words, where d =
{w0, w1, . . . , wN−1}. A vocabulary V is the set of unique words in D. In our
context, a word is a unigram. However, words can be replaced by phrases with-
out loss of generality.

A topic z consists of � related words, z = {w0, w1, . . . , w�−1}. The words in z
should be coherent and interpretable by a human. A topic set Z contains k topics,
Z = {z0, z1, . . . , zk−1}, that represent a summary of D. A noise distribution Ω is
a probability distribution over V , where each word has a non-zero probability of
being a noise word. In the case of temporal models, we use discretized time. We
refer to a data set as consisting of T time periods, {t0, t1, . . . , tT }, where topics
within a time period are constructed together.

3.2 Dynamic LDA, Topic-Noise Discriminator, and Noiseless LDA

Dynamic LDA (D-LDA) was designed to approximate topics over time, but does
not take into account the noise inherent in social media data [2]. Topic-Noise
Discriminator (TND) was designed to simultaneously approximate noise and
topic distributions in social media data sets. While it can be used as a standalone
topic model, it is best used in an ensemble, like Noiseless LDA (NLDA)[8]. NLDA
leverages the noise distribution of TND and topic-word distribution of LDA to
produce more coherent, high quality topics in social media data sets [8]. We
briefly describe these core components of our dynamic topic-noise models here.

D-LDA. D-LDA defines a topic-word distribution βt,k, where t is the time
period, and k is the number of topics. For a document d, its document-topic
distribution αt,d is a probability distribution over βt. When generating a word
for document d on time slice t, a topic z is chosen from βt conditioned on αt,d.
The word wt,d is drawn from βt,z. This results in topics that are generated
relative to time, as well as the observed documents.

TND. Topic-Noise Discriminator is a generative model that assumes that
documents are a mixture of topics and noise. Words are drawn from a mixture of
the topic-word distribution and noise distribution to generate documents. Each
word in an observed document is assigned to the noise or topic-word distribution,
based on its prior probabilities of being in each. A Beta distribution (Eq. 1) is
used to determine whether a word belongs to the noise or topic distribution. βi

z is
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the frequency of word i in topic z, and Ωi is the frequency of word i in the noise
distribution. The γ parameter can be increased to weight the Beta distribution
toward assigning a word to the chosen topic over the noise distribution.

λ = Beta(
√

βi
z + γ,

√
Ωi) (1)

NLDA. While TND effectively models noise, it does not always indepen-
dently find the strongest topics. Noiseless LDA [8] joins the noise distribution
from TND with the topic distribution of LDA [3] to produce more coherent
topics than those generated by TND or LDA. Assuming that we have a noise
distribution Ω from TND and topic-word distribution βz from LDA, NLDA inte-
grates them based on each word’s probability of being in the noise distribution
and topic-word distribution for a given topic, in a process similar to Eq. 1.

3.3 Constructing a Dynamic Topic-Noise Model

We now describe how D-TND is constructed. βt,k is the topic-word distribution
for t over k topics. The document-topic distribution αt is a probability distri-
bution over βt. α and β are initially group Dirichlet priors (document-topic and
topic-word distributions, respectively) in the first time period, but once trained,
are passed to future time periods as individual priors. αt and βt are initialized
from their t − 1 counterparts.

We define Ωt to be the noise distribution at time t. Like αt and βt, Ωt is
conditioned on Ωt−1. This inherently assumes that words that were noise in
t− 1 are still noise in t. While this will make it harder for noise words from t− 1
to be included in topics, it does not make it impossible, merely less likely.

Fig. 1. Plate notation for D-TND, for three time periods.

Figure 1 shows plate notation for D-TND. Observed words are designated as
noise or topic words within a time period based on a Beta distribution condi-
tioned on the word’s probability of being in the chosen topic or in noise. This
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process is represented by λ in Fig. 1, and is tuned by γ. The designation is
indicated by the switching variable x. For a given time period t, we generate a
document d as follows:

1. Draw the number of words N for d.
2. Draw the topic distribution θt,d from the Dirichlet distribution, conditioned

on αt.
3. For each word wi, 0 ≤ i < N :

(a) Draw a topic zi from the topic distribution θt,d.
(b) Draw a word from either zi or the noise distribution Ωt, according to λt,

indicated by switching variable x.
(c) If drawing from zi, draw wi from βt,zi

.
(d) If drawing from Ωt, draw wi from Ωt.

3.4 Constructing Dynamic NLDA

D-TND’s most versatile feature is its noise distribution, which is trained along-
side topics. Like TND for static models, D-TND can be easily integrated into gen-
erative temporal topic models. This makes D-TND particularly useful because
researchers can use it in concert with whichever model they prefer.

Just as NLDA integrates TND’s noise distribution and LDA’s topic-word
distribution, D-NLDA integrates D-TND’s noise distribution and D-LDA’s topic-
word distribution. To create D-NLDA, we train a noise distribution Ω on D for
each time period t ∈ T using D-TND. Our assumption that noise and topics both
evolve over time and in relation to each other allows us to track and integrate
topics and noise in the style of NLDA, with a temporal aspect. We generate
topics on D using D-LDA, and combine D-LDA’s topic-word distribution βt, k
with D-TND’s Ωt to create topics for each time period. A word is removed or
retained using the Beta distribution, conditioned on βi

t,z and Ωt,i (Equation 2).

Beta

(√
βi

t,z + γ,
√

Ωt,i(φ/k)
)

(2)

After the status of wi has been determined, we follow the same guidelines as
NLDA, incrementing Ωt,i by one if wi is noise, or by βi

t,z if wi belongs to z. This
ensures that, for time period t only, wi has a high chance of not being put in
another topic if it already belongs to one. As Ω has already been computed for
all t ∈ T , this does not affect the status of wi in future time periods.

3.5 Vocabulary Reduction to Improve Topic Model Performance

As we mentioned in Sect. 1, topic models are often too slow to infer topics on
large data sets in a temporal setting. The original D-LDA [2], D-ETM [10],
and ToT [25] only show results on data sets of tens of thousands of documents.
In order to facilitate better scaling for topic models, we propose reducing the
vocabulary size of data sets.

We define a vocabulary limiting function (VLF) to be a function that removes
words from the vocabulary V , resulting in a smaller vocabulary V ′. We define
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the frequency of a word wi ∈ V to be fw. Given a threshold fmin, we compute
the VLF as follows:

V ′ = V ′ ∪ {wi} ∀wi ∈ V |fwi
> fmin (3)

In practice, we set fmin such that |V ′| is approximately equal to some tar-
get vocabulary size. It is also worth pointing out that this approach indirectly
reduces the size and possibly the number of documents. Instead of removing
documents that may have important words, we remove words from documents
that are less likely to be high probability words in a topic model. We evaluate
the effects of VLF in Sect. 4. We note that the performance impact of this may
be small in cases where the lowest frequency words are much less frequent than
the average word.

4 Empirical Evaluation

In this section, we present our empirical evaluation of D-TND and D-NLDA using
quantitative and qualitative approaches. We begin by describing our experimen-
tal setup, including data sets, preprocessing, and model parameters (Sect. 4.1).
We then present a quantitative evaluation (Sect. 4.2), and a qualitative evalua-
tion of our models’ performance (Sect. 4.3).

4.1 Experiment Setup

Baseline Algorithms. In our experiments, we tested against four state-of-
the-art temporal topic models: D-LDA [2], ToT [25], TFM [9], and D-ETM [10].
They are each described in Sect. 2.

Data Sets. In our analysis, we use two Twitter data sets. The first data set
contains posts about the 2020 United States Presidential Election from August
1 to November 14, with weekly time periods. We refer to this data set as Elec-
tion 2020. The second data set, Covid-19, contains posts about the Covid-19
pandemic, collected between March 2020 and February 2021, with monthly time
periods. We collected these documents using hashtags related to the election and
Covid-19, respectively, via the Twitter Streaming API, and randomly sampled
200,000 posts per time period.2

We use our vocabulary limiting function (VLF) to create different versions of
each data set. The large version is the full vocabulary, (fmin = 0). We set fmin

such that |V ′| ≈ 10, 000 for each time period to get medium-size data sets.3 fmin

was set such that |V ′| ≈ 5, 000 for each time period for small-size data sets.4

Table 1 shows the exact effects of the VLF for each data set. While there is a

2 Leaving data sets in their original form, with a large skew in data set size from
time period to time period, reinforces the skews in more pronounced ways in the
probability distributions, leaving effects on future time periods.

3 fmin = 15, 20 in Election2020 and Covid-19 for the medium-size data sets.
4 fmin = 40, 50 for Election2020 and Covid-19 for the small-size data sets.
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significant reduction in vocabulary, the number of documents remains high. In
Covid-19, just over 100,000 documents, or about 4%, are lost, while in Election
2020, about 200,000 documents, or about 6.67% are lost. As we will see, this loss
in documents has very little effect on the quality of topics.

Table 1. Data Set Qualities for different size variants of vocabulary. |D|/t and |V |/t
are average data set size and vocabulary size within a time period.

|D| |D|/t |V | |V |/t

Covid-19 Large 2,400,103 200,008 1,041,552 172,116

Medium 2,326,370 193,864 28,198 10,483

Small 2,292,266 191,022 13,890 5,645

Election 2020 Large 3,000,042 200,002 648,193 96,671

Medium 2,836,549 189,103 33,391 9,484

Small 2,800,209 186,680 18,010 5,153

Text Preprocessing. Text processing can have a positive impact on topic
model performance [7]. For our data sets, we tokenize on whitespace, remove
lowercase text, remove URLs, punctuation (including hashtags), and stopwords.
We also remove deleted posts and user tags.

Model Parameters. We conduct a sensitivity analysis for D-TND and
D-NLDA, testing each model with an array of different parameter settings. Due
to space limitations, we present the results for the best-performing settings. For
D-TND, we found the best parameter settings to be α = 1, β = 0.01, γ = 25,
and k = 30. The best settings for D-NLDA were the same settings as D-TND,
with φ = 10.5 For D-LDA, the best parameter settings were α = 1, β = 0.01,
and k = 30. The chosen α and β parameters consistently resulted in better
topic quality than other options. The γ parameter is less sensitive than α and
β, but γ = 16 was also a reasonable choice. We found that γ = 0 or 36 were too
extreme of settings for our data sets, designating too few and too many words
as noise, respectively. Changing the φ parameter can lead to far more coherent
topic sets. We found that φ = 5 resulted in too few noise words being filtered
from topics, but that φ > 15 resulted in some quality words being removed from
topics. We note that it is straightforward to quickly iterate through φ values,
since the filtering of noise is the fastest part of the model. For D-ETM and ToT,
the parameters suggested in the papers were used, with k = 30 to match the
parameters of the other models. While a sensitivity analysis was conducted, It
is possible that with more extensive hyperparameter tuning, performance could
be improved.

5 Parameters for sensitivity analysis across our models: k = {10, 20, 30, 50, 100}, α, β =
{0.01, 0.1, 1.0}, γ = {0, 16, 25, 36}, φ = {5, 10, 15, 20, 25, 30}.
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Table 2. Time per iteration on each data set (s=seconds, m=minutes).

Model Covid-19 Election 2020

Large Medium Small Large Medium Small

D-TND 19.0 s 18.2 s 14.6 s 21.9 s 15.2 s 13.8 s

D-LDA 1.5 s 1.4 s 1.32 s 2.0 s 1.2 s 0.9 s

D-NLDA 20.6 s 19.7 s 16.0 s 23.6 s 16.4 s 14.8 s

D-ETM 480 m 117 m 87 m 360m 177 m 138m

4.2 Quantitative Analysis

Evaluation Metrics. Similar to previous work, we assess a model’s ability
to detect coherent, interpretable topics using a normalized point-wise mutual
information score (NPMI) [15]. NPMI attempts to quantify the relatedness of two
words within a topic, given their cofrequency, and is a commonly used evaluation
metric [8,10,11,16,20,21]. For a pair of words (x, y), we define the probability
of them appearing in the same document as P (x, y). We define the probability
of any word w appearing in a document as P (w). Using these probabilities, we
compute the NPMI of a topic z ∈ Z:

NPMI(z) =

∑
x,y∈z

log(
P (x,y)

P (x)P (y) )

− log(P (x,y))
(|z|

2

)

A higher NPMI indicates high topic coherence and lower noise penetration, or
that a topic model is creating meaningful topics. We refer to the topic-wise NPMI
score as topic coherence.

Unfortunately, a model can, in theory, find ten variants of the same meaning-
ful topic. We care about the ability of a topic model to detect unique topics from
the data,. Topic diversity is the fraction of unique words in the top 20 words of
all topics in a topic set [11]. A model with high topic diversity is able to find
almost entirely unique topics, while a model with low diversity is not able to
successfully delineate between unique topics. Topic quality, proposed by Dieng
et al. [10], is the product of the coherence and diversity scores. As we care about
both metrics, a product of the two gives a good overall score for a topic set.

Given the size of our data sets, we are concerned about efficiency. For our
experiments, models were run on a machine with twelve 2.2GHz virtual cores,
with 50GB of memory. D-TND, D-NLDA, D-LDA, and D-ETM take advan-
tage of parallelization or multi-threading (Mallet for D-LDA and D-TND [17],
PyTorch for D-ETM [19]). ToT did not scale to the size of our data sets. It was
allowed to run for three days, and did not complete an iteration for either data
set. TFM ran for three days and did not finish constructing topics. The topics
found contained only a single word, meaning its topic coherence would be zero.
As a result, we do not include TFM and ToT in the analysis that follows.

Efficiency. To analyze efficiency, we compute time per iteration for the
other methods (see Table 2). As we can see, D-LDA is the most efficient model.
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Because it is only computing a topic distribution and not a noise model as well,
this result is not surprising. D-TND and D-NLDA are the next most efficient
models and are comparable to each other. Our models are between 300 and 1500
times faster than D-ETM, the most recent temporal topic model in our study.

D-ETM is implemented using PyTorch, a highly optimized Python frame-
work for neural networks [19]. It is run for ten iterations on the small and medium
data sets and five iterations on the large data set given that each iteration took
approximately 8 h to run. D-LDA and our models were run for 500 iterations.
Highlighting its ability to work on larger data sets. Part of the differential in com-
putation time between D-ETM and the other models is likely due to the fact that
D-ETM is implemented in Python, whereas the other models are implemented
in Java. It is possible that a Java implementation of D-ETM would be faster
than its Python implementation, but given the complexities of the underlying
model, it is unlikely that a Java version of D-ETM would be faster than D-TND
or D-NLDA.

(a) Election 2020 results. (b) Covid-19 results.

Fig. 2. Coherence (y-axis) and Diversity (x-axis)

Coherence and Diversity. This section focuses on the quality of the mod-
els. Figure 2 plots the mean coherence and diversity score for D-TND (circles)
and D-NLDA (stars) alongside D-LDA (squares) and D-ETM (X) for each data
set. Coherence is plotted on the Y-axis, and diversity is plotted on the X-axis.
The results for the large-size data set are colored red, the medium-size blue, and
the small-size green. The closer to the top-right corner of the plot a model is, the
better. D-NLDA performs the best out of any model on both data sets. In the
Election 2020 data set, there’s little difference in D-NLDA’s performance across
the different-size data sets. In the Covid-19 data set, we see a slight deterioration
in terms of coherence when we use VLF to remove words from the vocabulary.
Table 1 shows the difference between the Election 2020 and Covid-19 data sets
in terms of how many words are removed from each vocabulary. By aiming to
retain approximately 10,000 and 5,000 words per time period in the medium
and small data sets, far more words were removed from the Covid-19 vocabu-
lary than the Election 2020 vocabulary. It seems that in the case of Covid-19,
we removed too many words from the vocabulary. This adversely affected the
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topic quality. In the Election 2020 data set, we retained all or most of the topic
words, which is reflected in the maintained high topic quality across data set
sizes. While we can certainly improve the scalability of topic models by reducing
vocabulary size, removing too many words can sacrifice topic quality.

D-NLDA has a slightly higher (1.5%) coherence than D-TND, but a 25%
higher diversity score. Compared to D-LDA, its diversity is 7% higher, and its
coherence is 8% higher. D-NLDA once again is the best model on all data set
sizes, beating D-TND by 0.35 in coherence and 14% in diversity, and beating
D-LDA by 0.64 in coherence and 7% in diversity. D-ETM’s poor performance
is likely due to its inability to finish enough iterations in a reasonable amount
of time to detect high-quality topics. Finally, for all models except D-ETM, the
vocabulary size had little effect on the overall topic quality. The low variance in
performance on D-TND, D-LDA, and D-NLDA reflects our theoretical assertion
that removing the lowest frequency words should have very little affect on topic
model performance. For D-ETM, the coherence of topics increases with the use
of VLF, indicating that D-ETM benefits from smaller vocabularies.

(a) Election 2020 results over time. (b) Covid-19 results over time.

Fig. 3. Topic Quality Plot for Election2020 and Covid-19 medium-size data sets.

In order to understand how models perform over time in relation to one
another, we plot topic quality, the product of the coherence and diversity scores,
for each model in each time period in Fig. 3. Plotting topic quality over time
highlights the similarity of D-NLDA and D-LDA, but also highlights the clear
improvement of D-NLDA with the addition of D-TND’s noise distribution.

Table 3. Percent judge agreement on Covid-19 temporal topics.

Topic Vaccines Lockdowns Cases Testing Schools Masks Global impact Economy India China

Agreed % 100 100 100 100 100 100 100 100 80 100

4.3 Qualitative Analysis
Our qualitative analysis shows D-NLDA’s ability to track topics through time.
For the Covid-19 data set, we asked five human judges to individually label ten
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topics generated by D-NLDA that persisted throughout every time period. In
Table 3, we show agreement between the judges, with the agreed upon label for
each topic. For all topics but one, every judge independently concluded the same
topic label. These findings indicate that D-NLDA is able to generate high quality
topics that humans can easily comprehend.

Fig. 4. Evolution of the Vaccine topic in the Covid-19 medium-size data set.

We highlight this ability with a deeper look at the evolution of the vac-
cine topic through time periods, seeing it evolve and grow (see Fig. 4). Words
highlighted green appeared in the topic in the previous time period, and words
highlighted yellow appeared in the topic in any previous time period. The topic
starts out with a wish for a vaccine and with concern for healthcare workers. It
evolves into a reality in the middle of 2020 and goes through drug trials. Finally,
the vaccine is approved in late 2020 and rolled out at the beginning of 2021.
D-NLDA allows us to see a very detailed evolution of the Vaccine topic that
contains limited noise throughout the entirety of the year, showing the promise
of topic-noise models within a temporal setting.

In the Election 2020 medium data set, we show the ability of D-NLDA to
accurately track multiple relevant topics through time. To produce topic labels
for this data set, we relied on a manually-generated topic set, curated by political
scientists who closely studied the 2020 Election on social media platforms [23].
Figure 5 shows how the topic proportions of selected topics change throughout
the election. New topics emerge and disappear throughout the campaign. We
can see the large impact of the party conventions in time periods two and three
(late August 2020), and how quickly talk about conventions ceases after they
are over. The same happens with topics about Presidential and Vice Presidential
Debates in time periods eight to ten (early October).
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Fig. 5. Election 2020 Topic proportions (y-axis) over time periods (x-axis).

The Conventions and Debates topics represent bursty topics, which appear
out of nowhere and disappear quickly as attention turns away from them. These
bursty topics could be missed or muddled with other topics by static mod-
els. In general, this topic flow visualization highlights the ability of a dynamic
topic-noise model like D-TND or D-NLDA to produce highly relevant and easily
understandable topics with a temporal aspect. The ability to understand how
topics evolve over an election is important both for voters and candidates.

5 Conclusions

In this paper we create a dynamic temporal-noise model that incorporates a
noise distribution into a temporal topic model for the first time (D-TND), and
weave together D-TND with the well-known D-LDA model to create D-NLDA.
These approaches bring to temporal topic models the noise-filtering benefits of
topic-noise models that are so necessary for social media data sets.

We demonstrate the ability of our proposed methods to both scale to large
temporal data sets, and produce high quality topics on the data sets through
time periods spanning weeks and months. We show how using a vocabulary
limiting function (VLF) can speed up topic models, and in some cases, produce
better topics. Finally, we share our code on GitHub for others to use.6
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Abstract. Attributed networks are a type of graph structured data
used in many real-world scenarios. Detecting anomalies on attributed
networks has a wide spectrum of applications such as spammer detec-
tion and fraud detection. Although this research area draws increasing
attention in the last few years, previous works are mostly unsupervised
because of expensive costs of labeling ground truth anomalies. Many
recent studies have shown different types of anomalies are often mixed
together on attributed networks and such invaluable human knowledge
could provide complementary insights in advancing anomaly detection
on attributed networks. To this end, we study the novel problem of
modeling and integrating human knowledge of different anomaly types
for attributed network anomaly detection. Specifically, we first model
prior human knowledge through a novel data augmentation strategy. We
then integrate the modeled knowledge in a Siamese graph neural net-
work encoder through a well-designed contrastive loss. In the end, we
train a decoder to reconstruct the original networks from the node rep-
resentations learned by the encoder, and rank nodes according to its
reconstruction error as the anomaly metric. Experiments on five real-
world datasets demonstrate that the proposed framework outperforms
the state-of-the-art anomaly detection algorithms.

Keywords: Anomaly detection · Graph neural networks ·
Self-supervised learning

1 Introduction

Attributed networks are a kind of graph structured data, which exists ubiq-
uitously in many real-world scenarios, such as social networks, biological net-
works, and financial transaction networks [1,22]. Over the past few decades,
many research efforts have been devoted to performing different learning tasks
on attributed networks. Anomaly detection is one such task, which in the con-
text of attributed networks aims to identify nodes with significantly different
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13281, pp. 444–457, 2022.
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patterns from other nodes in terms of their attributes, communities, etc. [1,28].
It has become a critical research area that has broad applications in various
real-world scenarios [4], such as spammer detection [1] and fraud detection [3].

Extensive progress has been made towards anomaly detection on attributed
networks over the past few years [8–10,19,20,25,30,31]. Generally speaking,
existing anomaly detection approaches can be mainly divided into two main-
streams, namely Non-deep Learning (Non-DL) methods and Deep Learning
(DL) methods. Non-DL methods typically rely on various types of heuristic
anomaly measurements [30,31,34,35] or employ matrix decomposition tech-
niques [19,20,29] to detect anomalies while DL methods often resort to Graph
Neural Networks (GNNs) for the detection of anomalies [8,10,21]. It should
be noted that DL methods have shown superior performance over traditional
Non-DL methods [19,25,30,31] due to the strong capability of GNNs for learn-
ing node representations. Specifically, DL methods usually follow an encoder-
decoder learning scheme, where the encoder takes the given attributed network
as input, while the decoder reconstructs the graph structure and node attributes
and compares the reconstructed data with the original input for anomaly detec-
tion [8–10]. However, despite the superior performance, these approaches mainly
detect anomalies in an unsupervised manner due to the expensive labeling cost
of ground truth anomalies. Many recent studies have shown that there often
exist mixed types of anomalies on attributed networks, w.r.t. graph structure
and node attributes [19,44].

Fig. 1. A toy example of attribute anomaly and
structure anomaly on an attributed network.

For example, we present
two typical anomaly types,
namely attribute anomaly and
structure anomaly in Fig. 1.
There are a community of
CA software engineers and a
community of MA salesperson
in this network. For attribute
anomaly, the attribute value of node 4 is significantly different from others,
thus it is suspicious to be an attribute anomaly; for structure anomaly, node 6
belongs to the CA software engineer community by its attributes, however, it
also connects to a remotely related community of MA salesperson, rendering it
structurally abnormal. Beyond the anomalies in the above example, more types
of commonly encountered anomalies, e.g., community anomalies, have also been
identified and summarized by existing works [1,20]. As a summary, these stud-
ies equipped us with rich prior human knowledge of different anomaly types. In
fact, many learning related problems have witnessed a significant performance
improvement when human knowledge is considered [33,36,42]. Motivated by
such success, in this paper, we study an important research problem: whether
the prior human knowledge of different anomaly types could be harnessed to
advance anomaly detection on attributed networks.
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Although leveraging prior human knowledge of different anomaly types could
be potentially helpful for attributed network anomaly detection, how to properly
model and utilize such knowledge remains a daunting task mainly because of the
following two challenges: (1) Knowledge Modeling Challenge. How to properly
model the prior human knowledge of different types of anomalies on attributed
networks is the first challenge that needs to be tackled. The major problem here
is that such knowledge only encodes human understanding of possible anoma-
lous patterns on attributed networks, thus it does not have a concrete form and
cannot be directly leveraged. While many existing studies proposed to model
human knowledge as an invaluable data resource in addition to the original
input data [18,33,42], it still remains unclear how to model human knowledge
into concrete data resource that can be directly utilized in our case. (2) Knowl-
edge Integration Challenge. The second challenge centers around integrating the
prior human knowledge of anomaly types on attributed networks seamlessly into
the detection model. Traditionally, many existing works regard human knowl-
edge as an explicit supervision signal and integrate it into learning models by
designing a specific loss term [6,26,36]. However, in our problem, existing human
knowledge of anomaly types is not exhaustive, and an effective knowledge inte-
gration mechanism needs to be flexible enough to accommodate the available
knowledge rather than design a flawed loss term informed only by partial obser-
vation.

To tackle the above challenges, in this paper, we propose contrastive
anomaly detection (conad), a principled contrastive anomaly detection
framework on attributed networks. conad is capable of identifying anomalous
nodes on attributed networks by leveraging the prior human knowledge of dif-
ferent anomaly types. First, to tackle the knowledge modeling challenge, we
propose a novel data augmentation strategy which explicitly models and for-
malizes the prior human knowledge of different anomaly types as contrastive
samples (i.e., nodes whose patterns deviate significantly from existing nodes on
the input attributed network) on the augmented attributed network. Second,
to address the knowledge integration challenge, we propose to tightly integrate
the contrastive samples on the augmented attributed network into the anomaly
detection model with a well-designed contrastive loss. Methodologically, we first
propose to generate an augmented attributed network to model known anomaly
types. A Siamese GNN is employed as the encoder function to map both the
input attributed network and the augmented attributed network into an embed-
ding space. After that, a contrastive loss is designed based upon the normal
nodes on the input attributed network and contrastive samples on the aug-
mented attributed network, through which the human knowledge of different
anomaly types can be well harnessed. The proposed contrastive loss is jointly
considered with a graph reconstruction loss for end-to-end model training. Dur-
ing the detection phase, the suspicious score of each node is measured by the
magnitude of the reconstruction error, which serves as the metric to identify
anomalies, i.e., a larger error indicates the node has a higher chance of being
abnormal.
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The main contributions of this paper can be summarized as follows: (1)
Problem Formulation. We study a novel problem of modeling and leverag-
ing prior human knowledge of different anomaly types for anomaly detection
on attributed networks. (2) Algorithmic Design. We propose a principled
framework that models prior human knowledge of different anomaly types as
contrastive samples in the augmented attributed network; and integrates the
contrastive samples into the anomaly detection model with a well-designed
contrastive loss. (3) Experimental Evaluations. We perform comprehensive
experimental evaluations on real-world datasets to demonstrate the superiority
of the proposed contrastive attributed network anomaly detection framework.

2 Problem Definition

Notations. We use bold uppercase letters (e.g. A), bold lowercase letters (e.g.
x), and regular lowercase letters (e.g. a) to denote matrices, vectors, and scalars,
respectively. Besides, for a matrix A, we represent its (i, j)-th entry as Aij .
Similarly, for a vector y, its i-th element is denoted by yi.

Let G = {A,X} be an input attributed network, where A ∈ R
n×n and

X ∈ R
n×d denote the adjacency matrix and attribute matrix, respectively. The

problem of anomaly detection on attributed networks aims to assign a suspicion
score to each node that quantifies how likely it is to be abnormal. To utilize
prior human knowledge of anomaly types in this process, we assume there is an
additional human knowledge input ξ that consists of typical types of anomalies
studied in previous works and observed in real-world scenarios [1,8,22], e.g.,
attribute and structure anomalies shown in Fig. 1 before. With the additional
knowledge ξ, we hence formulate the following research problem.

Definition 1 Modeling and Leveraging Prior Human Knowledge of
Anomaly Types for Attributed Network Anomaly Detection. Given an
attributed network G = {A,X}, prior human knowledge ξ of anomaly types, our
goal is to model and formalize the abstract human knowledge ξ into concrete data
(denoted as M(ξ)), and then integrate it into a principled detection model f that
is capable of encoding both M(ξ) and G and ultimately detect anomalies in G.

3 The Proposed Framework

In this section, we introduce the proposed framework conad. It consists of
three major components as shown in Fig. 2, namely, knowledge modeling module,
knowledge integration module, and anomaly detection module. The overview of
each module is listed below followed by detailed descriptions.

Knowledge Modeling Module. Given the prior human knowledge ξ of different
anomaly types, we first use a novel data augmentation strategy to model and
formalize it as concrete contrastive samples. We achieve this by introducing
each known anomaly type encoded in ξ to the input attributed network G and
generate the augmented attributed network Gano accordingly.
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Fig. 2. Overview of conad. The lower-left box is the input attributed network for
anomaly detection. The upper-left box shows the knowledge modeling module. Dense,
Outlying, Deviated, and Disproportionate correspond to the prior human knowledge
of anomaly types. The middle is the encoder built on Siamese GNN to learn node
representations. The upper-right box presents two contrast strategies to integrate the
prior human knowledge modeled in Gano. The lower-right part is the decoder that
reconstructs both the structure and attributes of the input attributed network, which
detects anomalies with the reconstruction error.

Knowledge Integration Module. After modeling prior human knowledge ξ, we
feed both G and each Gano into a graph encoding architecture in which a Siamese
GNN acts as the encoder to learn representations of nodes. By using a Siamese
network, both graphs will be encoded into the same latent space, making it
possible to contrast between the node representations of G and Gano. After the
encoding phase, to tightly integrate the human knowledge in Gano, we propose
a well-designed contrastive loss. Specifically, the contrastive loss will guide the
encoder to represent normal nodes on the input attributed network and con-
trastive samples on the augmented attributed network differently. Consequently,
anomaly patterns of the augmented nodes can be captured.

Anomaly Detection Module. With the learned node representations, we aim
to reconstruct the graph structure and node attributes of the input attributed
network G with a decoder. The reconstruction errors produced by the recon-
struction phase are leveraged as suspicion scores in detecting anomalies on G.

3.1 Knowledge Modeling Module

We introduce the data augmentation strategy used to model the prior human
knowledge of different anomaly types on attributed networks in this subsection.
We consider four different types of anomalies on attributed networks (from both
the structure side and the attribute side), and introduce a certain amount of
anomalies belonging to each anomaly type to the input attributed network G
to form an augmented attributed network Gano. Each of these four augmented
anomaly types is illustrated in Fig. 3.
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Fig. 3. An illustration of four different types of anomalies on attributed networks based
on prior human knowledge.

Structure – high-degree. In social networks, spammers often follow and inter-
act with excessively numerous users [14]. To simulate this anomaly type, we
choose a certain amount of nodes with average degrees, and then connect them
to many other random nodes. The chosen nodes thus have an unusually high
degree and are considered structurally abnormal in the attributed network.

Structure – outlying. Another abnormal account type in social or e-commerce
networks is created in large quantities to spam certain posts [38]. They behave
like regular users but few users will follow them, and thus they do not belong
to any communities, thus different from the majority of the whole network and
deemed structurally abnormal. We simulate anomaly type by choosing a certain
amount of nodes and drop most of their edges on the input attributed network.

Attribute – deviated. A common attribute anomaly on attributed network is
a node with deviated attribute values from its neighbors [31]. In other words,
the attribute value of this node could be rather different from others in the same
community. To model this anomaly type, we first choose certain center nodes.
For each center node, we randomly sample a number of other nodes from the
entire network. We then calculate the similarity between the attribute vectors
of this center node and the others, and then assign the attribute vector of the
least similar one to the center node. In fact, through such generation process,
we are introducing community anomalies to the input attributed network.

Attribute – disproportionate. In e-commerce websites, dishonest sellers might
want to promote their products by setting unreasonably low prices or achieve
high sale volumes by recruiting dishonest buyers [11]. Both of these sale frauds
will result in unusually small or large numbers in certain node attributes. We
hence largely scale up or scale down the values of certain node attributes with a
preset probability to simulate this anomaly type of disproportionate numerical
values in certain node attributes.

After applying the four augmentation strategies above, we obtain an aug-
mented attributed network Gano, referred to as anomalous view. In the anoma-
lous view Gano, we have a label vector y, where yi = 1 denotes that node i
corresponds to one of those four known anomaly types, and yi = 0 otherwise.
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3.2 Knowledge Integration Module

Now, we integrate the modeled human knowledge of anomaly types into the
detection model through two essential components: (1) learning node represen-
tations; and (2) contrasting between different views.

Learning Node Representations. We first discuss how to encode both G and
Gano. In particular, we employ a Siamese GNN architecture as an encoder to
learn embeddings for nodes in both G and Gano. Generally, various GNNs can be
leveraged to learn node representations from attributed networks [40] based on
the information aggregation mechanism: h(l+1)

i = AGG({h(l)
i } ∪ {h(l)

j : j ∈ Ni})

where h(l)
i denotes the representation of node i in the l-th layer, and h(0)

i is the
input attribute of node i. Ni is the set of all neighbors of node i. AGG(·) is
an aggregation function that can be implemented by mean pooling, max pool-
ing, and many other operations [24]. In this paper, we specify the information
aggregation based on the self-attention mechanism in Graph Attention Net-
works (GAT) [39]. The reason is that GAT is able to account for different neigh-
bors’ contributions to the central node via assigning appropriate correspond-
ing importance weights. Thus it is capable of capturing complicated relations
in attributed networks. Each GAT layer follows the information propagation
scheme of h(l+1)

i = σ(
∑

j∈Ni
αijW(l)h(l)

j ), where αij = softmax(eij) = eij∑
k∈Ni

eik

and eij = σ
(
a� [Whi‖Whj ]

)
. Here αij is the attention weight between node

i and j. W(l) is a learnable parameter matrix for the l-th layer. W and a are
learnable parameters that are shared by all GAT layers for learning the attention
weights. ‖ denotes the concatenation operation. In practice, we stack multiple
GAT layers to form the encoder Enc for node representation learning.

Contrasting Between Views. To fully harness the power of human knowledge
in Gano, we propose to make a contrast between Gano and the given attributed
network (normal view) G. We expect the anomalous patterns on the attributed
network can be well characterized through such contrastive process. Since the
augmented anomalous nodes become different from both themselves and their
neighbors, we consider two different contrast strategies in this paper, and we
name them as Siamese contrast and Triplet contrast. The former contrast strat-
egy is performed by comparing the embedding representation of each abnormal
node in the anomalous view and its counterpart in the normal view. The lat-
ter contrastive strategy is performed for a connected node pair (i, j) where j
is considered abnormal in the anomalous view and i remains intact. It is called
“triplet” because three representations, i.e., the representation of i in the normal
view and the representations of j in both the normal and anomalous views are
involved. These two contrast strategies are described in detail below.
Strategy 1: Siamese Contrast. Suppose Enc encodes G and Gano through stacked
GAT layers into the final representations Z and Ẑ. Siamese contrast is performed



Contrastive Attributed Network Anomaly Detection 451

between zi and ẑi, i.e., the representations of each node i in the normal view and
the anomalous view. The loss function of Siamese contrast is defined as follows:

Lsc =
1
n

n∑

i=1

(Iyi=0 ·d (zi, ẑi) + Iyi=1 ·max {0,m − d (zi, ẑi)}) (1)

where I is the indicator function of the condition in its subscript. When applying
the Siamese contrastive loss, if yi = 1, i.e., node i is considered abnormal in Gano,
the distance between its representation in the normal and the anomalous view,
d(zi, ẑi) will be maximized with a margin no smaller than m. If yi = 0, i.e., node
i is not considered abnormal in Gano, then d(zi, ẑi) will be minimized.
Strategy 2: Triplet Contrast. In addition to the above strategy, we further pro-
pose Triplet contrast that works on a triplet of node representations. Specifically,
we consider each connected node pair (i, j) where j is an augmented anomaly
in Gano while i remains intact. The triplet of representations consists of three
representations zi, zj , and ẑj , and the loss function is defined as:

Ltc =
∑

∀Aij=1,
yi=0, yj=1

max {0,m − (d (zi, ẑj) − d (zi, zj))} . (2)

Through minimizing this loss function, our model will increase the gap between
two distances with a margin no smaller than m. Here d(zi, zj) is the distance
between the representations of i and its neighbor j in the normal view, and
d(zi, ẑj) is the distance between the representation of node i in the normal view
and that of its neighbor j in the anomalous view. Therefore, conad can enforce
an augmented anomaly to be far away from its neighbors, and thus the human
knowledge regarding this anomaly type can be harnessed.

3.3 Anomaly Detection Module

Besides learning from Gano which models prior human knowledge of anomaly
types, conad also needs to learn from the input attributed network G to detect
anomalies in it. Towards this objective, we aim to reconstruct the graph structure
and node attributes based on the learned node representations in normal view Z.
It has been proved in previous works [7,8,19] that reconstructing structures and
attributes helps the model to learn the normal patterns of the input attributed
networks, and since anomalies cannot be well reconstructed, they will therefore
be detected. Specifically, our model uses a decoder function Dec on the encoder
output Z. Dec consists of a GAT layer to reconstruct the adjacency and attribute
matrix from Z. Frobenius norm of the difference between the input and the
reconstructed matrix, i.e., reconstruction error, serves as the loss function:

Â = σ
(
Z · Z�)

, X̂ = GATLayer (A, Z) . (3)

Lrecon = λ
∥
∥
∥A − Â

∥
∥
∥
F

+ (1 − λ) ·
∥
∥
∥X − X̂

∥
∥
∥
F

. (4)

Here, σ(·) is a non-linear activation function, e.g., ReLU [27]. (·)� and ‖ · ‖2 are
the transpose and Frobenius norm on matrices. λ is a weighting factor to balance
the scales of the two reconstruction errors on the structure and attributes.



452 Z. Xu et al.

3.4 Summary

We summarize the whole process of our proposed model conad in this subsec-
tion. Our input is an attributed network G = {A,X} and prior human knowledge
of anomaly types ξ. We first model ξ through a novel data augmentation strat-
egy described in Sect. 3.1. We then have two attributed networks G and Gano. A
Siamese GNN encoder Enc is used to learn from prior human knowledge mod-
eled in Gano by contrasting between node representations in G and Gano with the
contrastive loss defined in Eq. (1) or Eq. (2). During this process, Enc learns to
distinguish normal and abnormal representations in the latent space, and thus
integrates the prior human knowledge. The node representations of G are fur-
ther fed into an anomaly detection module described in Eq. (3) to learn the
normal patterns in G with the reconstruction loss Lrecon. Hence conad learns
from both knowledge ξ and attributed network G with Lcl and Lrecon, respec-
tively. The total loss of conad becomes the summation of the contrastive and
reconstruction loss (η is also a weighting factor to balance the two loss terms).

Lconad = η · Lcl + (1 − η)Lrecon, Lcl ∈ {Lsc,Ltc
}

. (5)

4 Experiments

4.1 Datasets

Five different real-world datasets, namely, Flickr [15], Amazon [35], Enron [25],
Facebook [23], and Twitter [23], are used to evaluate the anomaly detection
performance of conad. (1) Flickr dataset contains user following and follower
relations on the eponymous photo-sharing website. There are 7,575 nodes (600
ground truth anomalies) and 23,938 edges in the entire network, and we follow
the same settings as [8,10,21] to obtain ground truth anomalies. (2) Amazon
& Enron. These two datasets contain ground truth anomalies. The Amazon
dataset represents co-purchase relations between items. The anomalies here con-
sist of erroneous categories or prices. There are 1,418 nodes (28 ground truth
anomalies) and 3,695 edges. Enron is a corporate email network. The anomalies
are employees who involve in the accounting fraud in this company. There are
13,533 nodes (5 ground truth anomalies) and 176,987 edges in total. (3) Facebook
& Twitter. We also use social networks in Facebook and Twitter, where users
form relations with others and share their “circles” of friends. We obtain ground
truth anomalies by introducing nodes that connect to randomly selected circles
or have abnormal attributes like [8]. There are 4,039 nodes (400 ground truth
anomalies) and 88,234 edges in the Facebook dataset, and we use 4,865 nodes
(500 ground truth anomalies) and 66,772 edges in the Twitter dataset1.

1 The anomaly labels in Flickr, Facebook, and Twitter datasets result from manual
injection, and the injection rule coincides with two of our data augmentations.
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4.2 Experimental Settings

We compare our proposed framework with the following four popular baseline
methods, including LOF [2], DOMINANT [8], AEGIS [7], and AnomalyDAE
[10]. Among them, the latter three are the state-of-the-art methods that employ
GNNs and a comparison with them can validate the superiority of our proposed
framework which harnesses the power of human knowledge.

For our proposed framework conad, the encoder Enc is initialized with two
layers of GAT, where the hidden sizes are 128 and 64, respectively. For the recon-
struction part, an additional GAT layer is applied for attribute reconstruction,
while dot product and sigmoid activation are applied for structure reconstruc-
tion. Two attention heads and LeakyReLU [41] activation are used for all GAT
layers. The margin m is set to 0.5 for both Siamese and Triplet losses, and the
model is denoted by conad-S and conad-T corresponding to the specific con-
trastive loss used, i.e., Siamese and Triplet. Euclidean distance is used as the
distance function d(·, ·). The ratio of augmented anomalies r is 10% for smaller
networks, i.e., Amazon, Flickr, Facebook, and Twitter, and 20% for the larger
one, i.e., Enron. The weighting factors λ and η are set to 0.9 and 0.7, respec-
tively. We train the model with Adam [17]. The area under ROC (AUC) serves
as the evaluation metric of anomaly detection performance.

Table 1. Anomaly detection performance (AUC scores) comparison. conad consis-
tently performs the best across all three datasets (higher is better).

Dataset Amazon Enron Flickr Facebook Twitter

LOF 0.510 0.581 0.661 0.522 0.511

DOMINANT 0.592 0.716 0.749 0.554 0.571

AEGIS 0.556 0.602 0.765 0.659 0.645

AnomalyDAE 0.610 0.552 0.694 0.741 0.688

conad-S 0.635 0.731 0.782 0.612 0.670

conad-T 0.620 0.731 0.759 0.863 0.742

4.3 Anomaly Detection Performance Comparison

Table 1 shows the anomaly detection performance of conad and baselines, where
conad outperforms all others in all of the five real-world datasets used. Specif-
ically, GNN-based models generally perform better than LOF, which does not
consider structure information. By modeling and integrating prior human knowl-
edge, conad achieves better performance than the other three GNN-based unsu-
pervised anomaly detection models. Besides, for networks with explicit commu-
nities, i.e., Facebook and Twitter, conad-T, which contrasts between each pair
of neighbors, performs better than conad-S, which only contrasts between the
representations of each individual node in the normal and anomalous views.
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4.4 Ablation Study

In this subsection, we conduct further experiments to study the improvements
brought by each module individually in the proposed framework conad on Ama-
zon dataset. The results are shown in Table 2, and similar observations can also
be found in other datasets. We first study the influence of the types of contrast-
ing between views, i.e., Siamese contrast and Triplet contrast. The performance
of conad-T with Triplet contrast is slightly worse than conad-S with Siamese

Table 2. Ablation study on the Amazon
dataset.

Variants of conad AUC score

conad-S 0.635

conad-T 0.620

w/o attribute anomalies 0.621

w/o structure anomalies 0.628

w/o contrasting between views 0.592

w/o reconstruction 0.510

contrast. However, the perfor-
mance on Facebook and Twitter
datasets shown in the previous sub-
section demonstrates the opposite.
We speculate that it is because the co-
purchase relation in Amazon datasets
does not have explicit communities,
contrary to the friendship relation in
the two social networks. Therefore,
contrasting between neighbors is not
very helpful. We then study how the amount of prior human knowledge modeled
affects the performance of conad. Towards this goal, we change the data aug-
mentation strategy in 3.1, where we solely model human knowledge of structure
(w/o attribute anomalies) or attribute (w/o structure anomalies) anomalies. The
performance of conad decrease with either of these two types removed, show-
ing that the more knowledge of anomaly types is given, the more conad can
harness it to facilitate anomaly detection. We also investigate the effectiveness
of the knowledge integration module. Concretely, we remove this module which
contrasts between normal and anomalous views entirely. The resulting model
becomes almost identical to DOMINANT, and the corresponding performance
drops drastically, which demonstrates that integrating prior human knowledge
is crucial in the superior performance of conad. Lastly, we study the influence
of the reconstruction. We remove the decoder used to reconstruct the structure
and attributes of the input attributed network, and apply LOF instead to the
nodes representations learned by the encoder. The performance shows that LOF
fails to detect anomalies from only those node representations. It proves that
the decoder and reconstruction also contribute a lot to anomaly detection.

4.5 Robustness of conad W.r.t. Different Ratios of Anomalies

At last, we study the robustness of conad on Flickr dataset where the ground
truth anomalies can be easily tuned. We omit the results on other datasets
due to the observation of similar patterns. We vary the ratios of ground truth
anomalies in Flickr among 2.5%, 5%, 7.5%, and 10% of the total number of nodes,
and find that conad maintains steady performances with AUC scores of 0.760,
0.772, 0.781, and 0.778. It demonstrates that conad is very robust in detecting
anomalies in attributed networks when the ratio of anomalies present varies.
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5 Related Works

5.1 Attributed Network Anomaly Detection

Attributed networks are a kind of graph structured data that exist ubiqui-
tously in many real-world scenarios. Detecting anomalies in attributed networks
is of vital importance for anti-fraud, anti-money laundering, and other safety-
critical applications [1,22]. Therefore, attributed network anomaly detection has
attracted an increasingly amount of research attentions in recent years. Existing
approaches can be broadly categorized as traditional machine learning (Non-DL)
methods and deep learning (DL) methods. Non-DL methods are often developed
based on certain heuristic anomaly metrics, e.g., ConSub [35], FocusCO [31],
and AMEN [30], or matrix decomposition techniques, e.g., Radar [19], ANOMA-
LOUS [29], and ALAD [20]. More recently, many DL anomaly detection methods
have been proposed, which often resort to GNNs due to their superior representa-
tion learning capability. Typical methods along this line include DOMINANT [8],
AEGIS [7], and AnomalyDAE [10]. Our proposed conad differs from the meth-
ods introduced above as the above methods are mainly unsupervised while ours
explicitly models the human knowledge of different anomaly types on attributed
networks and tightly incorporate such knowledge into the detection model.

5.2 Contrastive Learning

Supervised learning achieves great success in numerous machine learning areas,
but one major disadvantage of it is that a large amount of labeled data is
required to train a descent model. To ease the reliance on labeled data, con-
trastive learning (CL) has gained popularity as a novel self-supervised learning
(SSL) paradigm. It often utilizes data augmentation techniques to obtain dif-
ferent views of the data, and leverages InfoMax principle [13] to maximize the
similarity between pairs of positive views while minimize pairs of negative views.
With contrastive learning, SSL models [5,16,37] achieve comparable performance
in image classification against their supervised counterparts. CL frameworks also
enjoys successes in graph representation learning [12,32,43] where techniques
designed specifically for graph structured data, such as random walk and graph
diffusion, can be used to generative positive views.

6 Conclusions

In this paper, we propose conad, a contrastive learning framework capable
of leveraging human knowledge to detect anomalies on attributed networks.
Specifically, we first model human knowledge of real-world anomalies through
a data augmentation approach. We then train a Siamese graph neural network
with a contrastive loss to encode both the modeled knowledge and the origi-
nal attributed networks. Finally, we use reconstruction loss to obtain anomaly
scores. Experiments on several datasets with different nature and characteristics
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show detection performance improvements compared to state-of-the-art models.
Furthermore, we analyze the benefit brought about by each part in conad and
show its robustness w.r.t. different anomaly ratios on the attributed network.
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Abstract. Cross-lingual product retrieval (CLPR) recalls semantically
relevant products that match multilingual search queries. It plays a cru-
cial role in E-commerce sites to serve cross-border customers. However,
there exists no public large-scale dataset on CLPR, hindering the research
on this topic. We present CLPR-9M (https://tianchi.aliyun.com/dataset/
dataDetail?dataId=121505), the first large-scale CLPR dataset contain-
ing 9 million query-product pairs, covering 10 major commodity categories
and 3 language pairs, mined from real-world user logs. We also release a
test dataset, annotated by bilingual experts with fine-grained labels. We
build our baselines upon the widely used cross-lingual embedding retrieval
framework and improve it from a range of aspects, including the pretrain-
finetune paradigm, negative sampling, as well as optimization objective.
Benchmarks are assessed and reported using multiple evaluation metrics,
and will be beneficial for future research in this area.

Keywords: Cross-lingual information retrieval · E-commerce search

1 Introduction

With the growth of international market, E-commerce websites have to cope
with not only monolingual but also multilingual queries, in order to serve cross-
border customers. For example, a seller from America can serve customers from
Southeastern Asia. In this case, the product information is written in English,
while the query may be in Thai, Filipino, or Bahasa Indonesia. The products
remain monolingual for two reasons. Firstly, it requires non-trivial efforts for
sellers to provide multilingual item descriptions; Secondly, building the multi-
lingual item indexes with the machine translation is limited by the quality of
the machine translation. We refer to the product retrieval [12,27] in this setting
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as cross-lingual product retrieval (CLPR), where the product descriptions and
the user queries are in different languages. As more sellers are expanding their
business in emerging markets, the CLPR setting is becoming popular.

However, few studies explored CLPR, due to the lack of in-domain dataset,
especially for the state-of-the-art deep learning models which heavily depends on
large-scale training samples. Although [28] and [17] paid their attention to out-
of-domain cross-lingual retrieval tasks, these studies may fail to generalize to the
E-commerce domain due to non-trivial domain discrepancy. Figure 1 provides the
taxonomy of information retrieval datasets from the domain and the language
aspects.

To fill the gap, we collect and release the first large-scale cross-lingual product
retrieval dataset (CLPR-9M). We construct the training set by extracting query-
product pairs from real-world user logs. Since labeling the negative samples
requires non-trivial efforts, past studies obtained the negatives by sampling with
the human-crafted strategy, which has achieved reasonable performance [6,7,
21,27]. In our dataset, we provide the irrelevant query-product pairs from two
sampling strategies, including random sampling and category-based sampling. In
total, the training set is composed of 9 million query-product relevant pairs that
are from 10 categories. The queries are in Russian, Spanish, and English, while
the product titles are in English only. To evaluate the generalization ability
of the retrieval model, we provide the high-quality test set with three labels
(relevant, weak relevant, and irrelevant) by carefully manual annotation. As
shown in Fig. 2, we provide several samples from the proposed dataset.

Fig. 1. Taxonomy of information retrieval (IR) datasets. We divided the information
retrieval into monolingual and cross-lingual settings. Our work in this paper is to
provide benchmarks for the cross-lingual IR in E-commerce domain. LETOR [15] and
MULTI-8 [22] are the monolingual IR datasets in Wikipedia. Wikipedia (DE-EN) [19],
CLIR [18] and BI-139 [22] are the datasets for cross-lingual IR in Wikipedia.

Building cross-lingual retrieval models has its unique challenges, such as how
to bridge the lexical gap between languages [14]. Recently, the pretrained lan-
guage models, such as multilingual BERT (M-BERT) [5] and XLM [11] can
induce shared cross-lingual semantic space by learning the pretrained tasks based
on sentence-aligned parallel data. We finetune the pretrained cross-lingual lan-
guage model on the dataset, and provide extensive experiments to explore the
loss function and negative sampling strategy. For the loss function, we propose
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a bi-log loss that maximizes the log-likelihood of positives from query and item
directions. For the negative sampling, we compare random sampling, category-
based sampling, and mixes of them. The experiments show that random negative
sampling with bi-log loss can achieve a decent performance.

2 Related Work

2.1 Product Retrieval Datasets

The monolingual datasets (e.g., CIKM Cup 2016 Track 2 [1] and eBay Sigir Ecom
2019 [2]) have enabled the development of product retrieval for E-commerce
search. However, to the best of our knowledge, there is no public large-scale
dataset for the cross-lingual product retrieval task. A similar effort is cross-
lingual information retrieval datasets for general domains, such as Wikipedia
(DE-EN) [19], CLIR [18], and BI-139 [22]. They may not be applied to the E-
commerce domain due to the non-trivial domain discrepancy. In addition, the
multilingual queries of these datasets are extracted from the title or the first
sentence of the document, rather than real-world user inputs. The relevance label
is determined by various hand-crafted rules, such as smoothing out the BM25
score into discrete relevance labels in [22]. Our contribution differs from the above
studies in three aspects: 1) CLPR-9M is the first large-scale dataset for cross-
lingual information retrieval in E-Commerce search; 2) All multilingual search
queries are from real users, and the dataset is closer to the real-world application;
3) CLPR-9M provides a high-quality benchmark by human annotation with
finer-grained levels of relevance.

2.2 Product Retrieval Methods

With the success of deep learning, a large number of neural network based mod-
els have been proposed to enhance traditional product retrieval methods (e.g.,
BM25[16], LSI [4]) and learning to rank methods [10]. The neural retrieval mod-
els represent queries and products as dense vectors, which are further exploited
to produce relevance scores. Particularly, DSSM [7] and its variant CDSSM [21]
have pioneered the context of using deep neural networks for relevance scoring.
Van Gysel et al. [23] proposed a latent vector space model (LSE) to learn the
query and product representations with the entities as bridge. Zhang et al. [27]
proposed two tower model to achieve the personalized and semantic retrieval
goal. These methods have shown promising results on monolingual product
retrieval tasks.

Nevertheless, due to the lack of large-scale public datasets, few studies in
terms of deep model explore the cross-lingual scenario, especially for the E-
commerce domain. Existing cross-lingual information retrieval (CLIR) systems
usually adopt a translation-based approach that consists of three stages, includ-
ing language identification, machine translation, as well as monolingual infor-
mation retrieval [3,13,29]. However, the performance of the translation-based
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approaches is limited by the quality of the language identification and machine
translation [29]. Recently, multiple pretrained language models have been devel-
oped, such as M-BERT [5] and XLM [11], that model the underlying data dis-
tribution and learn the linguistic patterns or features across languages and have
been applied in cross-lingual information retrieval [9]. In this way, the cross-
lingual information retrieval can be trained end-to-end, thus avoids the error
propagation from language identification and machine translation.

3 Dataset

In this section, we introduce the construction of the CLPR-9M dataset. The
dataset is composed of a set of query-product triplets {qn, in, rn}Nn=1, where qn,
in, and rn denote the query, product, and the semantic relevance between the
query and the product, respectively. The query qn is a sequence of m words,
and there is qn = {q1,n, q2,n, · · · , qm,n}. Similarly, the product in, which is also
a sequence of k words, is denoted by in = {i1,n, i2,n, · · · , ik,n}. There are 3
possible values for the relevance with 0 to represent irrelevant, 1 to represent
weak relevant and 2 to represent relevant. In the following, we describe the
collection of the training set and the annotation of the test set, followed by a
brief summary of dataset statistics.

Fig. 2. The samples of the dataset CLPR-9M. For each query-product pair, we provide
the query language, the query content, the item title, the item category and relevance
label. The terms in item title denoted what the product is are marked in red. (Color
figure online)

3.1 Training Data Mining

The training set is mined from real-world user logs. Since it is difficult to deter-
mine whether a query-product pair is weakly related from the user logs, the
relevance is a binary value in the training set. A semantically relevant query-
product pair is considered as a positive sample, and similarly, an irrelevant pair
is negative. Recent studies [6,27] suggest that using click results as positives
and randomly sampling negatives can provide a reasonable model performance.
Inspired by the previous studies, we randomly sample clicked pairs of 10 cat-
egories from online 1-month logs as the positives. The category of the query-
product pair is determined by that of the product. There are several sampling
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strategies to obtain negative pairs. We provide negatives with two sampling
strategies: Random sampling (for each query, we randomly sample products
from all candidate products as negatives) and Category-based sampling (for
a positive pair {qn, in}, randomly sample products under the same domain of in
as irrelevant products). Compared with random sampling, category-based sam-
pling can produces hard negatives, since the products under the same domain
tend to be similar.

3.2 Human Annotated Test Set

To build the test set, we first select the query-product pairs clicked by users
as seed positive samples. Then, for a query in an arbitrary seed positive pair,
we obtain the potential irrelevant products with three sampling strategies, and
hence form potential negative pairs. To include more hard negatives, we added
Unclicked Impressed Sampling: random sampling the products impressed to
the user but not clicked, except for Random sampling and Category-based
sampling. Notice that we do not utilize Unclicked Impressed Sampling to
form the negatives in the training data, since the impressed products usually
have some degree of relevance with search queries and the users do not click
them may due to personal preference. Finally, each query-product pair is rated
by two bilingual experts with three labels, namely “relevant”, “weak relevant”,
and “irrelevant”. The annotation instruction is provided in the Appendix. A
pair with same labels from two bilingual experts is accepted; otherwise, the
third language expert will make a decision.

Fig. 3. The number of positive samples per category in the training set.

3.3 Dataset Statistics

The dataset contains 10 categories, and a total of 9 million query-product pairs
for training, 21, 700 pairs for testing. The training dataset contains 3 million
relevant query-product pairs, 3 million irrelevant query-product pairs from ran-
dom sampling, and 3 million irrelevant query-product pairs from category-based
sampling. Figure 3 shows the number of query-product pairs for each category in
the training set. In both the training and test set, the product title is in English,
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and the search queries have 3 languages, namely English(En), Russian(Ru) and
Spanish(Es). Table 1 shows the statistics per language of the dataset. If all the
tokens of a query appear in the product title, the query-product pair is con-
sidered as an “exact-match” pair; otherwise, it is an “inexact-match” pair. The
inexact-match pairs cannot be handled by simple template matching methods,
making the CLPR task challenging. The number of inexact-match pairs is 2.44
times larger than that of exact-match pairs, which indicates that CLPR on the
CLPR-9M is indeed a demanding task.

Table 1. The statistics for the training and the test dataset. For each language X, we
show the total number of queries (#Query) in language X, and the number of query
product pairs (#QP pairs) where the query in language X. The number of products is
shown in column #Product.

Dataset #Query #QP pairs #Product

English Russian Spanish English Russian Spanish

Training 1.14M 0.647M 0.648M 4.26M 2.36M 2.38M 1.70M

Test 0.76K 0.73K 0.68K 7.6K 7.35K 6.8K 26K

3.4 Human Evaluation on Dataset Quality

To evaluate the quality of the training data, we hire the bilingual expert to
evaluate the relevance of 20,000 query product pairs randomly selected from the
training data. For the positives in the training data, the accuracy of the labels is
80%. The error rate of the negatives is 0.02% and 2% for random sampling and
category-based sampling, respectively. Besides, the agreement rate of two raters
for test data annotation is 96.1%.

4 Baseline Approaches

In this section, we present a neural network retrieval model as a baseline model
for the CLPR task on the CLPR-9M dataset. Motivated by the framework in
[6], the model first converts the query and the product tokens into embeddings,
and then generates a relevance score based on the extracted embeddings. An
overview of the model is shown in Fig. 4. In the following, we first describe the
method to extract embeddings and the scoring function to measure relevance.
Then we explore two design choices, namely negative sampling strategies and
loss functions.

4.1 Retrieval Model

As shown in 4, there are two major components in the retrieval model, namely
the embedding model that encodes the query and product tokens into dense vec-
tors and the scoring function that measures the relevance of the query-product
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pair. Both the query encoder and the product encoder adopt the same multi-
layer transformer architecture, and the parameters are shared. With the self-
attention mechanism [24], the transformer-based encoder outputs context-based
token embeddings. The query embedding �qn and product embedding �in are
obtained by the average pooling of the token embeddings. The encoders are ini-
tialized with the pre-trained cross-lingual language model, such as M-BERT [5]
and XLM [11]. However, existing public pretrained language models are trained
on the Wikipedia corpus, which may not generalize to the E-commerce domain.
To avoid the domain discrepancy, we utilize the E-commerce corpus to learn
the cross-lingual language model, denoted as EXLM, with the pretrained task
proposed in XLM [11]. In detail, the Translation Language Modeling is trained
with translated query pairs, and the Masked Language Modeling is trained with
monolingual queries and English item titles.

After obtaining the query and item embeddings, we choose cosine similarity
as the score function S(qn, in) which is commonly used in the retrieval task [6]:

S(qn, in) =
�qn · �in

‖ �qn‖‖�in‖ , (1)

where · denotes the dot-product of two vectors and ‖ · ‖ is the l2-norm of the
vector.

Fig. 4. The model architecture for CLPR with the batch negatives. The query embed-
ding and item embedding is obtained by average pooling of outputs of multi-layer
transformers. The transformers are initialized by the pre-trained cross-lingual model
(M-BERT, XLM etc.). The solid line in the batch denotes the positive pairs. The dotted
line denotes the batch negatives obtained in two ways. One is combining the irrelevant
items with the query (the green dotted line), and the other is combining the irrelevant
queries with the item (the red dotted line). (Color figure online)

4.2 Negative Sampling

Labeling negative samples for the retrieval task requires a large amount of labor
and time cost. In the past studies, negatives are usually obtained by sampling
based on human-crated rules. Here, we compared several sampling strategies,
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including random sampling, category-based sampling and a mixing strategy that
combines random sampling and category-based sampling.
– Random sampling: for each query, we randomly sample items from all

candidate items as negatives.
– Category-based sampling: for a positive pair {qn, in}, randomly sample

items under the same domain of in as irrelevant items.
– Mixing strategies: compared with random sampling, category-based sam-

pling can produces hard negatives, since the items under the same domain
tend to be similar. We explore two ways to combine the two sampling strate-
gies. One is to train the model with random sampling first and then with
category-based sampling (Random -> Category). The other is to train
the model with category-based sampling first and then train with random
sampling (Category -> Random).

Both random sampling and category-based sampling are computational
expensive, with computational complexity O(Nq × Ni), where Nq is the number
of queries and Ni is the candidate item pool size. To reduce computational com-
plexity, the batch negative is adopted to approximate random sampling, where
the irrelevant items for the query are the positive items from other queries in
the same batch, as shown in Fig. 4. To implement category-based sampling with
batch negatives, we organize the positive pair with the same category together.

4.3 Loss Function

We consider two popular loss functions for the retrieval task, namely the triplet
loss [20,25] and the log-likelihood loss [21,26]. The triplet loss enforces a positive
pair, denoted by {qn, i+n }, to separate from a negative pair, denoted by {qn, i−n },
by a distance margin m and is defined as:

Ltriplet =
N∑

n=1

max(0,D(qn, i+n ) − D(qn, i−n ) + m), (2)

where D(u, v) is a distance metric between vectors u and v, and is defined as
1 − S(u, v) in this paper.

The log-likelihood objective with the softmax function aims to place positives
over the negatives. For the positive pair {qn, i+n }, we can utilize the irrelevant
item i−n for query qn to compose the negative sample {qn, i−n } or the irrelevant
query q−

n for item in to compose the negative sample {q−
n , in}. Thus, we can

compute two log loss, one with {qn, i−n } as negatives (denotes as q-log loss) and
the other with {q−

n , in} as negatives (denoted as i-log loss). The q-log loss and
i-log loss are defined as:

Lq log = − 1
N

N∑

n=1

log
exp(S(qn, in))

exp(S(qn, in)) +
∑

i−k ∈Iqn
exp(S(qn, i−k ))

, (3)
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Li log = − 1
N

N∑

n=1

log
exp(S(qn, in))

exp(S(qn, in)) +
∑

q−k ∈Iin
exp(S(q−

k , in))
, (4)

where Iqn is the set of irrelevant items for the query qn, and Iin is the set
of irrelevant queries for the item in. The sum of Lq−log and Li log is denoted
as bi-log loss Lbi log. Figure 4 illustrates the bi-log loss computed with batch
negatives.

Lbi log = Lq log + Li log. (5)

5 Experiments

5.1 Evaluation Metrics

AUC is widely used to evaluate the product retrieval system. However, it cannot
measure the effectiveness of an individual query, since it is computed over the
whole test set. Inspired by the Group AUC (GAUC) proposed in [30], we
define GAUC for the retrieval task as the mean of the AUC for each query.
Both AUC and GAUC can only measure the ability to distinguish relevant and
irrelevant pairs. To measure the ability to distinguish relevant, weak relevant,
and irrelevant query-product pairs, we utilize NDCG [8], which is a popular
metric for the ranking algorithms. In detail, the NDCG computes the similarity
between the ranking results for each query and that based on relevance labels,
and then is averaged over all test queries. Notice that the weak relevant label is
used as irrelevant label when computing the AUC and GAUC metric.

Table 2. AUC of different negative sampling strategies on the CLPR task.

Model Ru⇒En Es⇒En En⇒En AVG

Category 81.47 77.36 82.76 80.53

Random 82.12 76.84 82.51 80.49

Category -> Random 82.05 77.30 82.49 80.61

Random -> Category 82.74 77.39 83.19 81.11

5.2 Experimental Setting

The query encoder and item encoder are initialized with the pretrained cross-
lingual language model, the 12-layer transformers with 768 hidden size. The
max sequence length of the query encoder and the item encoder is 20 and 40,
respectively. To finetune the pretrained cross-lingual language model, we use the
Adam optimizer with β1 = 0.9, β2 = 0.999, L2 weight decay of 0.01, and learning
rate of 3×10−5. The margin value in the triplet loss and bi-log loss is set to 0.2,
which leads to the best performance. We train all models by 10 epoches with a
batch size of 512.
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5.3 Effect of Negative Sampling

Table 2 shows the performance of various negative sampling strategies, including
category-based sampling (Category), random sampling (Random), transfer-
ring random sampling to category-based sampling (Random -> Category),
and transferring category-based sampling to random sampling (Category -
> Random). All sampling strategies are implemented with batch negatives.
Although category-based sampling may produce hard negatives, random sam-
pling exhibits better performance than category-based sampling. This shows that
the presence of easy negatives in training data is necessary. Besides, mixing easy
and hard negatives in the training process is advantageous. Our experiment
shows that transferring easy to hard achieves better performance than trans-
ferring hard to easy negatives. Consequently, transferring random sampling to
category-based sampling (Random -> Category) is applied as the default in
subsequent experiments.

5.4 Effectiveness of Bi-Directional Log Loss

We compare two loss functions, the triplet loss and our proposed bi-log loss.
Since the bi-log loss is the sum of q-log loss and i-log loss, we further analyse the
effectiveness of these two losses, respectively. Table 3 shows the results obtained
with various loss functions. The i-log loss achieves better performance than the
q-log loss, indicating forming the negatives by sampling the irrelevant multi-
lingual queries given the item is more effective in the CLPR task. Although
using q-log and i-log loss independently cannot achieve better performance than
using the triplet loss, bi-log loss performs the best in terms of the AUC metric
on all language pairs. This observation suggests that the q-log loss and i-log loss
are complementary to each other.

Table 3. AUC of various loss functions on the CLPR task.

Model Ru⇒En Es⇒En En⇒En AVG

Triplet 79.28 76.88 78.71 78.29

Q-Log-Loss 76.85 73.87 77.6 76.11

I-Log-Loss 76.95 74.47 79.56 76.99

Bi-Log-Loss 81.47 77.36 81.47 80.10

Table 4. AUC, GAUC and NDCG of different models on CLPR task

Model Ru⇒En Es⇒En En⇒En AVG

AUC GAUC NDCG AUC GAUC NDCG AUC GAUC NDCG AUC GAUC NDCG

DSSM 79.08 84.04 91.40 76.00 83.13 91.80 81.63 86.22 93.04 78.90 84.46 92.08

M-Bert+FT 82.74 87.81 93.05 77.39 84.37 91.90 83.19 88.63 94.21 81.11 86.94 93.05

EXLM+FT 83.78 88.76 94.43 78.43 84.62 92.03 83.35 88.71 94.37 81.85 87.36 93.61
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5.5 Main Results

Given the best negative sampling strategy and loss function explored in the
above sections, we explore the model architectures and the pretrained cross-
lingual language models in this section. The best performance is reported as the
baseline of the CLPR-9M dataset. Table 4 shows the results in terms of various
evaluation metrics (AUC, GAUC and NDCG). M-Bert+FT and EXLM+FT
finetune the pretrained models M-Bert and EXLM respectively. The overall per-
formance of the models by finetuning pretrained language models achieves better
performance than DSSM. The performance of EXLM+FT is better than that
of M-Bert+FT, which indicates that the pretraining with parallel corpora and
in-domain data can facilitate the CLPR learning. For all models, the English-
English language direction achieves the best performance. This suggest that
cross-lingual training is more challenging than monolingual training. The best
performance is reported as the baseline of the CLPR-9M dataset.

Fig. 5. AUC of XLM+Bilog on different categories.

5.6 Effect of the Category

Figure 5 illustrates the AUC on 10 categories for the best model. We find that
the different categories have various levels of learning hardness. For example, the
performance of the category Sports & Entertainment with the largest train-
ing data size ranked ninth place, while the category Jewelry & Accessories
outperforms other categories with the medium training data size.

6 Conclusions

We construct CLPR-9M, a large-scale cross-lingual product retrieval benchmark.
The CLPR-9M includes the training data by sampling online click logs, and
the manually labelled test data. We conduct extensive experiments comparing
different negative sampling strategies, and baseline models. Additionally, cross-
lingual data facilitates the study of the cross-lingual language model.
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A Appendix

A.1 The annotation instructions for test dataset

The test set is obtained by the annotation of bilingual experts. We provide the
detailed rating criteria to guarantee labeling Quality. For each label (relevant,
weak relevant and irrelevant), we provide multiple criteria and the example to
illustrate each criterion. The rating criteria and examples are shown in Table 5.

Table 5. The rating criteria and examples for human raters

Label Criteria Examples

Query Item Title

Relevant The item is consistent with the
intention of query, and the title of
the product exactly matches the
literal or meaning of query

Wedding dress Wedding Dress Long Sleeve
Sheer Neck Appliques Bridal
Gowns 2020 Spring

The item is consistent with the
intention of query, and item title
does not match query literal, but it
is synonym or abbreviation or
original meaning

Mobile phone Apple iPhone X 4G LTE Mobile
Cellphone 3 GB RAM 64 GB
256GB ROM 5.8”

Brand and category have exactly
the same intention as query

Apple iphone 12 Apple iPhone 12 5G LTE Mobile
Phone 64 GB 256GB ROM 6.1”

The item is consistent with the
intention of query, but query is the
hypernym

Lady shoes Eilyken 2021 New Summer Fashion
Design High heels Ladies Sandals
Open Toe Shoes

Weak Relevant The item is consistent with the
intention of query, but query is the
hyponym

Calf leather shoes TUINANLE 2021 Autumn Winter
Shoes Women Plush Snow Boot
Heel Fashion Keep Warm Women’s
Boots Woman Size 36–42 Ankle
Botas Pink

The main product of title is
consistent with the main product
of query, but the attributes are
different

64G usb driver 20pcs/lot Hot sale USB Flash
Drive pendrive 8 GB 16 GB 32 GB

The item is accessory of query iPhone 11 Camera Lens Protection Phone
Case For iPhone 11 12 Pro Max
8 7 6 6s

Irrelevant The brand for item is different with
query

Huawei phone case Flower Case For Samsung
Galaxy A50 A51 Plus Ultra S10E
TPU

The category for item is different
with query

Apple iPhone Apple IPad Mini 1st 7.9” 2012
16 Gb Silver Black 80% New
Original Refurbish

Item is related to intention of the
query, and both belong to the same
concept/category/industry, but not
the same kind of products

Slippers Eilyken 2021 New Summer Fashion
Design Weave Women Sandals

The item is totally different with
query

Power cable 15 Pack LED S14 Replacement
Light Bulbs, Warm White Edison
Bulbs for Outdoor String Lights
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Abstract. Dataset repositories publish a significant number of datasets
continuously within the context of a variety of domains, such as biodiver-
sity and oceanography. To conduct multidisciplinary research, scientists
and practitioners must discover datasets from various disciplines unfamil-
iar with them. Well-known search engines, such as Google dataset and
Mendeley data, try to support researchers with cross-domain dataset
discovery based on their contents. However, as datasets typically con-
tain scientific observations or collected data from service providers, their
contextual information is limited. Accordingly, effective dataset indexing
can be impossible to increase the Findability, Accessibility, Interoperabil-
ity, and Reusability (FAIRness) based on their contextual information.
This paper presents an indexing pipeline to extend contextual informa-
tion of datasets based on their scientific domains by using topic modeling
and a set of suggested rules and domain keywords (such as essential vari-
ables in environment science) based on domain experts’ suggestions. The
pipeline relies on an open ecosystem, where dataset providers publish
semantically enhanced metadata on their data repositories. We aggre-
gate, normalize, and reconcile such metadata, providing a dataset search
engine that enables research communities to find, access, integrate, and
reuse datasets. We evaluated our approach on a manually created gold
standard and a user study.

Keywords: Dataset indexing · Dataset discovery · Inverted indexing ·
Metadata standard · Data repository

1 Introduction

Data are increasingly used in decision-making, such as establishing public poli-
cies and conducting scientific experiments [17], and are published by various
organizations [7], such as scientific publishers, commercial or governmental data
providers, research consortia, specialized data repositories, and data aggrega-
tors. The more data organizations publish, the more complicated the problem of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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data discovery becomes [6]. Datasets are typically offered by scientific reposito-
ries [1,25] or shared via open data portals [14,19,21,28,29,35]. Data regarding a
set of relevant scientific or practical observations are collected, organized, and for-
matted for a particular purpose, called dataset [4,30]. Accordingly, a dataset can
be a collection of alphanumeric data, such as entities, diagrams, graphs, design
decisions, or textual documents. So that dataset search concerns the discovery,
exploration, and retrieval of datasets based on search criteria of searchers [4,5].

Communities such as Wikidata or the Linked Open Data Cloud [35] offer
open and general-purpose data resources that software practitioners can employ
in various application domains [7], such as intelligent assistants, recommender
systems, and search engine optimization [11–13]. The primary goal is to increase
the findability, accessibility, interoperability, and reusability of zillions of publicly
available datasets by enabling data discovery and sharing across organizations
within various domains. This trend is reinforced by advances in machine learn-
ing and information retrieval, which rely on data to train, validate and enhance
their algorithms [32]. To support these applications, we need to search for
datasets, which have been researched for decades [8]. However, many character-
istics of datasets are unique, with particular requirements and constraints, which
have been recognized by well-known dataset search engines, such as Google [6].
According to the literature, we identified the following three challenges in dataset
indexing that we are going to address in this study.

Challenge1 : General-purpose web search engines typically fail at finding
datasets because of lacking enough description on landing pages of datasets [16].
In other words, data repositories do not create an individual webpage for each
dataset that can be easily recognizable and crawlable by general-purpose web
search engines. Data repositories are typically accessible through queries and
encrypted web Application Programming Interfaces (Web APIs); this is a well-
known phenomenon called deep Web [24]. Accordingly, general-purpose search
engines index a limited set of datasets.

Challenge2 : In literature, various open standards are introduced for describing
structured (including dataset metadata) [6]. For instance, https://Schema.org
and the W3C Data Catalog Vocabulary (DCAT) [9] are well-known metadata
standards for indexing datasets. Based on our observations (see Sect. 3), and
Brickley et al. [6] there is a limited agreement among dataset repositories in using
such metadata, and they typically define and employ their metadata features to
index datasets. Thus, extracting metadata features of datasets from different
data repositories automatically based on metadata standards is not possible.

Challenge3 : Links between datasets are still rare, making identifying and using
extra contextual information difficult [6]. In order to offer cross-domain discov-
ery, dataset search engines must improve their ingesting, indexing, and cataloging
processes. So that incorporating external knowledge in the data handling process
and better management and usage of dataset-intrinsic information can be consid-
ered two alternative solutions [7]. Incorporating external contextual information,
whether through domain ontologies, tacit knowledge of domain experts, exter-
nal quality indicators, domain keywords (e.g., essential variables [22]), or even

https://Schema.org
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unstructured information (e.g., in natural language) that describes the datasets,
is a fundamental problem.

We introduce a novel dataset indexing pipeline to address these three chal-
lenges, incorporating information retrieval techniques including web crawling,
metadata extraction, language models, human in the loop, and topic modeling
to identify semantic similarities and generate indexing documents. The novelty
of the proposed pipeline lies in (1) using domain experts’ insights to collect an
extendable set of rules for extracting and refining metadata of dataset records
from heterogeneous repositories. Moreover, (2) it employs machine learning tech-
niques, such as topic modeling and similarity approaches, as replaceable compo-
nents to identify topic similarities. Furthermore, (3) the pipeline generates a
mapping for each dataset record that adds additional contextual information to
it. The final mappings can be used to generate effective indexing (e.g., inverted
indexing). The proposed pipeline is adjusted based on extendable rules, domain
keywords (e.g., essential variables), and domain experts observe and monitor
their impacts on the mapping quality.

This paper is structured as follows. Section 2 elaborates on the proposed
pipeline and its constituent components. Section 3 explains the experiment that
we have conducted with four real-world dataset repositories to evaluate the
pipeline. Section 3.4 analyzes the results of the experiment and assesses the per-
formance of the pipeline on the selected dataset repositories. Section 4 discusses
the lessons learned, the pipeline limitations, and feedback from the experts.
Section 5 concludes this study and highlights our future research directions.

2 Dataset Indexing Pipeline

In this section, we elaborate on the constituent components of the proposed
indexing pipeline. Figure 1 shows the components of the pipeline and its work-
flow.
Dataset Repositories refer to datasets isolated to be mined for data reporting
and analysis. Data repositories are an extensive database of research infrastruc-
tures, such as ICOS and SeaDataNet, (see Sect. 3) that collect, manage, and
store datasets for data analysis, sharing, and reporting.
Web crawling is the process of a spider bot that systematically browses dataset
repositories and extracts dataset records in terms of RDF documents or their
landing pages. It retrieves such contents in structured formats (e.g., JSON or key-
values). The Web crawling process starts with a list of URLs to visit (seeds). The
crawler identifies all the hyperlinks in the retrieved documents/landing pages and
adds them to the list of its frontiers to visit them subsequently.
Metadata extraction is the process of retrieving any embedded metadata
present in a document. It is responsible for extracting metadata features such as
classes and properties inside an RDF document or textual contents of potential
features mentioned on landing pages of datasets. The metadata of the retrieved
documents will be extracted based on the rules that domain experts define them.
Language model employs various statistical and probabilistic methods to spec-
ify the probability of a given sequence of words occurring in a textual document.
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Fig. 1. Shows the constituent components of the pipeline and its workflow. The
pipeline crawls dataset repositories and extracts metadata based on rules that domain
experts define according to metadata open standards and domain knowledge. Then,
the language model of the pipeline employs topic modeling techniques and similar-
ity approaches to map the domain keywords and extra contextual information to the
extracted metadata and create a mapping. The mapping quality will be checked fre-
quently, and the hyperparameters will be adjusted accordingly. Finally, the mapping
will be used to create indexes for the records of the dataset repositories.

It analyzes bodies of documents to convert qualitative information into quan-
titive information. In other words, the language model calculates similarities
among metadata features of a particular dataset record and potential contex-
tual information that could be assigned to it. Since contextual information, such
as domain keywords, can be seen as vectors, we can use different similarity
approaches, such as the cosine similarity or Jaccard index, to calculate the sim-
ilarity of these vectors [34].
Mapping refers to the process of adding external contextual information, such
as domain keywords, to extracted metadata features based on predefined rules
by domain experts and language models’ predictions. For instance, “sea surface
salinity” and “sea surface temperature” as two domain keywords (essential vari-
ables1) can be mapped to a dataset record that the language model identified the
following topics for it: (water- temperature- dimension- dissolved- salinity- gas-
oceanography- chemical- pigment- oceanographic- custodian- sea- geographical-
coordinate- spatial).

1 https://earthdata.nasa.gov/learn/backgrounders/essential-variables.

https://earthdata.nasa.gov/learn/backgrounders/essential-variables
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Indexing is a data structure technique to efficiently retrieve dataset records on
some attributes on which the indexing has been done. Indexing techniques can
be used to reduce the processing time of a search query. For instance, inverted
indexing categorizes datasets based on collected topics and external contextual
information. Then, the final indexes can be ingested in a document data storage
(such as ElasticSearch or Apache Solr).
Metadata open standards are high-level documents that establish a com-
mon form of structuring and understanding data and include principles and
implementation issues for employing the standard. There are many metadata
standards purposed for specific disciplines. For instance, Schema.org and DCAT
are two metadata open standards that indicate how a dataset should be orga-
nized and how it can be related to other types of software assets. In this study,
the domain experts suggested Schema.org, DCAT3, and ISO 19115-1:2014 for
defining rules that should be employed to index datasets from four real-world
dataset repositories (including ICOS, SeaDataNet CDI, SeaDataNet EDMED,
and LifeWatch) (see Sect. 3).
Rules are a set of human-made rules, which should be defined by domain experts
to increase the accuracy of metadata extraction and refine potential extracted
values that can be assigned to the metadata features. An example of potential
rules in the rule base is presented as follows. The example shows a metadata fea-
ture called “identifier”, which is a “unique identifier for this metadata record”,
and its data type is “PropertyValue/Text”. The length of potential values for
this metadata feature should be at least 15 characters. The metadata extrac-
tion component should look for metadata features such as “ISBN”, “GTIN”, or
“UUID” to extract potential values that can be mapped to “identifier”.

"identifier": [
"datatype" : "PropertyValue/Text",
"description": "unique identifier for this metadata record",
"constraint": ["len(15)"],
"suggested fields": ["ISBN", "GTIN", "UUID", "URI","URL","id","metadataIdentifier",

"gmd:fileIdentifier", "gco:CharacterString","pid"] ], ...

Domain keywords are content-related terms that are specific to a particular
scientific domain. Terms in glossaries of social studies textbooks or essential
variables in environmental sciences are examples of such vocabularies. Domain
experts are the main source of knowledge for suggesting domain keywords.
Quality control is an essential phase of the pipeline as the quality of the map-
ping will be evaluated based on the number of values that mapped correctly to
metadata features and the number of potential topics, the number of mapped
values to the domain keywords. If the mapping quality is not acceptable, the
number of topics of topic modeling algorithms, the threshold of the cosine sim-
ilarity, and the rules should be revised to improve the mapping quality. This
process can be considered as hyperparameter tuning, which is the process of
choosing a set of optimal hyperparameters for the similarity approaches, such as
cosine similarity and Jaccard index.
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Topic modeling techniques are employed in the language model to identify
the topics of dataset records. This study uses Latent Dirichlet Allocation (LDA)
to find potential topics assigned to datasets. LDA is a generative model for the
creation of natural language documents [3]. Note, a topic is a subject discussed
in one or more documents. Examples of topics include dataset domains such as
“Oceanography” entities such as “SeaDataNet” and long-standing subjects such
as “climate change”. Each topic is assumed to be represented by a multinomial
distribution of words.
Similarity approaches are essential in solving many pattern recognition prob-
lems such as classification and clustering. Various similarity approaches, such
as Cosine similarity and Jaccard index, are available in the literature to com-
pare two text documents and determine how close their context or meaning are.
Various text similarity approaches exist. Typically, similarity approaches have
their specification to measure the similarity between two queries. For instance,
cosine similarity measures the text-similarity between two documents irrespec-
tive of their size in Natural language Processing. The text documents are mainly
represented in n-dimensional vector space.

3 Evaluation

One of the well-known issues in evaluating dataset indexing is the lack of bench-
marks [7]. So, it is essential to identify a set of appropriate metrics to assess
dataset indexing techniques and observe if they mimic information retrieval
metrics, such as precision and recall. Such metrics should be employed [20] to
evaluate the correctness of the indexing pipeline. In this study, we conducted
an experiment in the context of four dataset repositories to assess the pipeline’s
impact on the quality of mappings and evaluate its effectiveness in addressing
the dataset indexing challenges.

3.1 Dataset Repositories

The dataset repositories used for the evaluation are based on RDF datasets
that have been published by four real-world dataset repositories, namely ICOS,
SeaDataNet CDI, SeaDataNet EDMED, and LifeWatch.
(1) ICOS2 (Integrated Carbon Observation System) is a European-wide green-
house gas research infrastructure that produces standardized data on greenhouse
gas concentrations in the atmosphere and carbon fluxes between the atmosphere,
the earth, and oceans. The ICOS dataset repository contains more than 400K
dataset records.
(2) SeaDataNet CDI3 (Common Data Index service) provides aggregated
datasets (collections of all unrestricted SeaDataNet measurements of temper-
ature and salinity by sea basins) and climatologies based on the aggregated

2 https://data.icos-cp.eu/portal/.
3 https://cdi.seadatanet.org/search.

https://data.icos-cp.eu/portal/
https://cdi.seadatanet.org/search
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datasets and data from external data sources such as the Coriolis Ocean Dataset
for Reanalysis and the World Ocean Database for all the European sea basins
and the Global Ocean. The CDI dataset repository contains more than 2,6M
dataset records.
(3) SeaDataNet EDMED4 covers a wide range of disciplines, including marine
meteorology; physical, chemical, and biological oceanography; sedimentology;
marine biology and fisheries; environmental quality, coastal and estuarine stud-
ies, marine geology, and geophysics. Currently, EDMED contains more than 4K
dataset records, held at over 700 Data Holding Centres across Europe.
(4) LifeWatch5 provides open data access and facilitates exploratory data
analysis of data generated by the local marine-freshwater-terrestrial LifeWatch
observatory. The LifeWatch dataset repository contains more than 1,1K dataset
records.

3.2 The Pipeline Configuration

Rule base - Ten domain experts within geology, oceanography, agriculture,
environment, and biology research domains were selected based on their expertise
and years of experience to participate in the research and assist us with building
the rule base and evaluating the pipeline outcomes. Accordingly, we conducted
a survey to identify the features and rules employed to extract metadata from
the selected dataset repositories. The experts selected the features we need to
use from three metadata standards, including DCAT 3, ISO 19115-1:2014, and
Shema.org. It is interesting to highlight that almost less than half of the features
that the research infrastructures have been employed in their own metadata were
compatible with the metadata open standards6.
Domain keywords - The domain experts suggested three sets of essential
variables [10] based on the domains (atmosphere, oceanography, biodiversity)
of the dataset repositories. Note, essential variables are variables known to be
critical for observing and monitoring a given facet of the Earth system.
Topic modeling technique - We used Latent Dirichlet Allocation (LDA) as a
topic modeling technique for generating potential topics of each dataset record
based on its textual explanation.
Similarity approaches - We employed cosine similarity and Jaccard index in
this study to estimate similarities among generated potential topics (by the LDA
algorithm) of each dataset record and the essential variables. In cosine similarity,
data objects in a dataset are treated as a vector. The Jaccard similarity index
(sometimes called the Jaccard similarity coefficient) compares members for two
sets to see which members are shared and which are distinct. It is a measure of
similarity for the two sets of data, with a range from 0% to 100%. The higher
the percentage, the more similar the two populations.

4 https://edmed.seadatanet.org/search/.
5 https://metadatacatalogue.lifewatch.eu.
6 We published the results of our observations, analysis, script, and contextual infor-

mation on Mendeley Data [10].

https://edmed.seadatanet.org/search/
https://metadatacatalogue.lifewatch.eu
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3.3 Experiment

First, we randomly selected 100 datasets from the dataset repositories to gen-
erate a training set. Two researchers independently determined the correctness
of the mapped domain keywords and potential topics (generated by the LDA
algorithms) to the selected datasets. To solve this task, they got the descrip-
tion of those datasets besides their extracted metadata feature, mapped domain
keywords, potential topics, and the possibility of taking a deeper look inside
the datasets themselves. Finally, we compared their responses, and in the case
of inconsistencies, we asked both of them to recheck their responses to reach
an agreement between their responses. The training set was used to adjust the
hyperparameters, such as the similarity thresholds for both cosine similarity and
the Jaccard index, and train the topic model. We altered the hyperparameters
dynamically to reach their optimal values for the dataset. Then, we employed
the Jaccard index and cosine similarity as the quality control approach to reject
irrelevant topics.

One of the main weaknesses of information retrieval measures (including
recall, accuracy, and F-measure) is the assumption of binary relevance, with
human assessors asked to determine, for a set of documents, which members
are relevant to the query and which are not. In other words, human experts
are needed to judge the retrieved information and evaluate the effectiveness and
efficiency of information retrieval methods [26]. The significant number of dataset
records makes it impossible to ask human experts to evaluate the pipeline’s
outcomes thoroughly. We used a fitness function to assess the quality of the
mapping automatically. The fitness function gets the mappings and datasets as
its inputs, and then it uses the Jaccard index to assess their relevance. In other
words, if a domain keyword is mapped correctly (based on the threshold) to a
dataset, it will be highlighted as a true positive. Otherwise, it will be marked as
a false positive. We calculated the res of the metrics accordingly.

Table 1 shows the results of the analysis on the dataset repositories (ICOS,
SeaDataNet CDI, SeaDataNet EDMED, and LifeWatch) and 100 randomly
selected dataset records form each of them to generate the validation set (con-
tains 400 dataset records). Note, for the sake of validity of our evaluation, the
intersection of the training set and the validation dataset records is the empty
set.

3.4 Analysis

To evaluate the pipeline components and their impacts on the mapping quality,
we perform the experiment incrementally. In each step of the experiment, we
evaluate the impact of the absence of each component (Cosine similarity, Rules,
Topic mining, and Jaccard index) on the quality of the mappings (involved
pipeline components). Note that cosine similarity has been considered the base-
line in our analysis to calculate similarity in the language model. Moreover,
the fitness function cannot analyze the pipeline’s impact on the potential topics
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Table 1. Shows the results of the analysis on the dataset repositories (ICOS, Sea-
DataNet CDI, SeaDataNet EDMED, and LifeWatch)

Analysis / Dataset repositories ICOS CDI EDMED LifeWatch

Involved 
pipeline 

components

Cosine similarity Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Rules No Yes Yes Yes No Yes Yes Yes No Yes Yes Yes No Yes Yes Yes

Topic modeling No No Yes Yes No No Yes Yes No No Yes Yes No No Yes Yes

Jaccard index No No No Yes No No No Yes No No No Yes No No No Yes

Domain 
keywords

 (essential 
variables)

Precision (EV) 0.01 0.00 0.01 0.00 0.58 0.58 0.61 1.00 0.48 0.48 0.29 0.66 0.26 0.26 0.09 0.36

Recall (EV) 0.00 0.00 0.00 0.00 0.21 0.21 0.27 0.23 0.08 0.09 0.15 0.19 0.10 0.10 0.05 0.18

Accuracy (EV) 0.99 1.00 1.00 1.00 0.59 0.59 0.66 0.63 0.79 0.79 0.72 0.81 0.86 0.86 0.83 0.88

F (EV) 0.00 0.00 0.00 0.00 0.30 0.30 0.36 0.36 0.13 0.14 0.17 0.28 0.14 0.14 0.06 0.23

Potential 
topics

Precision (To) N/A N/A 0.20 1.00 N/A N/A 0.41 1.00 N/A N/A 0.31 1.00 N/A N/A 0.42 1.00

Recall (To) N/A N/A 0.41 1.00 N/A N/A 0.71 0.74 N/A N/A 0.74 0.85 N/A N/A 1.00 1.00

Accuracy (To) N/A N/A 0.38 1.00 N/A N/A 0.40 0.78 N/A N/A 0.29 0.85 N/A N/A 0.46 1.00

F (To) N/A N/A 0.26 1.00 N/A N/A 0.51 0.85 N/A N/A 0.43 0.92 N/A N/A 0.57 1.00

Mapping # Mapped values 0.38 0.52 0.53 0.45 0.34 0.42 1.00 0.42 0.48 0.51 0.52 0.42 0.35 0.54 0.55 0.46

Inverted 
Indexing

# key > 1 0.01 0.01 0.83 0.78 0.51 0.51 0.69 0.74 0.16 0.16 0.48 0.43 0.12 0.12 0.42 0.33

# keys 101 101 23 18 441 441 320 189 251 251 504 334 858 858 602 401

# singletone links 100 100 4 4 215 215 99 49 212 212 262 190 755 755 348 268

when the topic modeling is not applied. So, in such a scenario, the measures are
equal to Not Applicable (“N/A”).

The average F-measures of the domain keywords, F (EV ), and potential top-
ics, F (To), in Table 1, represent that the pipeline outperforms when all its com-
ponents are involved.

It has already been shown that LDA does not perform well on short doc-
uments in which many different words rarely appear, e.g., messages of short
messaging services [36]. It is essential to highlight that the datasets from ICOS
typically have limited contextual information, so the F (EV ) values have not
changed significantly by adding or removing a pipeline component. However,
they increase the average F-measures of the rest of the datasets in the validation
set. Note, to generate an almost stable list of topics using the LDA algorithm,
and we repeated the topic modeling ten times. Increasing the number of itera-
tions leads to higher accuracy and higher time consumption.

The number of assigned values to metadata features (# Mapped values) has
been increased by applying the components. As the Jaccard index refines the
irrelevant candidate values in the mapping, it reduces the number of mapped
values and increases the mapping quality.

Keys are combinations of generated topics and successfully assigned domain
keywords. In the last section of Table 1, the quality of the mapping has been
evaluated. In the absence of topic modeling and Rules, the performance of the
pipeline to generate high-quality mapping and keys decreases significantly. In
this scenario, the number of identified keys (# keys) and for generating inverted
indexed have increased. Most of the generated keys were singleton and meaning-
less quality values. In contrast, when the rules and topic modeling components
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have been applied, the number of keys decreased as the pipeline rejected low-
quality values, and the number of the singleton keys decreased significantly as
the pipeline aggregated more keys (# key > 1). For instance, the number of
meaningful keys increased from 0.01 (1%) to 0.83 (83%) in the ICOS dataset
records by adding topic modeling these two components. It is essential to high-
light that applying the Jaccard index can lead to lower numbers of keys, as it
further reduces the number of noisy or meaningless keys.

4 Discussion

In the literature, we observed that dataset search had been studied for decades
by other researchers and practitioners and can be categorized into two types [7]:
general-purpose and domain-specific dataset search. In general-purpose dataset
search approaches such as Dataverse [1], Elsevier Data Search [25]), open data
portals [14,19,21,28,29,35] and search engines such as DataMed [33], and Google
Dataset Search [27], a collection of public and free datasets, in terms of scien-
tific or practical observations, can be searched through their web portals. These
dataset search engines are typically domain-independent, so they are not cus-
tomized for a particular community. However, domain-specific dataset search
approaches are designed for searching a set of related observations organized
for a particular domain by searchers. This pattern of behavior is particularly
marked in data lakes [15,31], data markets [2,18], and tabular search [23].

This study identified three challenges that general-purpose and domain-
specific dataset search approaches face in their indexing phases. (Challenge1)
lack of enough description on landing pages of datasets [16] (deep Web [24]),
(Challenge2) a limited agreement among dataset repositories in using metadata
standards [6], and (Challenge3) complexity of identifying and using extra con-
textual information in dataset indexing [7]. To address Challenge1, the pipeline
contains an extendable set of domain keywords based on domain experts’ insights
on the dataset’s domain. Domain keywords can improve the findability of dataset
records by adding more contextual information to them. The proposed pipeline
addresses Challenge2 by suggesting an extendable set of rules based on open
standards’ definitions and properties. This pipeline component increases the
quality of mapping and indexing significantly (see Sect. 3.4). The pipeline uses
topic modeling (e.g., LDA) and similarity approaches to generate potential top-
ics regarding a dataset record according to its contents. Then, it maps the most
similar domain keywords to dataset records based on the generated topics.

Probabilistic topic modeling approaches such as LDA employ statistical rea-
soning to discover underlying patterns of data. As the model hyperparame-
ters should be inferred from observations, the accuracy of statistical reasoning
depends on the number of observations. LDA models a dataset as a mixture of
topics, and then each word is drawn from one of its topics. Thus, the performance
of LDA can be reduced dramatically in the case of short contextual documents
(as happened with ICOS dataset records).
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Similarity approaches are low sensitive to semantics. For instance, such meth-
ods do not consider the words ”marine”, ”seawater”, and ”oceanic” as semanti-
cally similar. Additionally, they do not distinguish phrases based on their orders
and conceptual meaning. For instance, ”the ocean color is lighter than sky color”
is similar to ”the sky color is lighter than the ocean color”. It is essential to high-
light that similarity approaches, such as the Jaccard index, do not consider word
frequency in a given document and count the number of common words in two
documents. Accordingly, rare words that are mainly more informative in a doc-
ument will be ignored. Moreover, the number of repetitions of similar words in
two documents would not change the results of such similarity approaches. To
sum up, before using a similarity approach in the language model, all its char-
acteristics and behaviors should be investigated. Additionally, a performance
testing analysis should be conducted beforehand to select the optimal solution
for a particular usage.

Although the pipeline proposed in this study addresses three identified chal-
lenges in the literature, there are challenges in the literature regarding FAIRness
of dataset discovery that requires profound attention. For instance, European
Commission highlighted the following dataset discovery challenges: (1) lack of
information that specific datasets exist and are available; (2) a lack of trans-
parency of which public authority maintains datasets; (3) a lack of evidence
concerning the terms of reuse; (4) datasets which are made available only in for-
mats that are difficult or expensive to use; (5) complex licensing procedures or
restrictive fees; (6) exclusive reuse agreements with one commercial third-party
or reused restricted to a government-owned organization.

5 Conclusion and Future Work

Generating value from data needs the ability to find, access, and make sense of
datasets. Many efforts are initiated to support dataset sharing and discovery.
For instance, the Google dataset allows users to discover data stored in vari-
ous online dataset repositories via keyword queries. This study highlighted three
challenges that general-purpose and domain-specific dataset search approaches
face in their indexing phases. (Challenge1) lack of enough description on landing
pages of datasets [16] (deep Web [24]), (Challenge2) a limited agreement among
dataset repositories in using metadata standards [6], and (Challenge3) complex-
ity of identifying and using extra contextual information in dataset indexing [7].
To address these challenges effectively, we proposed a novel dataset indexing
pipeline based on information retrieval techniques. Next, we conducted an exper-
iment incrementally on the pipeline components to evaluate their effectiveness in
addressing the challenges. The results confirmed that the pipeline outperforms
when all its components are involved.

Probing deeper, the pipeline presented in this paper also provides a founda-
tion for future work in software asset discovery. We intend to conduct research
to addresssoftware asset recommendation and context aware search engines as
our (near) future work.
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Abstract. Graph neural networks have become a popular modeling
choice in many real-world applications like social networks, recommender
systems, molecular science. GNNs have been shown to exhibit greater
bias compared to other ML models trained on i.i.d data, and as they
are applied to many socially-consequential use-cases, it becomes imper-
ative for the model results and learned representations to be fair. Real-
world applications of GNNs involve learning over heterogeneous networks
with several nodes and edge types. We show that various kinds of nodes
in a heterogeneous network can pick bias from a particular node type
and remain non-trivial to debias using standard fairness algorithms. We
propose a novel framework- Fair Link Prediction in Bipartite Networks
(FLiB) that ensures fair link prediction while learning fair representa-
tions for all types of nodes with respect to the sensitive attribute of
one of the node type. We further propose S-FLiB, which effectively mit-
igates bias at the subgroup level by regularising model predictions for
subgroups defined over problem-specific grouping criteria.

Keywords: Fairness · GNN · Link prediction · Bipartite graph

1 Introduction

GNNs [10,12,16] are being widely used for representation learning and mod-
eling many real-world applications involving interaction between a variety of
nodes via different relation types. For example, the song recommendation graph
involves two types of nodes - Users-Songs, whereas, IMDB graph consists of three
types of nodes - Movie-Actor-Director. While, machine learning algorithms are
known to exhibit algorithmic biases such as women being discriminated [2] in
a job-recommendation system or African-Americans being subjected to higher-
interest credit cards [1], GNNs can further exacerbate algorithmic biases [6]
on sensitive attributes like age, gender, or color. Such biases can significantly
hamper the applicability of these models in real-world use-cases, limiting their
adoption. Hence, it becomes essential to audit GNNs on Fairness. Much of the
research on Fairness in GNNs is focused on homogeneous networks [6,15] and is
limited for heterogeneous networks [4,19]. Due to the cross-interaction between
various types of nodes, most of the existing work in fair graph learning can-
not invariably be extended for heterogeneous graphs. FairGNN [6] proposes a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13281, pp. 485–498, 2022.
https://doi.org/10.1007/978-3-031-05936-0_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05936-0_38&domain=pdf
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framework using adversarial debiasing [20] for fair node classification in homo-
geneous networks. For heterogeneous graphs, Fair-HIN [19] uses metric-specific
regularization loss functions to correct bias in model predictions. However, the
learned representations can not be used for other downstream tasks like node
regression, node classification, or link prediction since it does not necessarily
learn fair representations. [4] aims to solve this challenge by using adversar-
ial filters and achieves representational invariance for a node’s embeddings with
respect to its sensitive attributes in a heterogeneous graph. However, it assumes
that in a link prediction task between two types of nodes, only the nodes
with sensitive attribute gives rise to the bias in the predictions. Our work moves
away from this assumption and shows that, bias from one node type can also
propagate to the other types, making a task like link prediction involving differ-
ent types of nodes unfair. In this work we study the effect of bias in a bipartite
graph- A special case of heterogeneous graph, due to its wide applicability in real
life applications. Without loss of generality, we assume that a bipartite network
has user and item nodes with user nodes having a binary sensitive attribute
gender where bias can propagate from user nodes to item nodes. This problem
of removing bias from item nodes is challenging due to the absence of any label
for them. It becomes imperative to ensure that bias from user nodes is blocked
from propagating to other types of nodes for keeping the task of link prediction
fair. Hence fairness in GNNs for bipartite graphs poses two challenges- a) Fair
representation learning for downstream tasks and b) Fairness in link prediction
task involving both type of nodes.

To solve these challenges, we introduce a novel framework, “Fair Link Pre-
diction in Bipartite Networks” (FLiB), for fair link prediction and fair repre-
sentation learning in bipartite networks. FLiB adopts a multi-layer adversarial
debiasing approach that debiases user nodes and promotes fairness in item nodes
by blocking bias from propagating to them. FLiB further determines and explic-
itly debiases item nodes that are highly susceptible to bias using a “susceptibility
factor” (SF) calculated from the graph structure. The subset of nodes with high
SF are assigned a pseudo-sensitive label which allows the integration of a paral-
lel debiasing framework for item nodes as well. FLiB debiases these item nodes
similar to user nodes via multi-layer adversarial debiasing using their pseudo-
sensitive attributes. Finally, FLiB integrates metric-specific regularization losses
to optimize for fairness in the node predictions. While group fairness metrics
such as Demographic Parity (DP) and Equal Opportunity [11] (EO) are essen-
tial requirements for fairness, fair-model predictions at a sub-group level may
still exhibit significant bias. For example, in a movie recommendation system,
a model might perform fairly at an overall level but still be biased towards a
particular gender when audited on movies of a particular genre. We propose an
extended version S-FLiB to mitigate bias at the sub-group level while achieving
low Demographic Parity and Equal Opportunity at the overall level by integrat-
ing sub-group level regularisation losses into our model. We perform thorough
experiments and detailed ablation studies on two publicly available datasets,
namely, MovieLens, and LastFM to demonstrate the effectiveness of FLiB. We
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show that FLiB outperforms other baseline algorithms in fairness while ensuring
fairness in representations and minimal to no loss in accuracy and AUC-ROC.
To summarise, key contributions of our paper are -

– We introduce a novel framework FLiB for fair representation learning and
link prediction in bipartite networks.

– We show that bias from one node type having a sensitive attribute can prop-
agate to other node types in a heterogeneous network.

– We develop a new pseudo-sensitive attribute based debiasing technique lever-
aging graph structure to identify and debias item nodes that are highly sus-
ceptible to bias with respect to the user’s sensitive attribute.

– We extend FLiB to S-FLiB, which explicitly keeps the DP, EO for problem-
specific sub-groups in check using Fairness Aware Regularization Losses.

2 Preliminaries

This section introduces the notations used in this paper, followed by details of
the datasets used. We then describe fairness metrics used for evaluating model
performance and formalize our problem statement.

2.1 Notations

We define a bipartite graph G = (U, V, ξ) where U is a set of nodes with sensitive
attributes sv such as gender, also referred to as user nodes while V is the set of
nodes which don’t have the sensitive attributes, also referred to as item nodes.
|U | and |V | are the sizes of the sets U and V respectively. ξ denotes the set of
edges. For a user node u ∈ U and an item node v ∈ V , hu and hv are the learnt
representations by the GNN. An edge e ∈ ξ between u and v is represented as
e : (hu, hv). For predicting if a link exists between u ∈ U and v ∈ V , a binary
classifier fc is trained that outputs (ŷe).

2.2 Datasets

We use two open-source bipartite graph datasets for our experiments:
MovieLens1 dataset contains a set of movies rated by users in the range

1–5. Every user is associated with age, gender, and occupation attributes, while
every movie is tagged with at least one genre. A user likes a movie if the rating
given to it is over 3. MovieLens consists of 6040 users, 3883 movies, and 1M
ratings with 0.6M ratings > 3.

LastFM2 dataset is a song recommendation dataset between users and
songs. Users are associated with gender, age, and country attributes along with
their listening history. Songs are tagged with their corresponding artists. A user
is said to have liked a song if they have listened to it more than once. Only the
users with all the known attributes are considered, and the final dataset contains
262 users and 84K songs across 8K artists with 369k liked ratings for the songs.
1 https://grouplens.org/datasets/movielens/1m/.
2 http://millionsongdataset.com/lastfm/.

https://grouplens.org/datasets/movielens/1m/
http://millionsongdataset.com/lastfm/
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2.3 Evaluation Metrics

We evaluate model fairness in terms of the two most widely used fairness metrics:
Demographic Parity (DP) quantifies the degree of independence between

the model outputs and the sensitive attributes. For binary-valued target outcome
and sensitive attributes, demographic parity seeks to achieve:

P (ŷ = 1|a = 0) = P (ŷ = 1|a = 1) (1)

where ŷ is the predicted label, y is the ground truth class label, and a is the
sensitive attribute such as gender.

Equal Opportunity (EO) requires that the probability of an instance in a
positive class being assigned to a positive outcome be independent of its sensitive
attribute. It is defined as:

P (ŷ = 1|a = 0, y = 1) = P (ŷ = 1|a = 1, y = 1) (2)

A model is said to have fair predictions if both DP and EO are minimal, and
its learned representations are said to be fair if an external adversary/classifier
can predict the sensitive attribute from them only with an accuracy close to 50.

2.4 Problem Definition

We consider the task of link prediction in bipartite networks. Our goal is twofold:
1.) To make this task between the two types of nodes fair (in terms of EO & DP)
with respect to the binary sensitive attribute user nodes. 2.) Learn fair represen-
tations for both types of nodes such that those embeddings can be used for any
further downstream task. This is measured by the accuracy of sensitive attribute
prediction from these representations using an external adversary/classifier.

3 Proposed Approach

In this section, we provide the details of our proposed approach FLiB. The
four major components of FLiB are 1) A GNN based link-predictor, 2) Multi-
layer Adversarial Debiasing, 3) Multi-Nodal Adversarial Debiasing via Pseudo
sensitive attributes, 4) Fairness Aware Regularization Loss (FARL). We later
propose S-FLiB, which extends FLiB to mitigate bias at the subgroup level. An
illustration of our proposed framework, FLiB, is shown in Fig. 1.

3.1 Graph Based Link-Predictor

The graph-based link predictor consists of a GNN that is used to learn the
embeddings for the nodes in a bipartite graph followed by a binary classifier fc

which predicts if an edge exists between a user node u ∈ U and an item node
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Fig. 1. An overview of the complete architecture of FLiB

v ∈ V . The link-predictor can flexibly use any feature aggregator like a GCN,
GAT, RGCN. The classification loss for the link-predictor is given by

LC = − 1
|ξ| ·

∑

e ε ξ

ye · log(ŷe) + (1 − ye) · (1 − log(ŷe)) (3)

where ye are the true edge labels and ŷe = fc([hu, hv]) are the predictions from
the link-estimator. |ξ| is the size of the set of nodes ξ.

Fig. 2. a) Intuition behind Multi-layered (Left) and Multi-nodal (Right) Debiasing
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3.2 Multi-layer Adversarial Debiasing

Recently, adversarial debiasing has been shown to be an effective technique for
mitigating bias in learned representations [3,7,13,14]. In adversarial debiasing,
an adversary is used to predict sensitive attributes from the representations of
the classifier. In contrast, the classifier is trained to learn representations such
that the adversary cannot predict the sensitive attributes while keeping the accu-
racy high for the downstream task. In heterogeneous networks, the trivial exten-
sion of this technique permits the debiasing of nodes with sensitive attributes
only. For example, only user nodes with gender attributes can be debiased using
adversarial debiasing in a User-Item graph and not the item nodes. However, as
shown in experiments, bias from user nodes can also propagate to item nodes
making any downstream task involving item nodes like link prediction unfair.
Since item nodes can not be explicitly debiased due to the absence of actual
sensitive attributes for them, we prevent them from picking up bias in the first
place by blocking bias propagation from user nodes. Item nodes at graph layer
l are learned by aggregation over the user and item node representations from
graph layer l − 1. These item node representations are promoted to be fair if
the user and item node representations at layer l − 1 are fair. Recursively, Item
nodes at layer l − 1 are promoted to learn fair representations by making user
and item node representations fair at layer l−2. Hence, user and item node rep-
resentations at all the graph layers should be fair. To achieve this, we deploy an
adversary on the user node representations of every graph layer, which ensures
user node representations remain fair throughout and, in turn, promote item
node representations to remain fair till the last layer. Instead of directly apply-
ing an adversary on the input user features, we transform it using a feed-forward
layer which is debiased and passed onto the graph structure. The total multi-
layered adversarial loss LA is given by the sum of cross-entropy loss for each
adversary. For a graph with L − 1 layers,

LA =
L∑

l=1

− 1
|U |

∑

u ε U

w1 · su · log(ŝl
u) + w0 · (1 − su) · log(1 − ŝl

u) (4)

where w1, w0 refers to the class weights for class 1 and 0 of the sensitive attributes
respectively. su and ŝl

u refers to the user sensitive attribute and predicted sensi-
tive attribute respectively. We further add a covariance constraint [6,17,18] on
the outputs of fc to improve the fairness in model predictions.

LCov = | Cov(s, ŷ) | = | E[(s − E(s))(ŷ − E(ŷ))] | (5)

3.3 Multi-nodal Debiasing via Pseudo Sensitive Attributes

As discussed in Sect. 3.2, item nodes cannot be explicitly debiased using adver-
sarial debiasing since no sensitive labels exist for them. In this section we propose
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Multi-nodal adversarial debiasing that explicitly debiases item nodes using
pseudo-sensitive labels for them. As shown in Fig. 2 (right), an item node can
have a large number of connections with user nodes belonging to a particular sen-
sitive user group compared to the other. For example, in the MovieLens dataset,
the movie “Sabotage” is highly liked by males, whereas “All over me” is much
more liked by females. Such nodes will be largely aggregated over the members
of one of the sensitive user groups during the learning phase of the GNN, mak-
ing them prone to picking up bias against the other group since neighbors tend
to learn representations that are closer to each other in the embedding space.
We define “susceptibility factor” SF, which aims to quantify the bias inherent
to each item node due to its connectivity. SF for every item node represents
its association with each of the sensitive user groups. Specifically, SF quantifies
the association with each group as a fraction of edges of an item node with the
members of that group. For example, in the MovieLens dataset, SF for a movie
is defined as the ratio of the percentage of females liking that movie to the per-
centage of males liking that movie. For any movie, a very high or a very low
susceptibility factor indicates a expected bias in the graph learned representa-
tions towards one of the sensitive group (male/female in this case). To solve this,
we assign pseudo-labels to item nodes with extreme values of the susceptibility
factor and debias such item nodes using multi-layer adversarial debiasing. Since
only a subset of item nodes would have the pseudo-label available, we filter out
the non-susceptible nodes via a masking layer, as can be seen in Fig. 1.

3.4 Fairness Aware Regularization Losses

While fair representation learning is imperative to learn embeddings that can
be used for many downstream tasks, ultimately, the fairness of each model is
adjudicated via its outputs. Our extensive ablation studies below show that
by integrating metric-specific loss functions, we can further optimize the model
performance in terms of fairness with minimal to no loss in fairness in graph
representations. We integrate the loss functions for DP and EO metrics [19] as
regularisers in FLiB such that

LDP =

∑
e ε ξ

Is(e) · fc(e)
∑
e ε ξ

Is(e)
−

∑
e ε ξ

(1 − Is(e)) · fc(e)
∑
e ε ξ

1 − Is(e)
(6)

LEO =

∑
e ε ξ

Is(e) · Iy(e) · fc(e)
∑
e ε ξ

Is(e) · Iy(e)
−

∑
e ε ξ

(1 − Is(e)) · Iy(e) · fc(e)
∑
e ε ξ

(1 − Is(e)) · Iy(e)
(7)

where Is(e) indicates if an user node in the edge has the sensitive attribute 1,
and Iy(e) indicates if an edge has a label 1.
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3.5 Overall Objective Function

The overall objective function for FLiB is defined as

min
θG,θC

max
θA

LC + α · LCov − β · LA + γ · (LDP + LEO) (8)

where LC , LCov, LA, LDP , LEO refers to the losses for classification, covariance
constraint, adversaries, DP and EO respectively. θG, θC refers to the parameters
of the graph and the binary classifier while θA refers to the parameters of all the
adversaries. The hyperparameters α, β, γ are used to control the contributions
of Covariance, Adversarial and Regularization losses respectively.

3.6 S-FLiB: Sub-Group Fairness

Statistical fairness measures like DP and EO can result in a model that seems fair
at an overall level but continue being unfair when looked at the subgroup level.
For example, a movie recommendation system might satisfy fairness criteria
on a population but remain biased towards recommending specific genres to
a particular gender. We inspect the fairness at a sub-group level for a GCN-
based movie recommendation system and compare it to FLiB. While FLiB is
shown effective in mitigating bias even at the sub-group level, we further improve
it using sub-group level regularization loss functions and propose an extended
version, S-FLiB. For each sub-group, we calculate the regularization loss as the
sum of DP and EO loss using Eqs. 6 and 7. S-FLiB final loss function is

LS−FLiB = LFLiB +
∑

s ε S

Ls
DP + Ls

EO (9)

where s indicates a sub-group and S is the set of sub-groups. Ls
DP , and Ls

EO

refers to the DP and EO losses for each of the sub-groups s ∈ S.

4 Experimentation

This section describes the experiments performed to evaluate the efficacy of our
proposed methods FLiB and S-FLiB, by reporting their performance on two
open-source data sets and a comprehensive ablation study showing the impor-
tance of each component.

4.1 Baselines

We compare FLiB with two state-of-the-art fairness models in GNNs, FairGNN,
and Fair-HIN on both datasets. Both are very recent and well-known methods
that build over GNN to make the downstream tasks fair. FairGCN, although
developed for homogeneous graphs, has been used for heterogeneous graphs by
debiasing only the nodes with sensitive attributes. Fair-HIN uses fairness-aware
regularization loss functions to make the model predictions fair with respect to
some fairness metrics in both homogeneous and heterogeneous networks.
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4.2 Implementation Details

For all our experiments, the datasets are split in 6:1:3 for training, validation,
and testing respectively. For a fair comparison, we train each model up to 10000
epochs or convergence, whichever is earlier. The hyperparameters are determined
via the fairness performance on validation set. The parameters α, β, and γ
are varied over the values α = {0.1, 1, 10, 20, 50}, β = {0.01, 0.01, 1, 10}, and
γ1 = {1, 10, 100, 1000}. For pseudo sensitive attribute labelling, item nodes with
max(SF, 1

SF ) >= 2 are assigned a label while others are masked. For Sub-group
level fairness, sub-group regularization loss is weighted by γ2 = {1, 10, 100, 1000}.

Table 1. Comparative results of FLiB on MovieLens, and LastFM datasets

Dataset Movie Lens LastFM

GNN Model Acc AR |DP | |EO| AAc Acc AR |DP | |EO| AAc

GCN GNN 83.57 0.915 5.79 4.91 62.58 67.45 0.723 8.53 6.03 56.60

FAIR-HIN 83.64 0.914 0.85 0.79 72.45 67.55 0.726 0.19 1.44 90.57

FairGNN 83.98 0.918 5.33 4.40 51.40 67.90 0.730 1.79 4.06 51.14

FLiB 83.40 0.914 0.32 0.12 55.06 67.92 0.740 1.53 2.56 56.48

GAT GNN 78.04 0.852 5.73 7.02 62.33 70.57 0.776 9.32 7.19 52.83

FAIR-HIN 77.48 0.829 0.52 0.67 61.75 67.31 0.725 0.63 0.76 84.91

FairGNN 77.00 0.869 0.71 2.61 53.55 66.93 0.730 1.29 4.19 51.14

FLiB 70.84 0.802 1.15 0.54 50.74 67.19 0.745 0.16 0.83 51.52

4.3 Results and Analysis

Table 1 presents the results of FLiB and compares it against the state-of-the-art
Fairness models on two fairness metrics, DP and EO. We can see that in a link
prediction task on Bipartite graphs, GCN shows high bias as indicated by a (DP,
EO) of (5.79, 4.91), for MovieLens and (8.53, 6.03) for LastFM. Compared to it,
FairGCN is effective in learning fair representations for the user nodes as seen
by the adversarial accuracy of 51.40% in MovieLens and 51.14% in LastFM.
However, the bias still exists in the model outputs as indicated by a high (DP,
EO) of (5.33, 4.40) for MovieLens and (1.79, 4.06) for LastFM. The existence of
bias in model outputs despite learning fair representations for user nodes verifies
our intuition that the bias can propagate to the item nodes, further discussed
in Sect. 4.3.1. Fair-HIN is effective in making model predictions fair as the (DP,
EO) has been reduced to (0.85, 0.79) for MovieLens and to (0.19, 1.44) for
LastFM. However, for both the datasets, the bias in representations is even fur-
ther exaggerated compared to the vanilla GCN, as seen by the sensitive attribute
classification accuracies of 72.45% in MovieLens and 90.57% in LastFM. FLiB,
however, can achieve both of our goals: 1) Reduce both DP and EO to achieve
fair link predictions as seen by a (DP, EO) of (0.32, 0.12) for MovieLens and
(1.53, 2.56) for LastFM. 2) Learn fair representations for both MovieLens and
LastFM as seen by adversarial accuracies of 55.06% and 56.48%. In Table 1, we
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further show that a similar study can be done on other graph aggregator like
GAT. AAc denotes classifier/adversarial accuracy and AR denotes AUC-ROC.

Table 2. Bias Percolation from user nodes to item nodes

Task Model Accuracy AUC-ROC |DP | |EO|
Node-Classification GCN 79.80 0.86 5.88 5.15

GCN + Adversary 76.15 0.84 0.39 1.47

Link-Prediction GCN 83.57 0.91 5.79 4.90

GCN + Adversary 83.98 0.91 5.33 4.40

4.3.1 Bias Percolation from User Nodes to Item Nodes
We analyze the impact of single-layer adversarial debiasing and its effect on node
classification and link prediction tasks. We show that while a single adversary
can be effectively used to debias user nodes for a fair node classification task, it
may not be good enough in a task that includes item nodes as well, like link-
prediction. To show this, we create two tasks - a) node classification - a task
involving user nodes only, b) link prediction - task involving both user and item
nodes. For both tasks, we use the MovieLens dataset. The node classification
task is to predict a user’s age as a binary attribute indicating > 35 and <= 35
based on the user’s movie choices keeping gender as the sensitive attribute, while
the link prediction task is to recommend movies to the users. As seen in Table 2,
the reduction in both DP and EO via a single adversary is (5.49%, 3.68%) in the
node-classification task compared to the (0.34%, 0.50%) in the link-prediction
task. Hence, bias in model predictions for a fair link prediction task via a single
adversary can be attributed to bias in item nodes which is to say that the bias
has propagated from user nodes to item nodes.

Fig. 3. max(s, 1/s), s: Susceptibility Factor
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4.3.2 Inherent Bias in Item Nodes - Susceptibility Factor
Figure 3 shows a histogram for SF’s of the movie nodes in the MovieLens dataset,
which is used to identify a subset of item nodes with extreme SF values. In
MovieLens, there are 818 movies out of 3706 with a SF > 2 and can be expected
to contain bias in recommendations, therefore, a pseudo-label can be assigned
to them. For example, the movie “Sabotage” has been liked by 71.7% of the
males who watched it compared to only 17.42% females who watched it. This
movie with an SF value of 4.11 is expected to be male-biased which indeed
happens since a GCN based link-predictor recommends it to 20% males who
had liked it compared to only 11% females, giving Δ of 9% whereas, on the
application of FLiB, this Δ decreases to 4% thus improving the fairness for this
movie recommendation.

Fig. 4. DP and EO across different sub groups for the Movie dataset

4.3.3 Sub-Group Fairness
In Fig. 4 and Table 3, we evaluate the model fairness for 5 most biased movie
genres in the GCN implementation on the MovieLens dataset. FLiB, based on
statistical definitions of fairness, is mitigating bias even at the sub-group level.
S-FLiB, however, explicitly keeps this bias at the sub-group levels in check and
is shown to improve both DP and EO.

Table 3. Sub-group level fairness for GCN, FLiB, and S-FLiB

Metric Accuracy DP EO

Genre GCN FLiB S-FLiB GCN FLiB S-FLiB GCN FLiB S-FLiB

Overall 83.58 83.41 73.54 5.79 0.33 0.79 4.91 0.12 −0.49

Animation 80.73 80.99 69.71 4.27 −2.43 1.16 3.72 −0.73 0.49

Comedy 83.03 83.4 75.20 3.63 −1.82 −0.77 4.84 −0.07 −0.15

Adventure 83.51 82.97 69.86 8.4 3.26 2.32 3.4 0.01 −0.05

Drama 84.28 84.36 73.65 4.19 −1.51 −0.46 6.02 0.78 −0.05

Thriller 82.61 81.84 68.52 7.76 2.92 2.65 2.74 −0.09 0.02
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4.4 Ablation Study

In this section, we show the effectiveness of each component of FLiB by conduct-
ing experiments on the Movie Lens datasets. Results of the ablation are listed
in Table 4. GCN based link prediction shows high DP(5.79%) and EO(4.91%),
indicating the presence of high bias in the model predictions. GCN+Fairness
aware regularisation Loss(FARL) makes the task of link prediction fair by
decreasing the parity and EO to 0.85% and 0.79% but leads to high sensitive
attribute classification accuracy of 72.45, indicating that the learned embeddings
are not fair. GCN+Single Adversary makes the user representations fair by
debiasing them at the last layer, as seen by an adversarial accuracy of 51.4% but
leads to very high DP(5.33%) and EO(4.90%) due to the propagation of bias as
discussed in Sec. 4.3.1. GCN+Multi-layer Adversarial Debiasing is effec-
tive in learning fair representations as seen by adversarial accuracy of 52.84%
while improving both DP(0.56%) and EO(0.68%), indicating that bias is being
blocked from getting propagated to the item nodes. GCN+FARL+Multi-layer
Adversarial Debiasing can be seen to further improve both DP(0.53%) and
EO(0.13%) while keeping adversarial accuracy close to 50 (55.13%). FLiB fur-
ther integrates the debiasing of item nodes using pseudo-sensitive labels with
the above architecture, improving both DP(0.32%) and EO(0.12%).

Table 4. Ablation results of FLiB on Movie Lens Dataset using GCN aggregator

Model architecture Accuracy AUC-ROC DP EO Adv. Acc

GNN 83.57 0.915 5.79 4.91 62.58

GNN+Single Adv 83.98 0.918 5.33 4.40 51.40

GNN+FARL 83.64 0.914 0.85 0.79 72.45

GNN+Multi-layer Adv 83.40 0.912 0.56 0.68 52.84

GNN+FARL+Multi-layer Adv 83.56 0.913 0.53 0.13 55.13

FLiB 83.40 0.914 0.32 0.12 55.06

5 Related Work

In this section, we survey recent literature relevant to our work on fairness in
GNN based methods. Graph Neural Networks [10,12,16] have evolved as one
of the most promising techniques to learn node representation based on their
neighborhood structure. Although these representations capture the neighbor-
hood structure very well, they tend to become discriminative towards sensitive
attributes. Fairwalk [15] uses the sensitive attribute and modifies the random
walk of node2vec [9] to obtain a more diverse network neighborhood represen-
tation to adjust bias but is limited to homogeneous graphs only. Fair-HIN ([6])
discusses a range of debiasing algorithms to mitigate demographic biases in Het-
erogeneous Information Networks (HINs) and proposes the use of fairness-aware
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loss function to make the model predictions fair. Although it decreases the bias,
it does not learn fair representations limiting the use of embeddings for any other
downstream tasks. [4–6] propose the use of adversarial discriminators from GAN
to learn graph embeddings that are agnostic to sensitive information. GAN [8]
are deep learning frameworks where a generator generates the embeddings, and
the discriminator tries to identify real and fake data. In the fairness domain,
discriminators are trained to identify sensitive attribute, whereas generators are
trained to fool the generator by generating sensitive attribute agnostic embed-
ding. [6] has been shown effective in mitigating bias in homogeneous networks
whereas [4] uses adversarial filters to achieve representational invariance for a
node’s embeddings with respect to its sensitive attributes in a heterogeneous
graph but has a major assumption that the edge representation can only be
biased via user node embeddings. In this work, we address the problem of bias
in bipartite graphs and learning fair representations simultaneously.

6 Conclusion

This paper presents FLiB, a novel framework for fair link prediction and fair
representation learning in Bipartite graphs. Our experimental results show that
FLiB shows promising results on fairness metrics such as DP, EO without com-
promising fairness of learned representations. It is noteworthy that FLiB is gen-
eralizable to more general heterogeneous networks, where each node type can
have 0 or 1 sensitive attribute. As a future research direction, the work can
be extended to general heterogeneous graphs where each node type can have
multiple and non-binary sensitive attributes.
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Abstract. Missing values in testing data has been a notorious problem
in machine learning community since it can heavily deteriorate the per-
formance of downstream model learned from complete data without any
precaution. To better perform the prediction task with this kind of down-
stream model, we must impute the missing value first. Therefore, the
imputation quality and how to utilize the knowledge provided by the pre-
trained and fixed downstream model are the keys to address this problem.
In this paper, we aim to address this problem and focus on models learned
from tabular data. We present a novel Self-supervised downstream-aware
framework for MIssing Testing data Handling (SMITH), which consists
of a transformer-based imputation model and a downstream label estima-
tion algorithm. The former can be replaced by any existing imputation
model of interest with additional performance gain acquired in compar-
ison with that of their original design. By advancing two self-supervised
tasks and the knowledge from the prediction of the downstream model
to guide the learning of our transformer-based imputation model, our
SMITH framework performs favorably against state-of-the-art methods
under several benchmarking datasets.

Keywords: Missing testing data · Downstream-aware · Transformer ·
Self-supervised learning · Tabular data

1 Introduction

Missing values in testing tabular data can heavily deteriorate the performance of
downstream model learned from complete data. Despite meticulous control over
the data collection pipeline, missing data arise under several circumstances such
as the malfunctioning of storage device or the privacy concern that customers are
reluctant to provide such information. Regarding this crucial issue raised by the
missing values, previous methods addressing the missing testing data problem
fall into two categories C1: Take precaution during the learning of downstream
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model [10,12]. C2: Impute the missing testing data then feed it into the down-
stream model as normal inference pipeline[1,4,8,11,12]. Although prevention is
better than cure, one major drawback of C1 is that most existing downstream
models do not consider the missing issue during designing their architecture,
so they usually can not handle missing data. Therefore, C2 is usually preferred
since it is applicable to most of existing downstream methods.

To perform imputation on missing testing data, previous work [8] exploits the
instance correlation by statistically assuming that similar instances have simi-
lar feature. Other methods such as [1,11,12] additionally exploit the correlation
among features to predict the missing value by learning a prediction model taking
known features as input and estimating the missing value. However, the former
suffers from high performance variance considering the wide variety of data dis-
tribution of different datasets, and the latter provides imputation of poor quality
if the correlation between missing and known features is weak. Aside from the
potential issues of imputation quality, previous imputation methods [1,4,8,11]
focus on filling missing value via knowledge from the observed feature only. How-
ever, they neglect that the information provided by the prediction of pre-trained
downstream model could be beneficial. To summarize, missing values in testing
data is a challenging problem since the potential issues of the weak correlation
among features and the over ideal statistic assumption can lead to poor impu-
tation quality. The imputation methods can only learn from incomplete data,
which further increase the difficulty of estimating missing value. Besides, pre-
vious methods fail to exploit the beneficial knowledge from the prediction of
downstream model.

This paper presents a novel downstream-aware framework, Self-supervised
downstream-aware MIssing Testing data Handling (SMITH), to provide better
prediction with missing testing data. SMITH follows the pipeline of C2 to address
the problem of missing data during testing phase. We present a transformer-
based imputation model that exploits the feature correlation by co-relating input
features with self-attention mechanism to provide accurate estimation about
missing value. To effectively optimize our imputation model, we design two self-
supervised tasks to guide the learning. The first is the masking and prediction
task, i.e., we mask the known features then requires our model to predict the
masked values. The second is the missing adversarial task, which serves as the
regularization term to prevent our model from predicting missing values that is
out of regular feature distribution. For leveraging the knowledge from the down-
stream prediction, we propose a downstream label estimation algorithm, which
provides a more confident prediction by aggregating the predictions of similar
neighbor instances. The downstream label estimation has two potential usages.
One is to be performed on the imputation model optimized already. The other
is to serve as extra aid during the learning of imputation model by maximizing
the probability of the most confidential label. Besides, our SMITH framework
also provides the flexibility of model integration, i.e., it can be applied to any
of existing imputation methods of interest by simply replacing the imputation
module. We highlight the contribution of this paper below:
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– We present a novel downstream-aware framework, SMITH, which performs
imputation on the missing testing data through exploiting the knowledge from
the downstream model.

– The imputation module in SMITH is realized by a novel transformer-based
learning, which is guided by two self-supervised tasks to perform imputation
of high quality on the missing testing data.

– The downstream-aware nature of SMITH provides the flexibility of affording
existing imputation methods to ameliorate their imputation performance.

– Experiment results show that SMITH outperforms state-of-the-art imputa-
tion methods on several benchmarking datasets for downstream predictions.

2 Related Work

Missing Data Imputation. Before the breakthrough of neural network, miss-
ing data imputation has already been a well-known research topics in different
domain. In this work, we focus on handling imputation on tabular data. For the
non-neural-based imputation methods, Mean imputation fill the missing value
with global average while KNN imputation [8] fill it with the average of top-k
similar instances. However, the performance of such imputation methods heavily
relies on the distribution of input data. Other methods typically utilize the corre-
lation among input features by learning a prediction model. For example, MICE
[1] adopts multiple chained equations to predict the missing value by learning a
regressor for each missing feature with the rest features served as the input for
prediction. Nevertheless, the capability of previous non-neural based prediction
models is typically not sufficient to give an accurate estimation for the missing
value and thus could perform even worse than the non-learning based methods
during the circumstances that the correlation among features is weak. With the
progress of neural network nowadays, recent neural-based methods directly learn
a black-box imputation model by exploiting the strong data fitting capability
and robustness of neural network. Additionally, they do not rely on assumptions
about the distribution of data. For example, GAIN [11] proposed a GAN-like [5]
framework comprised of a generator predicting the missing value and a discrimi-
nator measuring the quality of the prediction. By backpropagating the goodness
of prediction to the generator, this method outperforms previous traditional
learning-based method on several datasets and demonstrate the possibility of
bringing neural network into this research topic. However, the optimization of
GAIN is more like learning an autoencoder with an extra discriminator, which
could possibly result in learning an identity mapping from the input feature to
the output. Another neural-based framework, GRAPE [12], adopts graph neural
network to address the missing data problem, which constructs a bipartite graph
with feature and each observation as nodes and the feature value as the edge.
By formulating the imputation as the edge prediction task between feature and
observation node, GRAPE demonstrates huge improvement over previous works
on several regression task and is claimed to be the state-of-the-art method for
missing data imputation.
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3 The Proposed SMITH Framework

3.1 Notations and Problem Statement

Now we define the notations. A tabular dataset consists of N instances D =
{(xi,mi, yi)}Ni=1, in which xi ∈ Rd that denotes the features vector of each
instance, mi denotes the binary mask with values in {0, 1}d to indicate whether
a certain feature is missing, and yi denotes the ground truth label that is only
for evaluation. Besides, we consider the most general missing scenario, missing
completely at random (MCAR).

The goal of missing testing data problem is to maximize the performance
of the downstream prediction task performed with a fixed classifier C, which is
trained on the complete training data while taking missing testing data as input
during prediction. To have the fixed downstream classifier to perform inference
on missing testing data, an imputation model M is required to fill the missing
value first, taking (xi,mi) as input and outputting imputed data x̂i. Thus, the
quality of the imputation by M plays the key role for the downstream perfor-
mance.

3.2 SMITH Framework

As depicted in Fig. 1, SMITH consists of an imputation model M and a down-
stream label estimation algorithm. The former learns imputation from incom-
plete testing data, and the latter improves the performance further by leveraging
knowledge from the downstream prediction task. While the overall framework is
optimized, we can perform inference on the missing testing data without exploit-
ing the ground-truth downstream label. With the above-mentioned framework,
although testing data contains missing values and the downstream model can
only take complete data as input, the downstream task can be achieved by
performing imputation on the missing testing data (xi,mi), then feeding the
imputed features x̂i into the downstream model to acquire the downstream pre-
diction ŷi. It is worth noting that the imputation model in our framework can
be replaced by any existing imputation methods to meet the desire of different
downstream tasks. We will present the downstream label estimation in Sect. 3.2,
and leave the imputation model introduced in Sect. 4.

3.3 Downstream Label Estimation

Although the ground-truth labels during the testing phase is not available,
we propose a downstream label estimation (DLE) algorithm that can exploit
favorable knowledge from the downstream prediction to improve the perfor-
mance. Our downstream label estimation algorithm follows the assumption that
instances with similar feature values should be within the same class. For each
instance, we perform voting within the prediction of top-k similar instances to
give a more confident estimation of downstream label, denoted as ỹi. Considering
the incompleteness of testing data, we perform imputation with the imputation



SMITH 503

...

Imputation

0.5
0.7
NaN

NaN
0.7
0.9

0.4
NaN
0.2

...

0.5
0.7
0.2

0.1
0.7
0.9

0.4
0.1
0.2

0.4
NaN
0.8

0.4
0.5
0.8

Imputation
Model

Downstream Label Estimation

0.5
0.7
0.2

0.1
0.7
0.9

0.4
0.1
0.2

...

0.4
0.1
0.2

1

1

0

...

0

Top-K
Similar

Voting

...

Fixed
Classifier

Inference

1
0

0
1

1
0

1
0

...

1
0

0
1

1
0

1
0

Fig. 1. The proposed SMITH framework.

Algorithm 1: Downstream Label Estimation
Input: Imputation Model M, Downstream Classifier C
Data: Testing data D = {(xi,mi)}Ni=1

Output: Estimated downstream label ỹ
1 Perform imputation on missing data D with imputation model M and get

imputed data x̂.
2 Get downstream prediction ŷ with downstream classifier C.
3 foreach xi do
4 Calculate the similarity between x̂i and all the other instances x̂.
5 Find the top-k similar instances according to similarity.
6 Perform voting within the prediction of top-k neighbors and acquire

the estimated label ỹi.
7 end

model M to acquire data with full feature values, x̂i, then calculate the instance
similarity. The full DLE pipeline is detailed in Algorithm 1.

The downstream label estimation can be exploited in two ways, within and
after the optimization of imputation model. The former “within imputation” is
applicable to neural network-based methods only while the latter “after impu-
tation” is for any supervised learning methods. More specifically, for neural
network-based imputation methods like GAIN [11] and GRAPE [12], we can
backpropagate the extra knowledge of the estimated label to help the learning of
imputation model by maximizing the downstream probability of the correspond-
ing label ỹi, in which cross-entropy can be used as the objective. We denote this
learning objective as LDLE , given by:
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LDLE = − 1
N

N∑

i=1

ỹT
i log(pi) (1)

where pi denotes the vector of label prediction probability estimated by the
downstream classifier C, and ỹi is the one-hot vector of estimated label. During
evaluation, we use ŷi as the testing prediction result since the knowledge from
downstream prediction is already incorporated into the imputation model. As
for the non-neural network based method like Mean, KNN [8] and MICE [1], ỹi
is considered.
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Fig. 2. Proposed transformer-based imputation model and its learning: (a) Model
Architecture, (b) Masking and Prediction Task, and (c) Missing Adversarial Task

4 The Proposed Transformer-based Imputation Model

In this section, we introduce the learning of our transformer-based imputation
model. The goal of the imputation model is to estimate the missing value based
on the known input feature. As shown in Fig. 2(a), our imputation model consists
of three modules, including the feature-specific embedding layer, transformer
encoder, and feature-specific prediction head. The forward pass of our model is
detailed as follows. First, we encode each known feature xj

i in instance xi into
feature embedding eji ∈ Rk, with feature-specific embedding layer respectively.
For the numerical feature, we apply a two-layer MLP for each feature, which
transforms the input scalar into a one-dimensional embedding. For the cate-
gorical feature, we simply use an embedding layer, similar to that of the word
embedding [7]. As for the missing feature values, we adopt a special embedding as
the feature embedding for each missing feature to indicate the missingness. After
the above-mentioned encoding pipelines are completed, an extra embedding for
each feature is added to emphasize the feature modality information, similar
to the positional encoding [3]. As a result, we transform each instance from
one-dimensional feature vector xi into two-dimensional one, ei ∈ Rd×k. As the
encoding process is completed, we feed the feature-specific representation ei into
the transformer encoder that leverages the correlation of each feature via self-
attention [9] and output the representation ti. The final prediction for imputation
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is acquired by feeding the representation ti into the feature-specific prediction
head, transforming the two-dimensional representation into a one-dimensional
one, the same shape as the input feature. To optimize our imputation model,
we introduce two self-supervised tasks, masking and prediction task and missing
adversarial task, to guide its learning. The former enforces our model to estimate
the missing values with the known features, and the latter prevents our model
from predicting values which is out of normal data distribution.

4.1 Masking and Prediction Task

In this task, we aim at exploiting the correlation among the known feature values
to guide the learning of our imputation model. Aside from the missing feature
values which are unobserved at the testing stage, we perform extra masking on
known feature values selected randomly, and require our model to recover them.
Unlike the learning of autoencoder that the ground-truth feature value is already
in its input, our masking operation reinforces the awareness between missing and
known features, and prevents our model from identically mapping the input to
the output. We illustrate this task in Fig. 2(b). For numerical features, we use
mean square error as the learning objective. As for categorical feature, cross-
entropy is considered. We denote this learning objective as LMP and formally
define it as follows:

LMP =

{
1
N

∑N
i=1 ||x̂j

i − xj
i ||2, if xj is numerical.

− 1
N

∑N
i=1(x

j
i )

T log(x̂j
i ), if xj is categorical.

(2)

4.2 Missing Adversarial Task

In addition to the concrete guidance provided by the known feature values, in
this task, we prevent our model from predicting feature values that is out of their
reasonable distribution with the help of an extra module, known estimator KE .
The KE estimates the goodness of the prediction by learning to distinguish known
features from the predicted features generated from the imputation model. As
depicted in Fig. 2(c), the known estimator KE takes the prediction from the impu-
tation model M, and outputs scores ranging from 0 to 1 to indicate the goodness
of each feature value. The learning of KE is formulated as a feature-wise binary
classification task. Formally, the learning objective for KE is as follows,

LEst = − 1
N

N∑

i=1

mT
i log(KE(x̂i)) (3)

To backpropagate the knowledge of the prediction quality to the imputation
model, we fix the model parameters of the known estimator KE , and update
those of the imputation model M to maximize the goodness score. We denote
this learning objective as LMA, given by:

LMA = − 1
N

N∑

i=1

1T log(KE(x̂i)). (4)
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Algorithm 2: Full Optimization Pipeline
Input: Imputation Model M, Downstream Classifier C, Known Estimator

KE
Data: Testing data D = {(xi,mi)}Ni=1 with missing values

1 foreach epoch do
2 Get imputation value with imputer M.
3 Get known estimation with KE .
4 Calculate known estimation loss LEst.
5 Update known estimator KE .
6 Calculate mask prediction loss LMP .
7 Calculate missing adversarial loss LMA.
8 if epoch �= 0 then
9 Calculate downstream label estimation loss LDLE .

10 Update imputer M.
11 Update estimated downstream label ŷi following Algorithm 1.
12 else
13 Update imputer M.
14 Get estimated downstream label ŷi following Algorithm 1.
15 end
16 end

Following the general learning pipeline of Generative Adversarial Network
(GAN) [5], we train the known estimator and our imputation model iteratively
with the objectives mentioned above.

4.3 The Overall Learning Objective

Now we summarize all the learning objectives introduced in the sections above.
For the learning of our imputation model, we have LSST sum up the two self-
supervised objectives related to imputation as follows: LSST = LMP + λaLMA.
After introducing the downstream label estimation into our imputation model,
the full learning objective is formulated as below: L = LSST + λdLDLE , where
λa and λd denote the balancing factors of the missing adversarial task and the
utilization of knowledge from downstream prediction during optimization. Since
the guidance provided by these objectives is imprecise, in practice, we set rela-
tively small learning weights, e.g., 0.01, to them. Note that all the existing neural
network-based imputation methods can be incorporated into our framework by
replacing the imputation model and the LSST will be substituted with their
learning objective accordingly. We detail the full optimization pipeline of the
integration of our transformer-based imputation model into our SMITH frame-
work in Algorithm 2.
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5 Experiments

In this section, we conduct extensive experiments to quantitatively verify the
effectiveness of SMITH on the task of missing testing data.

Table 1. Statistics of datasets.

Statistics Breast Spam Electric Letter Plate Bean Wifi Wine Digit Yeast

Abbr. BR SP EL LE PL BE WIF WIN DI YE

Instance 540 4601 10000 20000 1941 13611 2000 4898 10992 1484

Attribute 18 57 12 16 27 16 7 11 16 8

Class 2 2 2 26 7 7 4 7 10 10

5.1 Experimental Setup

We conduct experiments on 10 real world datasets from the UCI Machine Learn-
ing Repository [2], and the statistics is listed in Table 1. Since these datasets are
originally complete, we drop features following the missing completely at ran-
dom (MCAR) setting to simulate the missing testing data problem. In all exper-
iments, we split the dataset into training/validation/testing set with 60/10/30%
ratio. The downstream classifier is optimized on training set with complete
instances and corresponding labels. The imputation model is optimized on the
testing set with instances containing missing features only and validated with
the validation set which is similar to the former but with the ground-truth label
to select the best checkpoint. Following the same pipeline as previous works
[11,12], we scale feature values to [0-1] with MinMax Scalar [6] as the feature
preprocessing. We use a 3-layer MLP with tanh as the downstream classifier.
For the analyses, we conduct experiments with the setting mentioned above 5
times with different random seeds and report the mean accuracy.

We compare SMITH with the following imputation methods: (a) Mean:
Impute the missing value with the mean of observed feature value; (b) KNN
[8]: Impute with the mean value among top-k most similar instances; (c) MICE
[1]: Impute the missing value based on a simple prediction model conditioned on
the other feature and optimized on instances with observed value; (d) GAIN
[11]: State-of-the-art neural method with generative adversarial training; (e)
GRAPE [12]: State-of-the-art neural method following the graph architecture.

5.2 Experimental Results

Comparison of Imputation Models. In this section, we compare the imputa-
tion capability of SMITH with competing methods on different levels of missing
rate. To focus on the imputation capability, knowledge from the downstream
model is not involved in these experiments. We found that though some neural-
based methods are claimed to be the state-of-the-art, they could lose to non-
neural based imputation methods on several datasets. Since there is no single
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Table 2. Performance comparison of imputation models on different missing rates.

Method BR SP EL LE BE WIF DI PL WIN YE Rank

30% Missing Rate

Mean 94.5 87.96 75.4 45.19 76.16 85.17 70.02 57.39 46.45 43.73 5.5

KNN 94.69 88.16 74.75 60.45 90.01 86.47 91.06 65.57 46.99 43.06 4.2

MICE 96.96 88.22 76.79 52.46 90.69 91.87 87.29 65.4 46.88 44.0 3.1

GAIN 94.97 88.83 75.25 51.44 88.9 88.43 83.99 62.92 46.49 42.43 4.6

GRAPE 95.67 89.45 76.46 64.46 90.81 93.83 94.9 66.49 47.09 43.51 2.3

SMITH 96.26 88.72 76.99 68.71 90.84 94.1 95.29 66.7 47.16 44.72 1.3

50% Missing Rate

Mean 92.28 81.93 71.36 28.77 55.78 69.37 50.07 44.95 46.26 40.76 5

KNN 93.68 82.06 68.23 32.59 76.62 77.3 59.39 57.94 46.05 39.69 4.85

MICE 94.85 84.23 71.59 36.77 87.25 80.6 69.77 58.59 46.14 40.4 3

GAIN 93.62 84.59 71.33 33.79 83.73 76.57 66.7 56.46 46.0 40.49 4.3

GRAPE 93.68 86.09 72.37 47.42 89.47 84.57 87.8 62.13 46.11 40.27 2.35

SMITH 94.27 84.33 72.66 48.18 89.35 84.73 86.77 62.3 46.34 41.26 1.5

70% Missing Rate

Mean 88.77 73.19 67.85 16.41 35.57 50.8 30.48 38.01 45.78 36.31 4.85

KNN 88.07 73.74 63.95 18.08 63.55 61.83 41.87 48.73 45.78 34.7 4.45

MICE 92.05 77.68 68.03 19.4 69.2 63.93 39.16 47.73 46.03 35.19 2.9

GAIN 87.13 77.39 67.6 14.96 59.49 56.63 40.99 47.66 45.63 35.51 4.7

GRAPE 90.29 80.62 67.23 25.9 85.47 67.73 65.3 54.47 45.89 35.42 2.2

SMITH 91.46 74.78 68.25 24.6 85.2 68.0 62.57 52.78 45.97 36.63 1.9

method outperforming the others among all datasets, we compare them by the
average ranking. Table 2 shows SMITH outperforms all competitors. However,
as the missing rate increases, the ranking of our model gradually decreases.

Analysis on Downstream Label Estimation Algorithm. We investigate
whether our downstream label estimation (DLE) algorithm can improve the
performance of downstream task. Besides, we compare the two strategies of
incorporating the algorithm into existing imputation methods, within or after the
optimization of imputation, denoted as single (-s) and iterative (-i) respectively.
The results are reported in Table 3. In comparison with the results in Table 2, we
see that our algorithm improves the performance of all imputation methods. As
for the comparison of different strategies, we observe that the option iterative
always outperforms the option single on 30% and 50% missing rates. This is
expected since the extra knowledge of downstream model is backpropagated to
the learning of imputation. However, in the setting of 70% missing rate, the
performance of iterative is worse than single in some datasets. We attribute this
phenomenon to the uncertainty of the imputation learning on 70% missing rate.
Incorporating such an objective could bring additional noise since the learning
is already difficult. Consequently, our model still outperforms all competitors
across all missing rates after we advance the downstream label estimation.

Ablation Study. To verify the effectiveness of each component in SMITH, we
conduct ablation analyses on two self-supervised tasks and the downstream label
estimation (DLE) algorithm on 10 datasets with 30% missing values. Table 4
shows the effectiveness of each learning objective is confirmed.
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Table 3. Performance comparison between iterative and single learning strategies.

Method BR SP EL LE BE WIF DI PL WIN YE Rank

30% Missing Rate

Mean-s 95.02 88.01 75.62 51.42 81.13 87.97 76.51 58.16 46.55 43.92 5.4

KNN-s 94.91 88.23 74.98 64.31 90.45 88.79 91.37 65.82 47.03 43.23 4.5

MICE-s 97.01 88.31 77.01 54.57 90.81 92.76 88.81 65.77 46.91 44.03 3.5

GAIN-s 95.11 89.01 75.34 62.48 89.98 93.1 92.46 63.39 46.52 43.73 4.2

GAIN-i 95.32 89.11 75.43 63.12 90.03 93.99 93.67 63.57 46.6 44.05 3.9

GRAPE-s 95.92 89.52 76.52 65.83 90.96 93.87 95.16 66.57 47.12 44.02 2.2

GRAPE-i 96.07 89.67 76.66 67.59 91.02 94.47 95.34 66.71 47.19 44.22 2.1

SMITH-s 97.03 88.91 77.08 69.23 91.08 94.33 95.37 66.85 47.29 44.91 1.2

SMITH-i 97.13 88.98 77.23 70.12 91.17 94.61 95.48 66.93 47.38 44.97 1.2

50% Missing Rate

Mean-s 93.15 82.07 71.45 31.88 70.66 73.48 61.73 48.12 46.47 41.23 5

KNN-s 94.03 82.15 69.76 39.92 80.89 80.21 65.88 58.23 46.33 40.11 4.8

MICE-s 95.12 84.45 71.88 41.98 88.56 83.11 72.19 59.44 46.41 40.72 3.2

GAIN-s 93.78 84.65 71.42 41.1 87.72 83.13 80.91 57.51 46.07 40.77 4

GAIN-i 93.98 84.68 71.48 41.59 88.62 83.22 81.27 57.98 46.31 41.03 3.7

GRAPE-s 93.89 86.23 72.44 50.46 89.51 85.07 88.64 62.31 46.19 40.58 2.5

GRAPE-i 94.04 86.31 72.53 50.77 89.63 85.18 88.89 62.69 46.2 40.95 2.4

SMITH-s 94.98 84.47 72.71 51.24 89.47 85.34 88.43 62.42 46.51 41.31 1.5

SMITH-i 95.16 84.51 72.83 51.45 89.52 85.45 88.63 62.78 46.62 41.39 1.4

70% Missing Rate

Mean-s 89.11 73.22 68.05 18.12 50.23 53.41 40.77 43.38 45.8 36.57 5

KNN-s 88.93 73.78 65.59 19.2 67.88 62.78 45.91 49.22 45.91 35.11 4.7

MICE-s 92.66 77.72 68.13 21.01 71.37 65.77 42.83 48.55 46.22 35.56 2.9

GAIN-s 91.46 77.63 67.79 17.12 76.02 59.37 52.71 48.18 45.73 35.57 4.1

GAIN-i 88.77 76.78 67.19 16.01 74.94 56.83 47.21 48.32 45.54 35.73 4.5

GRAPE-s 91.35 80.96 67.44 26.45 85.63 68.6 68.7 54.74 45.96 35.51 2.4

GRAPE-i 90.76 79.32 67.63 26.15 85.82 68.63 65.65 54.37 45.97 35.06 2.3

SMITH-s 92.21 76.15 68.31 25.78 85.47 68.83 67.16 53.26 46.09 36.81 1.9

SMITH-i 92.98 76.57 68.39 25.81 85.67 68.89 65.51 53.78 46.13 36.74 1.8

Table 4. Results of ablation study.

Setting BR SP EL LE BE WIF DI PL WIN YE

LMP 95.74 88.01 76.51 68.23 90.75 93.88 95.01 66.31 46.89 44.39

+LMA 96.26 88.72 76.99 68.71 90.84 94.1 95.29 66.7 47.16 44.72

+LDLE 97.13 88.98 77.23 70.12 91.17 94.61 95.48 66.93 47.38 44.97
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6 Conclusion

In this paper, we propose a novel downstream-aware framework, SMITH, com-
prised of a transformer-based imputation model learned from two self-supervised
tasks and a downstream label estimation algorithm to handle missing data during
prediction. SMITH is flexible to be applied to any existing imputation methods.
By advancing the extra knowledge from the downstream model, we demonstrate
improvement over 10 benchmark datasets. With SMITH, we outperform previous
state-of-the-art methods regarding the overall average ranking. Extensive exper-
iments are conducted to quantitatively verify the effectiveness of our method.
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Abstract. Most recently, the tools of geometric deep learning (GDL)
and, in particular, graph neural networks emerge as a promising new
alternative in unsupervised anomaly detection problems where the data
exhibit a sophisticated nonlinear dependence structure such as various
geospatial surveillance systems. However, prevailing GDL-based meth-
ods for anomaly detection tend to exhibit limited capabilities to capture
multiscale spatio-temporal variability which is ubiquitous in many appli-
cations, particularly, related to biosurveillance and biothreats. Motivated
by the problem of assessing COVID-19 severity, we develop a novel app-
roach to unsupervised anomaly detection in spatio-temporal data by fus-
ing the notion of GDL with the emerging direction of persistent homolo-
gies and topological data analysis. In particular, our key idea is to bolster
the GDL performance by leveraging the complementary insight on the
intrinsic multiscale data organization which topological descriptors can
provide. We also go one step further and show how our ideas at the inter-
face of topological and geometric deep learning can be used not only for
detection but for prediction of future anomalies. We show the utility
of the new approach to detecting, forecasting and interpreting risks in
COVID-19 clinical severity, measured in terms of hospitalization rates,
in three U.S. states: California, Texas, and Pennsylvania.
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1 Introduction

Efficient identification of data instances which differ noticeably from the
expected baselines is the core behind such diverse tasks as combating money
laundering on blockchain, river water-quality monitoring, and defending infor-
mation systems against breaches of cybersecurity. With a long history in robust
statistics and continually emerging new types of threats, anomaly detection
remains one of the most actively developing fields at the nexus of machine learn-
ing and statistical sciences. Efficient detection of anomalies in dynamic settings
such as biological and cyber threats is further exacerbated, first, by the limited
or even non-existing records of labeled attack examples and, second, by a sophis-
ticated dependence structure among entities of the underlying time-evolving
object. For instance, transmission of many pathogens exhibit complex spatio-
temporal interactions with atmospheric conditions, and moreover, pathogenicity
of biothreats mat vary across spatial and temporal scales [28,29,32,41].

To address the first challenge, anomaly detection is often viewed as an unsu-
pervised problem. Among some most widely used unsupervised tools for anomaly
detection are Connectivity-based Outlier Factor (COF) [42] and Influenced Out-
lierness (INFLO) [23]. However, such approaches tend to focus on linear relation-
ships among system entities, and as a result, show limited ability to account for
early warning signals induced by nonlinear interactions exhibited by most com-
plex real-world systems. Various deep learning (DL) tools such as variational
autoencoders (VAE) [25], Long short-term memory (LSTM) [31], and Genera-
tive adversarial Networks (GANs) [26] partially mitigate this problem and are
found to be promising approaches for anomaly detection in high-dimensional
settings.

However, such DL methods are restricted in their ability to learn multiple
types of interactions among system entities in dynamic settings, e.g., georefer-
encing. As such, in the last couple of years, there has been a spike of interest in
bringing the tools of Graph Neural Networks (GNNs) [10] and other methods of
geometric deep learning (GDL) to anomaly detection tasks [18]. Indeed, GDL
offers a systematic framework for learning non-Euclidean objects such as graphs
and manifolds, and hence, GDL allows us for more flexible modeling of com-
plex interactions among entities in a broad range of complex data structures,
including multivariate time series and dynamic networks.

Our goal here is to further enhance this emerging GDL direction in anomaly
detection and to bolster its performance by leveraging the power of data topo-
logical (or shape) descriptors. By topological descriptors, we broadly understand
data characteristics that are preserved under continuous transformations such as
bending, twisting, and stretching. In turn, a few most recent studies show that
integration of topological summaries of time-evolving structures such as spatio-
temporal processes into DL, either in a form of a topological layer or as additional
data attributes, can noticeably improve forecasting performance [12,13,47]. This
phenomenon can be explained by the complementary information on the under-
lying intrinsic system organization at multiple scales which topological descrip-
tors (or more precisely, tools of persistent homology) can deliver. Motivated
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by biothreat applications where variation of pathogenicity is ubiquitous across
spatio-temporal scales, we believe that integration of topological summaries into
GNNs may enhance not only anomaly detection performance but bring an invalu-
able insight about various hidden mechanisms behind anomaly formation. To
investigate this hypothesis, we consider anomaly detection in COVID-19 clin-
ical severity, measured in terms of hospitalization rates, in three U.S. states:
California, Texas, and Pennsylvania, Moreover, we make a step forward in not
only detecting the existing anomalies but forecasting the future anomalies. While
assessing future anomalous patterns is the core behind proactive risk mitigation,
especially, in healthcare analytics such as during COVID-19 pandemic, to the
best of our knowledge, neither GDL nor any other DL tools have ever been used
for spatio-temporal forecasting of anomalies.

The key novelty and contributions of this paper are summarized as follows:

– We are the first to integrate topological descriptors within GDL for anomaly
detection tasks. Our Tlife-GDN model with a fully trainable topological layer
within GNN shows competitive performance against existing state-of-the-art
approaches and allows improving tractability of the latent mechanisms behind
emergence of anomalies.

– This is the first paper to address the problem of future anomaly forecast-
ing with GDL, which is the key behind developing proactive risk mitigation
strategies.

– This is the first approach to assess evolution of existing and future spatio-
temporal anomalies in COVID-19 clinical severity, measured in terms of hos-
pitalization rates.

2 Related work

Anomaly Detection in Time-Evolving Processes. Traditional tools for
this task include Principal Component Analysis [39] and K Nearest Neighbors
(KNN) [5]. Most recently, there has been suggested a number of approaches
that leverage topological descriptors for anomaly detection within statistical
algorithms. For instance, [22] proposes to detect change points in topological
summaries of the observed data instead of analyzing the observed data directly,
as in prevailing tools. In turn, [43] considers topological summaries as a sup-
plement to observed data as the input for arrhythmia detection. Finally, [27]
and [33] propose anomaly detection in Ethereum blockchain graphs based on
assessing similarity among the topological summaries of the data at adjacent
time snapshots.

Most recently, DL tools emerge as powerful alternatives to address anomaly
detection in spatio-temporal processes. Among such notable DL approaches
are Autoencoders (AE) of [2] based on the idea of reconstruction errors; Deep
Autoencoding Gaussian Model (DAGMM) of [48] which expands AE with the
Gaussian Mixture Model, and Variational Autoencoders (VAE) of [25] with reg-
ularized encoding’s distribution. Furthermore, inspired by the Support Vector
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Data Description (SVDD) [34,35] proposes a Deep Support Vector Data Descrip-
tion (DEEP-SVDD) for anomaly detection tasks which is capable of learning the
nodes’ representation and hypersphere center of the data simultaneously.

Finally, in the last couple of years, there has been a spike of interest in
bringing the power of GNNs to anomaly detection tasks on spatio-temporal data
[30]. For instance, most recently [14] proposes a Graph Neural Network-Based
Anomaly Detection tool based on the approach of graph attention mechanism
with location embedding and structure learning. Although all those methods
intend to discover the hidden relationships between system entities, to our best
knowledge, there exists no GNN which have explored the power of topological
data descriptors for enhancing anomaly detection in time-evolving processes.

Different from the anomaly detection task, anomaly prediction is the task
of recognizing future abnormal instances relative to the currently recorded data
patterns. The problem of anomaly prediction is noticeably more challenging due
to elevated uncertainty of forecasting and, while playing a key role in efficient and
proactive management of emergency preparedness, remains largely understudied.
Previous works in this filed include applications of machine learning tools like
Support Vector Machines (SVMs) [45] and epsilon-Support Vector Regression
(ε-SVR)[6] in software programs [4], water pipeline [46]. However, to the best of
our knowledge, neither the utility of GNNs nor DL tools, in general, has been
explored before for anomaly prediction in conjunction with analysis of time-
evolving processes.

COVID-19 Severity Prediction. Many recent studies have analyzed the risk
factors for the severe acute respiratory syndrome coronavirus 2 (i.e., SARS-CoV-
2, the virus which causes COVID-19). For example, [8] examines the possible cor-
relation between obesity and COVID-19 clinical severity by surveying patients
in a hospital, while [7] considers the linkage between anticancer therapy and
COVID-19. More generally, [16] reviews the factors in demographics, comorbidi-
ties, hypoxia and radiographic features that might worse COVID-19 outcomes.
However, the majority of the COVID-19 severity research focuses on the patients’
clinical features rather than on the severity in a certain geographical area.

Two notable studies on spatio-temporal anomaly detection in conjunction
with COVID-19 are [19] and [24] who consider topological data analysis (TDA)
and the deep hybrid autoencoder networks for assessing daily new cases, respec-
tively. Furthermore, [36–38] consider various GDL and LSTM models, coupled
with topological descriptors for tracking COVID-19 hospitalizations and number
of cases, but do not address the problem of spatio-temporal anomaly detection
in COVID-19 clinical severity. As such, spatio-temporal anomalies in COVID-
19 clinical severity and, particularly, anomalies in hospitalization rates remain
largely under-explored. To the best of our knowledge, there exists no current
method assessing risk scoring in COVID-19 clinical severity using GNNs or TDA
based on hospitalization data. Our paper aims to take advantage of GNNs with
topological descriptors to improve the performance and tractability of the unsu-
pervised spatio-temporal anomaly detection and anomaly prediction for COVID-
19 hospitalization rates.
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3 Preliminaries on Persistent Homology

Persistent homology (PH) is a methodology under the framework of topological
data analysis, which aims to study the most inherent shape characteristics of
the observed data. The PH machinery is applicable to a broad range of data
types, e.g., point clouds in Euclidean spaces, images, graphs, and more generally,
objects in metric spaces. Here, we primarily focus on shape characteristics of
the graph G generated from spatio-temporal time series1 [9,11]. The approach
consists of the three main steps. First, we convert G into a filtration of graphs
G1 ⊆ G2 ⊆ . . . ⊆ Gk = G. We can now track evolution of various patterns in this
graph filtration, which ought to reveal the underlying structure of G at different
scales. Second, to make the tracking process systematic and efficient, we build
a simplicial complex C on top of G and, as such, our graph filtration is now
associated with a nested sequence of complexes C (G1) ⊆ C (G2) ⊆ . . . ⊆ C (Gn).
That is, we can now compute simplicial homologies and record which shape
characteristics, for example, connected components, loops, and cavities, appear
in the filtration of complexes. In particular, we say that a topological feature is
born at ib if C (Gib

) is the complex where we first observe it. In turn, we record
death of a topological feature at jd if this feature is last seen in C (Gjd

). The longer
the lifespan jd − ib of the topological feature is, the likelier this feature contains
important structural information on G. Features with longer lifespans are also
said to persist, while features with shorter lifespans are sometimes referred to
as topological noise. Finally, in our third step, we summarize all the extracted
topological features in a form of a multi-set D = {(ib, jd) ∈ R

2|ib < jd}, called
persistence diagram (PD). Since lifespan jd − ib ≥ 0, all points in D are in the
half-space on or above y = x. Finally, there exists multiple options to construct
graph filtrations [20]). For instance, consider a continuous function f : V → R

acting on nodes of G and a sequence of non-negative scales ξ1 < ξ2 < . . . < ξn.
Then, we can define the corresponding simplicial complex as Ci = {σ ∈ C :
maxv∈σ f(v) ≤ ξi}. Similarly, filtration can be defined as E of G. In this paper,
we consider the weight rank clique filtration [40] and Vietoris-Rips abstract
simplicial complexes [15], due to their computational benefits.

Since D is a multi-set, we cannot directly feed it into DL framework. As
such, we use its vectorized representation, i.e., persistence image (PI) [1]. To
construct PI, we first map D to an integrable function ρD : R → R

2, which is
referred to as the persistence surface and which is given by sums of weighted
Gaussian functions centered at each point in D. We then integrate ρD over each
grid box to obtain PI such that the value of each pixel z is given by

PI(z) =
∫∫

z

∑
μ∈T (D)

g(μ)
2πδxδy

e
−

(
(x−μx)2

2δ2x
+

(y−μy)2

2δ2y

)
dydx. (1)

Here T (D) is the transformed PD D (i.e., T (x, y) = (x, y−x)), g(μ) is a weighting
function, where μ = (μx, μy) ∈ R

2), while μx and δx and μy and δy are the mean
and the standard deviation of the Gaussians in x and y direction, respectively.
1 Generation details are available in Algorithm 1.
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Graph Neural Network-Based Anomaly Detection. The GDN architec-
ture addresses the structure learning process with graph neural networks and
combines it with attention weights to detect anomaly. The GDN model learns
the vector embedding for each location during the training process and uses the
similarity between vectors to build the connection relationships. The observed
data at time t is s(t). When the size of the sliding window is w, the input x(t) is
x(t) =

[
s(t−w), s(t−w+1), · · · , s(t−1)

]
. Based on the learned graph structure, the

aggregated representation of node is computed as

z(t)i = ReLU(αi,iWx(t)
i +

∑
j∈N (i)

αi,jWx(t)
j ), (2)

where W is a weighted matrix, x(t)
i is the input feature of node i, N (i) denotes

the neighbors of node i from structure learning, and αi,j is attention coefficient.
Then the GDN model[14] utilizes the representation of the node i, i.e., z(t)i

and embeds the corresponding vector vi to predict the current value. Lastly,
GDN generates the anomaly score and identify anomaly.

4 Topological Lifespan Graph Neural Network-Based
Anomaly Detection Approach (Tlife-GDN)

Problem Statement. Mathematically, the anomaly detection problem can be
formulated as follows. Let s(t) be records (e.g., COVID-19 hospitalizations) from
N locations, where t = {1, 2, . . . , T}. Let l(t) be the binary anomaly status
at time t, e.g., l(t) = 0 represents a normal behaviour, whilst l(t) = 1 when
some abnormality occurs. Let G(t) = (V,E, ω(t)) be a weighted connectivity
network among locations s(t), with node set V = {v1, v2, . . . , vN}, i.e., each node
represents a location, edge set E ∈ V ×V and the non-negative symmetric edge-
weight matrix ω(t) with entries {ω

(t)
ij }1≤i,j≤N . In this paper, we focus on two

problems: 1) current anomaly prediction and 2) forecasting of future anomalies.

Problem 1: To learn a mapping function H({s(t)}T−1
t=1 , {G(t)}T−1

t=1 ) which maps
the records to a binary anomaly output l(t).

Problem 2: Given an ahead horizon h, our goal is to learn a mapping function
H({s(t)}T−1

t=1 , {G(t)}T−1
t=1 ) which maps the records to a binary anomaly output

l(t+h).
In order to capture the complex topological features of the spatio-temporal

data, we construct dynamic networks, and extract the n-dimensional features
in the form of persistence diagram and vectorize the persistence diagram to
obtain persistence image. Then, we integrate the persistence image into the GNN
framework for detection of existing anomalies and prediction of future anomalies.

4.1 Topological Features of Dynamic Networks

Topological features provide a way to systematically describe the graph struc-
ture and track the evolution of hidden patterns of data. In this paper, we make
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Algorithm 1. Topological Features from Dynamic Networks
1: INPUT: Location Records {s(t)i }N

i=1, t = {1, 2, . . . , T}
2: OUTPUT: Topological summaries
3: for t ← 1 : T do
4: for i ← 1 : N − 1 do
5: for j ← i + 1 : N do
6: Compute H

(t)
ij = |s(t)i − s

(t)
j |

7: Keep only bottom-m values in H(t)

8: Compute ω(t)(e) = 1 − Ht/max(H(t))
9: Generate G(t) based on ω(t)(e)

10: Apply persistent homology on dynamic networks G = {G(t)}T
t=1 for different dimen-

sions and generate persistence diagram(PD) for each timestamp t
11: Apply equation 1 in section 3 to generate persistence image (PI) from PD

use of lifespans of those topological features from different nodes in the dynamic
network. Specially, with records {s(t)i }N

i=1, we calculate the L1 distance matrix
H(t) of record values {s(t)i }N

i=1 to build connections between locations (e.g., coun-
ties) as shown in Algorithm 1. The locations with close values are considered to
have similar patterns. In our study, the counties with similar COVID-19 cases
rate may have similar geometric structure information regarding the COVID-19
transmission, empty ICU beds and hospitalization severity. We take the lowest-
m values in the connection matrix, where m is a predefined number based on the
dataset. Then, we generate an edge weight matrix ω(e) by taking 1 minus the
standardized H(t) and get its corresponding weighted graph G(t). The next step is
to use persistent homology to track the invariant structure features, and compute
a persistence diagram (PD) for each network G(t) and its corresponding lifespan
information. Finally, we generate the vectorized represented persistent image
(PI) defined in Sect. 3 as the topological features from the location’s dynamic
networks.

4.2 Tlife-GDN Architecture

With the spatio-temporal dataset s(t) (where t = {1, 2, . . . , T}), we capture
the topology features PI defined in Section 4.1. Then we train our topology-
based GDN to capture the hidden structure between different locations. Equation
3 shows the implementation of persistence image PI(t−1) in the graph neural
networks framework

z(t)i = ReLU
(
(αi,iWx(t)

i +
∑

j∈N (i)

αi,jWx(t)
j )Q(t)

)
, (3)

where z(t)i denotes the latent representation of the node i at timestamp t. Q(t) ∈
R

d is the topological representation from the CNN based model (where d is the
length of embedding vector for each location), which is formulated as Q(t) =
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fcnn(PI(t−1)), where fcnn is a CNN-based model and PI(t−1) denotes the PI for
the network at (t−1) timestamp. Then, we add the latent nodes’ representation
into the graph detection network architecture to predict the location’s value. For
anomaly detection/prediction, we use the loss function and error score as

LMSE =
1

T − w

T−h∑
t=w+1

∥∥∥ŝ(t+h) − s(t)
∥∥∥2

2
, Erri(t + h) =

∣∣∣s(t)i − ŝ(t+h)
i

∣∣∣ , (4)

where h is the prediction window and h = 0 correspond with the detection task.
For both detection and prediction tasks, the anomalousness score at time t is the
maximal score across locations A(t) = maxi ai(t) where ai(t) is the standardized
error score.

Fig. 1. Architecture overview of the Tlife-GDN model, where
(G(t−w), . . . , G(t−2), G(t−1)) and (s(t−w), . . . , s(t−2), s(t−1))� ∈ R

N×F×w denote all
graph structures and values of all features for each node over w time slices, respectively.

The overall architecture is shown in Figure 1. The intuition here is to combine
the topological features along with the records (e.g., COVID-19 hospitalization
rates) as the input for the topology-based GDN model. At timestamp t, we gen-
erate PIs for the latest timestamp t − 1, as the topological summaries and use
a CNN-based model to learn its representation. With the enriched input data,
we use equation 3 to get the latent node’s representation. Although different
DL methods have been proposed to improve the anomaly detection accuracy,
PIs have not been incorporated into this task. Furthermore, regrading COVID-
19 spreading, topological summaries can help the learning grasp on the persis-
tent hidden features behind the progression process caused by environmental or
social-demographic variables. As a result, Tlife-GDN model extracts the complex
spatio-temporal dependence properties which are inaccessible with other GDL
tools.

5 Experiment

5.1 Datasets, Experiment Setup and Evaluation Metrics

We conduct experiments on 5 datasets: COVID-19 records in Texas (TX), Cali-
fornia (CA) and Pennsylvania (PA), Curiosity Rover on Mars (MSL) and Water
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Distribution (WADI). Table 1 summarize the properties of each dataset. The
daily records for COVID-19 cases and hospitalizations come from CovidActNow
project2 and Johns Hopkins University3. These data sources contain COVID-
19 time series from official state and county websites. We take 2 per thousand
people as the anomaly threshold for hospitalization rate at state level. New
cases rate at county level, which indicates the spread of COVID-19, is used
for training and prediction. The Curiosity Rover on Mars (MSL) is an expert-
labeled telemetry anomaly data which originally comes from Incident Surprise,
Anomaly (ISA) [21]. The reports assists in reducing the risk of the unexpected
events which influence the post lunch operations. In our study, we use a public
available sub-set4. The anomaly ratio in the MSL test dataset is 78.13%, to make
the data more balanced, we use the first 500 observations, which has anomaly
ratio 20.24%. Water Distribution (WADI) is a sensor-based dataset derived from
a distribution system comprising numerous pipelines5 [17]. Here, a test with size
16 days is conducted, with 14 days under normal operation which are used as
training data and 2 days under controlled attack scenarios which is our test set.

Table 1. Summary of the datasets. The anomaly rate is the ratio of true anomaly in
the testing set.

Statistics MSL WADI TX CA PA

Number of variables 28 128 252 56 61
Training size 1565 1784 200 200 200
Testing size 500 577 175 175 175
Anomaly rate 20.24% 5.55% 56.57% 30.86% 31.42%

We conduct our experiments using a Google colab sever with Intel(R)
Xeon(R) CPU @ 2.20GHz, 52 GB RAM, K80, T4 and P100 graphic cards.
All models are trained under ADAM optimizer with learning rate 1 × 10−6 and
no decay rate. We perform 10 runs, train the models using 100 epochs, and
use early stopping of 10. For GDN and Tlife-GDN, we use 128 as the length of
embedding vectors and the number of neurons for all datasets. For COVID-19
anomaly prediction, we set similar setting of parameters as in the detection task
and set the prediction window h to 7, and the validation ratio to 0.2.

To evaluate the performance of anomaly detection, we use the metrics: F1-
Score (F1) and the area under the receiver operating characteristic curve (AUC).
As the anomaly score range and the way to choose a suitable threshold is differ-
ent from method to method, in order to keep the comparison fair for different
detection baselines, we set the threshold to be the one which maximizes F1 score

2 Available at https://covidactnow.org/?s=24821397.
3 Available at https://github.com/CSSEGISandData/COVID-19.
4 Available at https://github.com/d-ailin/GDN/tree/main/data/msl.
5 Further details at https://itrust.sutd.edu.sg/testbeds/water-distribution-wadi/ [3].

https://covidactnow.org/?s=24821397
https://github.com/CSSEGISandData/COVID-19
https://github.com/d-ailin/GDN/tree/main/data/msl
https://itrust.sutd.edu.sg/testbeds/water-distribution-wadi/
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for all baselines. The scores above the threshold are considered as anomaly. Our
source codes are publicly available in Github6.

5.2 Experimental Results

Are Persistent Images Really Helpful for COVID-19 Anomaly Detec-
tion and Prediction? The anomaly detection results for COVID-19 datasets
in TX, CA, and PA are shown in Table 2. For all baselines, we take the aver-
age value for F1 score and AUC score in 10 runs, and the standard deviation is
shown in parenthesis. From the result, we can see that Tlife-GDN outperforms
all baselines across both F1 score and AUC on all 3 states. The topological fea-
tures extracted from the counties tend to improve the detection performance
through comparing Tlife-GDN with GDN model (which is the best baseline).
In addition, Table 2 also indicates that integrating topological summaries into
GDN model will not increase standard deviation of F1 score and AUC score.
Furthermore, Fig. 2 shows the box-plot of AUC score for Tlife-GDN and GDN,
from which we conclude that Tlife-GDN exhibits high stability.

Table 2. Average F1 and AUC scores on COVID-19 datasets in 10 runs. For each
metric, the best result is highlighted in yellow.

Model
TX CA PA

F1 AUC F1 AUC F1 AUC

PCA [39] 0.570 (<0.0001) 0.739 (<0.0001) 0.550 (<0.0001) 0.498 (<0.0001) 0.536 (<0.0001) 0.498 (<0.0001)
KNN [5] 0.640 (<0.0001) 0.757 (<0.0001) 0.767 (<0.0001) 0.663 (<0.0001) 0.631 (<0.0001) 0.570 (<0.0001)
AE [2] 0.729 (0.0001) 0.739 (0.0002) 0.550 (0.0022) 0.498 (0.0010) 0.534 (0.0023) 0.495 (<0.0001)
DAGMM [48] 0.525 (0.0171) 0.710 (0.0422) 0.680 (0.0697) 0.6390 (0.0422) 0.875 (0.0443) 0.533 (0.0443)
VAE [25] 0.565 (0.0050) 0.519 (0.0016) 0.535 (0.0059) 0.484 (0.0026) 0.531 (0.0032) 0.516 (<0.0001)
DEEP-SVDD [34] 0.675 (0.0156) 0.739 (0.0122) 0.776 (0.0129) 0.436 (0.0189) 0.960 (0.0242) 0.492 (0.0112)
GDN [14] 0.754 (0.0352) 0.742 (0.0122) 0.928 (0.0015) 0.743 (0.0008) 0.994 (0.0013) 0.975 (0.0002)
Tlife-GDN 0.767 (0.0374) 0.759 (0.0092) 0.962 (0.0020) 0.754 (0.0006) 0.995 (0.0220) 0.976 (0.0001)
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Fig. 2. Box plot of AUC scores in 10 runs from Tlife-GDN and GDN in (a) Texas (b)
California (c) Pennsylvania.

6 https://github.com/ZhiweiZhen/Tlife-GDN.

https://github.com/ZhiweiZhen/Tlife-GDN
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In addition, for the traditional anomaly detection problem, we utilize Tlife-
GDN and GDN (i.e., the best baseline) to predict future anomalies and verify
the significance of topological features. Figure 3 shows that Tlife-GDN achieves
a better performance on TX and CA. On PA, both GDN and Tlife-GDN per-
form well. We can see that the complex hidden topological relationships between
counties have a profound impact on future hospitalization anomalies as it may
contain the information about the COVID-19 transmission at that moment.

Table 3. Average precision, recall, and F1 score on COVID-19 datasets for one-week
ahead anomaly prediction in 10 runs based on GDN and Tlife-GDN.

Model TX CA PA

F1 AUC F1 AUC F1 AUC

GDN 0.728 (0.0647) 0.762 (0.0521) 0.869 (0.0353) 0.940 (0.1028) 0.927 (0.0398) 0.994 (0.0315)

Tlife-GDN 0.741 (0.0321) 0.765 (0.0198) 0.894 (0.0265) 0.962 (0.0374) 0.927 (0.0379) 0.993 (0.0452)

What is the Performance of Tlife-GDN on MSL and WADI Datasets?
To verify the value added by topological summaries for different types of anomaly
detection problems, we also evaluate the performance of our Tlife-GDN model
on MSL and WADI datasets. The results are shown in Table 4. We find that
Tlife-GDN outperforms all baselines in terms of both F1 score and AUC score
for WADI. For MSL, Tlife-GDN achieves the best result in F1 score and also
competitive result in AUC.

Table 4. Average F1 and AUC scores on MSL and WADI datasets in 10 runs. For
each metric, the best result is highlighted in yellow. The results from Tlife-GDN is
highlighted in blue if there is improvement compared to GDN.

Model
MSL WADI

F1 AUC F1 AUC

PCA 0.151 (<0.0001) 0.533 (<.0001) 0.120 (<0.0001) 0.504 (<0.0001)

KNN 0.109 (<0.0001) 0.664 (<0.0001) 0.119 (<0.0001) 0.475 (<0.0001)

AE 0.152 (<0.0001) 0.553 (0.06187) 0.120 (<0.0001) 0.503 (0.02546)

DAGMM 0.361 (0.0549) 0.631 (0.0708) 0.289 (0.0250) 0.603 (0.0603)

VAE 0.120 (0.2210) 0.553 (0.2317) 0.148 (0.1376) 0.503 (0.0557)

DEEP-SVDD 0.337 (0.0555) 0.665 (0.1003) 0.100 (0.0483) 0.477 (0.0019)

GDN 0.407 (0.0125) 0.496 (0.0267) 0.356 (0.0745) 0.785 (0.0632)

Tlife-GDN 0.419 (0.0198) 0.563 (0.1054) 0.371 (00319) 0.797 (0.0480)

Possible Linkage Between Detection Results and Environment. In this
study, we also explore the impact of topological features on the detection results.
We investigate the timestamps where Tlife-GDN achieves the accurate anomaly
detection performance compared with GDN. We believe that those timestamps
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may share some similarity in terms of environmental variables. Figure 3 shows the
Aerosol Optical Depth (AOD) values, a measure of light extinction by aerosol in
the atmospheric column above the earth’s surface [44], in TX and CA whenever
Tlife-GDN outperforms GDN at county level. In addition, Fig. 3 suggests that
topological features can improve the ability of non-anomaly detection when AOD
is low and help detect anomalies when AOD is high. Furthermore, we can find
that the hospitalization rate can be well reflected by the AOD values, which can
be used to define anomalies in the anomaly detection task.

(a) (b) (c) (d)

Fig. 3. Aerosol Optical Depth (AOD) values in CA and TX. The color goes from red
to green as AOD increase. (a) Non-anomaly CA. (b) Anomaly CA. (c) Non-anomaly
TX. (d) Anomaly TX.

6 Conclusion

In this paper, we introduce a new topology-based graph neural network, i.e.,
Tlife-GDN to detect and predict anomaly. The experimental results show that
Tlife-GDN provides more accurate detection and prediction for COVID-19 hos-
pitalization anomalies in Texas, California, and Pennsylvania, which is critical
to forecast pandemic trend, announce travel warnings and help local govern-
ment prepare potential waves in advance. In the future, we can take pre-existing
health conditions, distribution of medical resources and demographic variables
into consideration and extend the application of Tlife-GDN to anomaly regarding
network defense and national cyber security.
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Abstract. During the forward pass of Deep Neural Networks (DNNs),
inputs gradually transformed from low-level features to high-level con-
ceptual labels. While features at different layers could summarize
the important factors of the inputs at varying levels, modern out-of-
distribution (OOD) detection methods mostly focus on utilizing their
ending layer features. In this paper, we proposed a novel layer-adaptive
OOD detection framework (LA-OOD) for DNNs that can fully utilize
the intermediate layers’ outputs. Specifically, instead of training a uni-
fied OOD detector at a fixed ending layer, we train multiple One-Class
SVM OOD detectors simultaneously at the intermediate layers to exploit
the full-spectrum characteristics encoded at varying depths of DNNs. We
develop a simple yet effective layer-adaptive policy to identify the best
layer for detecting each potential OOD example. LA-OOD can be applied
to any existing DNNs and does not require access to OOD samples dur-
ing the training. Using three DNNs of varying depth and architectures,
our experiments demonstrate that LA-OOD is robust against OODs of
varying complexity and can outperform state-of-the-art competitors by
a large margin on some real-world datasets.

Keywords: OOD detection · Deep neural networks · One-Class SVM

1 Introduction

Recently, deep neural networks (DNNs) have demonstrated remarkable perfor-
mance in classification problems. However, DNNs are often designed for a static
and closed world, assuming the same data distribution during training and test
times. In an open-world environment, it is important to detect examples from
novel class distributions in safety-critical applications (e.g. detecting new cate-
gories of objects during autonomous driving and diagnoses of unknown diseases,
such as COVID-19). It is hence necessary to develop DNNs that can identify
OOD examples while at the same time classifying samples from known class
distributions with high accuracy.

A number of recent methods have been proposed to detect OOD examples
based on DNNs. The majority of these methods detect OOD examples based
on predictive uncertainty measures of a softmax classifier, such as entropy [15],
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Fig. 1. An overview of our proposed Layer Adaptive Deep Neural Networks for OOD
Detection (LA-OOD).

epistemic uncertainty [12], and others [4,11,18,19]. A more recent work presents
the Deep-MCDD [7], that estimates a spherical decision boundary for each class
based on support vector data description (SVDD), such boundaries will enclose
the in-distribution (InD) samples and distinguish OODs based on their closest
class-conditional distribution. Instead of using the last layer outputs, [1] pro-
posed to find the best intermediate layer based on a holdout validation OOD
dataset. However, all of the above methods detect the OOD examples at the
same level of representation (i.e. outputs at one single layer) and they hence
fail to account for the different representation complexities of OOD examples.
Particularly, our empirical study indicates that different OODs may be better
detected at their appropriate levels of representations (see Sect. 4.2).

This observation motivates us to propose a novel framework, namely Layer-
Adaptive OOD detection (LA-OOD), a generic modification to off-the-shelf
DNNs that introduces OOD detectors to intermediate layers. Specifically, we
train separate One-Class SVM (OCSVM) OOD detectors using different layers’
outputs and employ a simple yet effective layer-adaptive policy function to iden-
tify the best layer for detecting each potential OOD sample (see Fig. 1). We tune
the OOD detectors through self-adaptive data shifting [16] to improve its accu-
racy and robustness against unseen OODs, and fine tune the framework using
alternating optimization, in which the DNN classification error and the OOD
detectors’ training errors are minimized jointly.

The main contributions are stated as follows:

– We propose a novel layer-adaptive OOD detection framework (LA-OOD) that
is practical for any off-the-shelf DNNs. Multiple OOD detectors are attached
to the intermediate layers of a DNN, through a simple yet effective layer-
adaptive policy, our proposed framework is able to fully utilize the intrin-
sic characteristics of inputs encoded in the intermediate latent space, hence,
detect OODs with varying complexity.
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– We propose a joint objective that fine-tune the OOD detectors while main-
taining DNN’s classification accuracy. We also designed an OOD confusion
metric and a Grad-CAM visualization tool to facilitate decision making and
improve the model interpretability.

– Extensive experiments have been conducted to demonstrate the effectiveness
of our proposed framework. On three DNNs with varying depth and architec-
tures, using two InD datasets and five OOD datasets, LA-OOD outperform
state-of-the-art baseline methods in most settings without any OOD training
or validation samples, being a practical yet effective OOD detection frame-
work for OODs of different complexity.

2 Related Work

Dynamic Neural Networks with Early-Exit. Adaptive early-exist is a rising
research topic in deep learning. By attaching early exits to a DNN, such methods
allow “simple” samples to be output at early layers without “overthinking” [5,6].
For a given input, an early-exit could be determined by either a confidence
metric [9] or a learned decision function [2]. However, these methods aim to
improve DNN performance by focusing on InD sample evaluation without giving
enough attention to OODs. In this paper, we adopt the idea of early exits for the
out-of-distribution detection problem and propose a novel framework in which
each OOD sample is detected at its best layer.

OOD Detection for Deep Neural Networks. In recent years, researchers
have developed a number of OOD detection methods, where the majority of
such techniques use the final outputs of a DNN to separate the OODs from
the InD samples [15]. [4] proposes a baseline method that detects OODs based
on the maximum softmax probabilities of a DNN’s final outputs. ODIN [11]
incorporates the temperature scaling and input perturbation into the maximum
softmax probabilities to enhance the margin between InD and OOD samples.
More recently, [7] extends Deep-SVDD to a multi-class setting and proposes
the Deep-MCDD, It integrates multiple SVDDs into a single deep model where
each SVDD is trained to surround one InD class sample. However, these works
mainly focus on the high-level conceptual features outputted by the ending layers
of DNNs while ignoring the low-level representations at the intermediate layers,
hence, may “overthink” the problem and fail on OODs of relatively low com-
plexity. In contrast, LA-OOD not only considers the ending layers’ outputs but
also takes the intermediate layers into consideration to generate more accurate
OOD predictions.

Two existing methods [1,8] utilize intermediate outputs of a DNN for OOD
detection. [8] defines the confidence score of input as a weighted average of the
Mahalanobis distance to the closest class-conditional distribution at each layer,
such weighting function is trained using an additional validation set. [1] proposes
the OODL which decides an optimal discernment layer based on a holdout OOD
dataset. Both methods require the OOD samples during the training, such OOD
samples not only are hard to obtain in real-world applications, but also make
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the trained models susceptible to unseen OODs. In this work, we tune the OOD
detectors using pseudo OODs generated through self-adaptive data shifting [16]
of the InD training samples, hence, does not require any OOD samples during
the training.

3 Adaptive One-Class Deep Neural Network

Since OOD samples are rarely available during the training, here we formulate
the OOD detection as a one-class classification problem, in which OOD detectors
only target to determine whether an input is in-distribution or not.

3.1 Problem Formulation

Let x ∈ X be an input, y ∈ Y = {1, · · · ,K} being its label, given a deep
neural network M with L layers, it tries to classify each input to K classes:
ŷ = M(x) ∈ Y. With the intermediate outputs x(�) at layer � ∈ {1, · · · , L},
its OOD score s(�) = C�(x(�)) is computed by a layer-specific OOD detector
C�. Separate OOD detectors could be attached to different layers of M, the
final OOD score of x could be obtained by taking the maximum OOD scores
outputted by all the OOD detectors: sfinal = max

[{C�(x(�))}L
�=1

]
. Such OOD

score then can be used to determine whether x is in-distribution or not based
on a predefined threshold δ.

3.2 Framework Overview

In the context of one-class classification, there are many possible selections for
the OOD detector (KDE, GMM, k-NN, etc.) In this paper, we use the One-Class
Support Vector Machine (OCSVM) [13] which is one of the most commonly used
one-class classifier in the literature. Note that, we could replace OCSVM with
any other one-class classifiers as our framework design does not depend on a
specific choice of one-class classifiers.

For the OCSVM, a feature mapping Φ : X ⊂ R
d → F ⊂ R

h is defined,
where h > d, it maps the input samples {xi}n

i=1 ∈ R
d into a high dimensional

feature space F . An OCSVM will try to find the best separating hyperplane
that separates all the input samples from the origin such that the distance to
the origin is maximized. Normally, the calculation of the feature mapping Φ
is avoided by using the kernel trick k(xi,xj) = (Φ(xi) · Φ(xj)). In this paper,
we select the commonly used Gaussian Radial Base Function (RBF) kernel:
k (xi,xj) = exp

(
−γ ‖xi − xj‖2

)
, where γ is the kernel width.

Using Lagrange multipliers, optimizing the OCSVM C� at layer � is equivalent
to solving the following dual Quadratic Programming (QP) problem:

min
α(�)

1
2

∑

i,j

α
(�)
i α

(�)
j k

(
x(�)

i ,x(�)
j

)
s.t. 0 ≤ α

(�)
i ≤ 1

νn
, and

∑

i

α
(�)
i = 1 (1)
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where α
(�)
i are the Lagrange multipliers, and ν ∈ (0, 1] is the upper bound of

the training error.
Given an input sample x and its layer � outputs x(�), its OOD score at layer

� is calculated using the decision function:

C�(x) = −
∑

i

α
(�)
i k

(
x(�)

i ,x(�)
)

+ ρ(�) (2)

where the offsets ρ(�) can be recovered by ρ(�) =
∑

j α
(�)
j k

(
x(�)

j ,x(�)
i

)
. Positive

scores represent OODs, and negative scores represent InDs (assuming the default
zero threshold is used, i.e., δ = 0).

3.3 Framework Training

Given a pre-trained DNN model Mθ parameterized by θ, using the OCSVMs
as OOD detectors, we propose a joint objective for training both the backbone
model and the OOD detectors:

min
θ

min
α(�)L

�=1

L(θ) +
λ

2
·

L∑

�=1

∑

i,j

α
(�)
i α

(�)
j k

(
x(�)

i ,x(�)
j

)
(3)

subject to 0 ≤ α
(�)
i ≤ 1

νn
, and

∑

i

α
(�)
i = 1

Here the first term L(θ) denotes the loss function of the backbone network, and
the second term is the summation of losses for all the OOD detectors multiplied
by a regularization parameter λ > 0. We aim to fine-tune the layer-dependent
feature representations and the parameters of layer-dependent OCSVM jointly
so that the training errors of the OOD detectors are minimized while maintaining
DNN’s classification accuracy.

To solve Eq.(3), an alternating optimization technique is applied in which
the θ and {α(�)}L

�=1 will be updated alternatively:

– Step I: Fix {α(�)}L
�=1 and re-estimate the model parameters θ using a Eq. 4.

– Step II: Fix θ and generate the updated intermediate outputs to re-estimate
{α(�)}L

�=1 using Eq. 1.

In step I, we fix the estimated dual coefficients {α(�)}L
�=1 for all OCSVMs,

then re-estimate the backbone model parameter θ:

min
θ

L(θ) +
λ

2L

L∑

�=1

∑

i,j

α
(�)
i α

(�)
j k(x(�)

i (θ),x(�)
j (θ)) (4)

In step II, we fix the backbone model to update the intermediate outputs for the
training samples, then based on the newly generated outputs, we re-train all the
OOD detectors using Eq. 1.
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Algorithm 1. LA-OOD Training Procedure
Input: Pre-trained DNN model Mθ , InD sample set X
Output: Jointly trained Mθ and OOD detectors {C�}L

�=1

1: Generate the intermediate outputs {X (�)}L
�=1

2: Generate pseudo-outliers
{X (�)

pseudo}L
�=1 = selfAdaptiveDataShifting({X (�)}L

�=1)

3: Hyper-parameter tuning for {C�}L
�=1 using {X (�)}L

�=1 and {X (�)
pseudo}L

�=1

4: while not done do
5: Fix the {α(�)}L

�=1 and re-estimate θ (Eq. 4)
6: Update the intermediate outputs {X ∗(�)}L

1

7: Re-train {C�}L
�=1 using the updated intermediate outputs

{X ∗(�)}L
1 (Eq. 1)

8: return trained Mθ and {C�}L
�=1

Two important hyper-parameters for OCSVM training are the Gaussian ker-
nel width γ and the training error upper bound ν. γ controls the smoothness
of the decision boundary. The smaller the γ, the smoother the decision bound-
ary will be. ν controls the error ratio, which is often tuned to reject the noisy
samples in the training set and it also determines a lower bound on the frac-
tion of support vectors. These two hyper-parameters are critical for OCSVM to
achieve good performance. In general, these hyper-parameters are tuned using
a held-out validation set that includes both InD and OOD samples. In this
work, we adopt the self-adaptive data shifting [16] to generate pseudo-OODs for
hyper-parameter tuning. Such pseudo-OODs are created purely using InD sam-
ples through edge pattern detection [10]. We summarized our LA-OOD training
procedure in Algorithm 1.

3.4 Layer-Adaptive Policy Design

Having L OCSVM OOD detectors {C�}L
�=1 that each outputs an OOD score

s
(�)
i for input xi, we either need to define a threshold for each of these OOD

detectors or design a decision policy that consolidates all the OOD scores into
a final prediction. Empirically, we found that a layer-adaptive policy performs
better than some fixed thresholds as it is very common that the predictions of
OOD detectors diverge from each other (see Sect. 4.3). Here we choose a simple
yet effective layer-adaptive policy that propagates the most confident opinion
among all OOD detectors as the final prediction, specifically, the policy is design
as si,final = max

[{C�(x
(�)
i )}L

�=1

]
. One challenge to such policy design is that

OCSVMs trained on different features generally will have a different scale of
scores, this effect could be alleviated by normalizing the training features for
each OCSVM, here we simply use the standardization: x

′
= (x − x̄)/σ, with x̄

being the sample mean and σ being its standard deviation.
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4 Experimental Results

Empirical Settings1. (1) Datasets. Two InD datasets (CIFAR10 and
CIFAR100) and five OOD datasets (LSUN, Tiny ImageNet, SVHN, DTD [3],
and Pure Color) are considered in the experiments. The “Pure Color” dataset is
a synthetic dataset that contains 10,000 randomly generated pure-color images.
For each InD-OOD combination, we construct a training set using all the training
images in the InD dataset and form a balanced test set using all the test images
in both InD and OOD datasets, when the sizes of their test set mismatch, we
randomly selected the same number of images from the larger dataset to match
the test sample size of the smaller one. All images are down-sampled to 32 × 32
resolution using Lanczos interpolation. (2) Backbone Models. We evaluate
our method using three popular CNNs in computer vision and machine learn-
ing studies. Particularly, we select the VGG-16, ResNet-34, and DenseNet-100
to demonstrate the effectiveness of our framework for DNN models of varying
depth and architectures. (3) Feature Reduction. A feature reduction opera-
tion is applied to the intermediate outputs to maintain the scalability [1]. Among
the pooling methods we have tested: max/average pooling with various sizes,
global max/average pooling, the global average pooling performs the best. The
pooled features are then standardized using the training set mean and deviation.
(4) Hyper-Parameters Tuning. We fix ν to be 0.001 so that only a small num-
ber of InD samples will be considered as noise, the γ is tuned using pseudo-OODs
generated by self-adaptive data shifting [16] of only the InD training samples.
We search γ in [0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1.0], for dif-
ferent InD-Backbone settings, we will shrink the value range to accommodate
the differences in feature complexity and to reduce training time. (5) Base-
line Methods and Evaluation Metrics. We compare our method with four
state-of-the-art OOD detection baselines: MSP [4], ODIN [11] (both tempera-
ture scaling and input preprocessing are used to achieve optimum performance),
OODL [1] (we use the iSUN [17] as an additional OOD dataset to find its opti-
mal discernment layer), and Deep-MCDD [7]. Three commonly adopted OOD
detection metrics are used: AUROC, AUPR, and FPR at 95% TPR.

4.1 Performance Evaluation

The experimental results are reported in Table 1, the mean values of the each
evaluation metric are also reported to demonstrate the overall performance
on OOD datasets with varying complexities. It is worth noting that previous
works often choose to use linear interpolation for the down-sampling opera-
tion [1,7,8,11], however, we found that using linear interpolation will create
severe aliasing artifacts which make such OOD samples easily detectable, there-
fore, to generate more genuine OOD samples, we down-sampled the OOD images
using the Lanczos interpolation which is much more sophisticated than the linear
interpolation.
1 The source code and datasets are available at: https://github.com/haoliangwang

86/LA-OOD.

https://github.com/haoliangwang86/LA-OOD
https://github.com/haoliangwang86/LA-OOD
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From Table 1, it could be seen that OODs that of higher complexity will
be harder to detect, such as the LSUN and Tiny ImageNet images that could
contain complex backgrounds or multiple objects in a single image. OODs of
lower complexity are easier to detect, such as the SVHN that contains cropped
street view house numbers or DTD that contains images of different textures.
The synthetic Pure Color dataset is of the lowest complexity as it contains limited
information. Such dataset complexity could be easily verified using entropy or
energy metrics.

Table 1. Performance evaluation. Metrics with “↑” indicate the bigger the better and
“↓” indicate the smaller the better. Best performance are labeled in bold.

InD/Model OOD AUROC ↑ AUPR ↑ FPR at 95% TPR ↓
MSP/ODIN/ Deep-MCDD/OODL/LA-OOD (Ours)

Cifar10 VGG-16 LSUN 86.25/86.75/85.19/88.03/87.26 85.26/87.06/84.76/88.01/84.42 69.27/67.72/59.09/62.38/54.88

Tiny 85.66/86.35/83.95/87.10/88.39 84.23/86.22/83.49/86.98/86.02 67.36/64.30/61.56/64.08/44.00

SVHN 91.12/91.47/89.81/91.68/97.27 87.06/89.29/93.99/88.46/97.15 21.78/25.45/64.02/23.52/14.25

DTD 87.73/90.26/88.33/92.16/97.35 87.05/89.58/80.60/90.82/97.45 66.24/46.33/53.56/25.04/14.06

Pure Color 98.57/99.77/98.42/99.41/99.93 98.18/99.75/98.30/98.94/99.84 04.66/01.24/05.68/02.08/00.21

Mean 89.87/90.92/89.14/91.68/94.04 88.36/90.38/88.23/90.64/92.98 45.86/41.01/48.78/35.42/25.48

Cifar100 VGG-16 LSUN 73.00/73.58/72.83/75.10/72.48 68.49/69.78/69.92/69.68/65.28 75.43/74.92/85.12/74.99/80.24

Tiny 77.10/77.83/76.37/79.84/80.57 72.64/74.82/73.27/75.20/75.19 63.53/68.89/80.50/60.68/56.22

SVHN 75.43/78.18/74.98/78.43/87.07 71.53/76.20/86.52/72.63/85.82 66.26/70.29/82.31/62.78/48.94

DTD 75.75/76.81/73.80/77.76/93.28 70.20/72.94/58.84/70.63/93.33 62.13/64.66/82.20/57.82/33.20

Pure Color 62.66/51.22/78.28/58.10/96.71 54.24/49.93/73.44/49.13/95.24 72.32/95.31/81.83/64.85/30.08

Mean 72.79/71.52/75.25/73.85/86.02 67.42/68.73/72.40/67.45/82.97 67.93/74.81/82.39/64.22/49.74

Cifar10 ResNet-34 LSUN 90.16/90.26/88.02/91.97/89.06 87.62/90.19/86.74/90.56/84.48 33.24/50.28/55.75/31.19/37.35

Tiny 86.53/85.46/83.34/88.81/89.29 84.79/86.46/83.25/87.66/86.47 58.26/74.41/61.28/46.15/36.90

SVHN 84.33/81.22/88.08/87.74/97.77 81.88/81.89/93.97/85.13/97.67 66.58/81.16/57.06/42.84/12.17

DTD 87.64/83.96/84.56/92.10/97.91 85.24/84.39/75.07/91.10/98.06 51.61/78.01/62.13/30.82/11.84

Pure Color 94.59/96.84/96.11/95.52/99.99 93.48/96.93/93.81/94.35/99.99 17.84/15.54/36.80/19.50/00.04

Mean 88.65/87.55/88.02/91.23/94.80 86.60/87.97/86.57/89.76/93.33 45.51/59.88/54.60/34.10/19.66

Cifar100 ResNet-34 LSUN 75.63/77.52/74.65/51.91/65.25 70.76/72.81/70.14/51.92/59.65 62.63/63.51/84.34/94.84/78.61

Tiny 78.70/81.28/78.29/67.05/75.82 74.47/77.39/78.26/66.91/73.74 57.97/57.47/78.84/90.27/68.91

SVHN 78.76/84.16/78.62/79.00/84.61 73.71/78.74/88.50/69.18/76.09 55.29/46.58/77.50/45.81/36.85

DTD 75.32/78.94/77.11/86.25/91.39 70.07/74.52/84.85/83.45/91.97 62.59/60.60/81.49/40.94/41.19

Pure Color 55.23/62.25/63.47/96.46/99.80 48.09/52.11/53.16/91.14/99.78 67.52/59.04/99.32/04.98/01.04

Mean 72.73/76.83/74.43/76.13/83.37 67.42/71.11/74.98/72.52/80.25 61.20/57.44/84.30/55.37/45.32

Cifar10 DenseNet-100 LSUN 92.07/94.01/87.19/88.47/84.38 89.47/93.12/86.23/84.87/80.95 26.40/23.71/55.00/40.69/51.55

Tiny 89.96/91.95/85.22/84.62/88.75 87.69/91.32/84.44/80.90/87.80 35.09/34.04/58.14/57.25/43.73

SVHN 89.00/89.54/89.48/97.19/97.79 85.73/88.11/94.46/97.54/97.51 36.33/43.54/51.29/16.07/09.41

DTD 88.65/85.42/86.93/95.10/97.61 86.06/84.75/77.33/96.14/97.58 39.61/60.98/59.57/33.07/12.00

Pure Color 91.83/96.78/96.21/79.15/99.97 87.80/95.01/95.08/69.92/99.97 16.06/09.31/23.84/40.08/00.17

Mean 90.30/91.54/89.01/88.91/93.70 87.35/90.46/87.51/85.87/92.76 30.70/34.32/49.57/37.43/23.37

Cifar100 DenseNet-100 LSUN 76.38/77.41/75.17/59.11/69.69 72.14/73.19/71.18/57.10/64.28 62.62/65.02/82.93/91.64/72.59

Tiny 79.73/84.27/78.25/61.84/81.29 76.10/81.66/75.11/59.22/78.81 55.24/50.97/77.48/81.85/62.76

SVHN 80.08/81.30/74.99/71.73/86.99 75.29/74.89/86.25/65.36/78.23 51.73/49.32/82.48/66.07/32.89

DTD 73.18/70.29/79.34/84.69/93.79 69.03/67.93/66.09/84.72/93.95 73.09/91.60/75.11/56.15/30.67

Pure Color 79.60/80.86/91.14/85.39/99.47 73.54/77.68/89.64/79.53/99.41 44.87/61.26/49.77/34.72/02.84

Mean 77.79/78.83/79.78/72.55/86.25 73.22/75.07/77.65/69.19/82.94 57.51/63.63/73.55/66.09/40.35

The OOD detection methods that utilize the ending layers’ features (MSP,
ODIN, and Deep-MCDD) generally perform well on detecting OODs with higher
complexity, such as the LSUN and the Tiny ImageNet datasets, however, they
tend to give poor decisions for OODs of lower complexity such as the SVHN,
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DTD, and the Pure Color datasets. The OODL baseline method could utilize
the intermediate features, from the performance evaluation, we could see that
OODL exhibit the same performance pattern as MSP, ODIN, and MCDD, how-
ever, it is due to that LSUN and Tiny ImageNet have similar complexity as the
iSUN dataset, which is used to determine the optimal discernment layers for
OODL, when the test OODs are of different complexity compare to iSUN, its
performance could degrade significantly.

Through multiple intermediate OOD detectors and the layer-adaptive pol-
icy, LA-OOD can exploit the full-spectrum characteristics encoded in different
intermediate layers. Specifically, by taking the early layers’ outputs into con-
sideration, LA-OOD outperforms the other four baseline methods by a large
margin on OOD datasets of lower complexity (SVHN, DTD, and Pure Color).
More importantly, LA-OOD achieves the best average AUROC/AUPR/FPR at
95% TPR for all InD-Backbone settings, which indicates our proposed method
is robust against OODs of different complexity. Overall, LA-OOD achieves an
8.21% improvement margin on AUROC, 7.8% improvement margin on AUPR,
and 29.98% improvement margin on FPR at 95% TPR compare to the second-
best baseline method.

4.2 Understanding the Behaviors of Different Layers

Fig. 2. Number of OODs detected by
OOD detectors at different layers using
VGG-16 and CIFAR10 InD.

As the layer of a DNN goes deeper,
more complex features could be
learned [20], by attaching OOD detec-
tors to the intermediate layers, we
could detect OODs based on fea-
tures of different complexities. Figure 2
shows the number of OODs identi-
fied by different OOD detectors. For
the LSUN and Tiny ImageNet OOD
datasets which are of higher complex-
ity, most of them are identified by
the last two OOD detectors, while for
the other three OOD datasets that
have relatively lower complexity, they
are mainly detected by the first seven
detectors.

In Fig. 3 we show the correctly
identified Tiny ImageNet samples by different layer’s OOD detectors using the
VGG backbone and CIFAR10 as InD dataset. It could be seen that the OOD
detectors at the initial layers are more sensitive to the image colors and textures
which relate to the fine-scale details of the input images, while the OOD detec-
tors at the ending layers tend to detect OODs based on objects or scenes. As
the layer goes deeper, more and more complex OODs can be detected. Similar
pattern could also be found on the DTD dataset, as shown in Fig. 4.
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Fig. 3. Correctly identified Tiny ImageNet OODs by OOD detectors at different layers,
using VGG backbone and CIFAR10 as InD dataset.

Fig. 4. Correctly identified DTD OODs by OOD detectors at different layers, using
VGG backbone and CIFAR10 as InD dataset.

4.3 Framework Confusion Analysis

Fig. 5. Confusion score of SVHN
vs. CIFAR10 on VGG-16.

The disagreement between the OOD detectors
indicates that their predictions are inconsistent
and confused. Here we define a confusion score
D(x) =

∑L
1 C�(x(�)) to measure the prediction

divergence between the OOD detectors. For a
good OOD detector, this confusion score should
be negative for most of the InD test samples
and positive for predicted OODs, the confusion
occurs when the confusion score is close to 0.

We expect this confusion metric to be a reli-
able indicator in cases where the framework is
unable to make a confident prediction and may
have misclassified a test sample. Such an indicator has significant importance
in handling errors due to the possible severe impact of false positives in real-
world applications. We performed a confusion analysis on VGG backbone, using
CIFAR10 as InD and SVHN as OOD, the confusion scores are shown in Fig. 5.
While the InD samples tend to have small negative values (with an average of
−0.16), the OOD samples are more concentrated on the positive side (with an
average of 0.02). More importantly, the majority of the InD samples (99.78%)
have negative confusion scores and this makes the confusion analysis highly reli-
able and less prone to false positives. The confusion happens when the confusion
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score is close to zero, according to applications, a threshold could be determined
based on the tolerance for misclassification.

Fig. 6. Prediction visualization of Tiny
ImageNet samples, on VGG-16 and
CIFAR10 InD.

Towards this error mitigation
problem, we carry on the confusion
analysis by designing a visualization
tool for image OOD detection. Specif-
ically, we adopt the Grad-CAM [14] to
show the root causes of the OOD pre-
dictions in the input space. The analy-
sis is continued on the VGG backbone
and CIFAR10 InD setting. As for the
OOD dataset, we use the Tiny Ima-
geNet since it has the most related
class definition as CIFAR10. Some
examples are shown in Fig. 6 to illustrate the disagreement between two OOD
detectors: C4 and C9, the numbers below the heatmaps are their corresponding
OOD scores, with red color representing an OOD prediction and green color
representing an InD prediction. We could see that OOD detectors at the early
layers are more sensitive to textures and colors, while OOD detectors at the
ending layers are more focused on objects and scenes.

4.4 Advantages of Using Intermediate OOD Detectors

Fig. 7. The optimal discern-
ment layers of SVHN and
LSUN on VGG-16.

An optimal discernment layer [1] (or best layer)
could be found for a particular OOD dataset,
but it may not be the optimal choice for OOD
datasets of different complexity. In Fig. 7 we show
the AUROC of SVHN and LSUN at each layer
of VGG-16 (using CIFAR10 as InD). The best
layer for SVHN is layer 5, while the best layer
for LSUN is the last layer. Such best layer could
be estimated using a separate OOD dataset, how-
ever, as we could see from Table 1, OODL that
estimates the best layer using the iSUN dataset
could have its performance degrade significantly
when OODs of different complexity are encoun-
tered. Therefore, instead of choosing the best layers for different OODs, LA-
OOD propagates the most confident OOD prediction across all layers, and could
effectively construct a good OOD confidence measurement for unseen OODs. For
all five OOD datasets considered in this paper, LA-OOD can achieve competitive
or even better accuracy compare to their corresponding best layers.
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4.5 Ablation Studies

Table 2. Performance average on all the OOD datasets. Evaluation metrics with “↑”
indicate the bigger the better and “↓” indicate the smaller the better. Best performance
is labeled in bold.

InD/Model Metric C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 LA-OOD

CIFAR10 VGG-16 AUROC ↑ 60.20 78.14 89.55 89.00 83.92 81.13 77.99 70.45 65.96 71.58 83.57 89.20 91.62 93.73

AUPR ↑ 89.18 94.60 97.55 97.51 96.36 95.75 94.87 92.80 87.07 89.27 94.46 97.08 97.79 98.48

FPR at 95% TPR ↓ 95.47 84.39 61.76 64.55 77.97 85.61 89.12 95.19 88.47 82.01 56.04 63.22 37.16 28.25

CIFAR100 VGG-16 AUROC↑ 51.87 70.09 83.71 82.61 79.72 77.08 76.17 69.55 72.43 70.38 62.66 37.80 73.46 85.34

AUPR↑ 85.56 91.89 95.93 95.85 95.19 94.51 93.84 91.90 91.11 90.27 86.70 76.10 90.42 95.93

FPR at 95% TPR↓ 94.75 89.32 76.22 80.75 83.96 86.80 86.00 90.39 81.74 86.29 85.16 96.38 65.37 52.58

Here we evaluate the effectiveness of the “early exits”. We compare the results of
the proposed LA-OOD with the average performance using each OOD detector
solely on five OOD datasets mixed (LUSN + Tiny ImageNet + SVHN + DTD +
Pure Color). Results are shown in Table 2. Using VGG-16 as an example, for both
CIFAR10 and CIFAR100 InD settings, LA-OOD can achieve consistently better
performance than any single OOD detector.

5 Conclusion

We proposed the LA-OOD, a layer-adaptive OOD detection framework for deep
neural networks. By attaching multiple intermediate OOD detectors to the
DNNs, LA-OOD can fully exploit the intrinsic characteristics of the interme-
diate latent space and reveal OODs with increasing complexity at deeper layers.
Extensive experiments have been conducted to verify the effectiveness and inter-
pretability of LA-OOD. On three DNNs with varying depth and architectures,
our framework outperforms the state-of-the-art baselines without using any OOD
training/validation data, being a reliable method for detecting unseen OODs.
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Abstract. Out-of-distribution (OOD) detection is critical for safely
deploying machine learning models in the open world. Recently, an
energy-score based OOD detector was proposed for any pre-trained clas-
sification models. The energy score, which is less susceptible to overcon-
fidence, proves to be a better substitute for the conventional approaches
leveraging the softmax confidence score. However, current energy-score
based methods rely heavily on large-scale auxiliary datasets and intro-
duce several dataset-dependent hyperparameters. In this paper, we pro-
pose a simple yet effective sparsity-regularized learning objective for deep
neural networks so that the energy-based detector works better. Our
learning objective is parameter-free and its key idea is to enlarge the dif-
ferences between network outputs of in-distribution data and OOD data
by regularizing the networks to generate high sparsity representations
for in-distribution data. We also contribute to a tiny auxiliary outlier
dataset to replace the previous one, which reduces the volume size signif-
icantly (230G vs. 40M). Besides, a new energy-score based OOD detector
named Sparsity-Regularized Outlier Exposure (SROE) is proposed to
incorporate the proposed sparsity-regularized loss function into the tra-
ditional Outlier Exposure method. Experimental results show that the
proposed sparsity-regularized loss strategy is effective, and the SROE
OOD detector outperforms the other SOTA methods with a large mar-
gin. The source code and dataset are available at https://github.com/
kuan-li/SparsityRegularization.

Keywords: OOD detection · Energy score · Sparsity regularization

1 Introduction

Deep neural networks (DNNs) have achieved high accuracy on many machine
learning systems when the training and testing data are sampled from the
same distribution, e.g., image recognition [22], speech recognition [20], person
re-identification [16]. However, the real world is open and full of unknowns.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Machine learning models in deployment often encounter testing data that have
a large covariate shift from training data. Such distribution shift may lead to
serious consequences since the model still attempts to classify test data into a
certain training class, even though it may not belong to any training classes.
The above issue gives rise to the importance of OOD detection, which is a great
concern to AI Safety, especially in high-risk applications. OOD detection aims
to determine whether the test data is in-distribution or OOD data.

Plenty of recent researches have emerged to address this problem [1,5,7,8,12–
14]. The most straightforward methods directly utilized the output from the
posterior distribution of DNNs. Hendrycks and Gimpel [5] observed that the
predicted probability of OOD examples tend to be lower than that of the in-
distribution data, establishing a common baseline for OOD detection named
Maximum Softmax Probability (MSP). Follow-up works attempted to improve
the OOD detection performances. ODIN [14] leveraged temperature scaling and
input preprocessing to compute a more effective score using the max prob-
ability. Generalized ODIN [7] further improved the OOD detection perfor-
mance by decomposing confidence and modifying input preprocessing. Maha [13]
used pre-trained classification to model the representation of training data as
class-conditional Gaussian distributions, then calculates Mahalanobis distance
between test samples and the Gaussian distribution as the OOD score. ATOM [1]
improves the robustness of the OOD detector by mining informative auxiliary
OOD data and generalize to unseen adversarial attacks. GramNorm [8] utilized
information extracted from the gradient space to compute the OOD score.

Although those methods are computationally simple, they only focus on
improving inference procedures. Their performances are highly dependent on
the pre-trained classification models. Recently, the outlier exposure was pro-
posed to leverage diverse data as an auxiliary outlier dataset when training the
classification model [6]. Within the outlier exposure method, an energy-score
based OOD function was utilized, along with an energy-based learning objective
using diverse data to fine-tune the network. The learning procedure trys to assign
relatively lower energy values to the in-distribution data and higher energy val-
ues to OOD data [15]. However, current energy-based loss function introduces
several dataset-dependent hyperparameters, and the cost of training (including
time and space consumptions) is particularly high due to the large-scale aux-
iliary outlier dataset. Meanwhile, to prune redundant computation, SMSR [21]
explores the sparsity in image Super-Resolution (SR) to improve the inference
efficiency of SR networks. Inspired by SMSR, we firstly introduce the sparsity
of neural networks to our OOD detection framework.

In this paper, we propose a sparsity-regularized learning objective for a pre-
trained classification model in order to improve the performance of the energy-
score based OOD detector. The intuitive motivation is that the energy-based
OOD detection algorithm may work better if we further increase the sparsity
of the feature vector generated by neural networks on in-distribution data. In
contrast, our method adopts a parameter-free strategy that is easy to use and
implement, without tuning any dataset-dependent hyperparameters. We also
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modify the outlier exposure [6] with our parameter-free strategy to propose a
Sparsity-Regularized Outlier Exposure (SROE) OOD detector, which further
enlarges the energy score gap between in-distribution and OOD samples and
leads to better performances. In addition, we build a tiny dataset as the auxil-
iary outlier dataset to replace the previous bulky one [6,15], which significantly
reduces time and space consumptions in the learning process. Our contributions
in this paper are summarized as follows:

1. We propose a parameter-free sparsity-regularized learning objective for fine-
tuning the deep neural networks, our learning objective guides the networks to
generate sparser feature vectors for in-distribution data while no limitations
for OOD data. The energy-based detector works better even when no external
(OOD) dataset used.

2. We propose the Sparsity-Regularized Outlier Exposure (SROE) by incorpo-
rating the new parameter-free loss function into the original outlier exposure
method. Our SROE learning objective guides the representation sparser for
in-distribution data while more uniform for the predictive distribution on
OOD examples. Experimental results show that our method achieves a new
state-of-the-art performance on the OOD detection tasks.

3. The original outlier exposure method uses 80 Million Tiny Images as the
auxiliary outlier dataset, which is bulky and bloated, leads to more time
and space consumptions in the learning procedure. Thus, we build a tiny
dataset to replace the previous one that significantly reduces time and space
consumptions without any detection performance loss.

2 Background and Related Work

2.1 OOD Detection Problem Statement

OOD detection can be formulated as a binary classification problem [5]. Let
PX denote a data distributions defined on the sample space X . We consider a
training dataset Din drawn i.i.d from PX (called the in-distribution), with
label space Y = {1, 2, · · · , C}. Out-of-distribution (OOD) usually refers to
the samples from an irrelevant distribution whose label set has no intersection
with Y and therefore should not be predicted by the model.

We use Din to train a neural network classification model f(x). The goal of
OOD detection is to design a binary function estimator G(x; f) that evaluate
whether a input data x ∈ X from in-distribution PX or not. Specifically, the
OOD detector G(x; f) is defined as follows:

G(x; f) =

{
0 if S(x; f) ≤ δ

1 if S(x; f) > δ

where S(x; f) is the scoring function that captures uncertainty of input data,
and δ is the threshold commonly chosen so that a high fraction (e.g., 95%) of
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in-distribution data is correctly classified. The detector G(x; f) assigns label
“1” for input data if the confidence score S(x; f) is above δ, considered to be
in-distribution data. Otherwise, it assigns label “0”, considered to be out-of-
distribution data.

2.2 Outlier Exposure

One of the difficulties within OOD detection is that we have no prior knowledge
of OOD data. Thus, it is not possible to model OOD data directly. Most methods
detect OOD examples by using representations from only in-distribution data.
Based on this phenomenon, A heuristic approach named Outlier Exposure (OE)
was proposed for OOD detection by exposing the model to OOD examples [6].

Specifically, OE utilized an auxiliary dataset DOE
out entirely disjoint from test-

time data and in-distribution data to teach the network learning better represen-
tations. OE introduced the OE loss on DOE

out , and added it to the classification
loss (e.g., cross-entropy) on training data. The OE loss is the KL divergence loss
between posterior and uniform distribution on DOE

out , which forces the predictive
distribution on OOD samples to be closer to the uniform distribution:

LOE = Ex ∼DOE
out

[
KL

(U(y) || Pθ(y|x)
)]

,

where KL denotes the Kullback-Leibler (KL) divergence, U(y) is the uniform
distribution, and Pθ(y|x) is the output probability of samples from DOE

out in the
neural network.

2.3 Energy-Based Model for OOD Detection

Energy-based Models (EBMs) capture dependencies by associating scalar energy
to each configuration of the variables [11]. A collection of energy values could be
turned into a probability density pθ(x) through th Gibbs distribution:

pθ(x) =
exp

( − Eθ(x)
)

Zθ
,

where Eθ(x) : RD → R is the energy function that map each point to a scalar,
and Zθ =

∫
x

exp
( − Eθ(x)

)
is the partition function that normalize constant

with respect to x.
The essence of the EBMs is to build an energy function E(x), and E(x) is

very flexible, it can be any function that takes x from sample space X as the
input then returns a scalar. Recently, the energy-based OOD detection [15] was
proposed to leverage the energy value differences between data to detect OOD
examples. Examples with higher energy values are considered as OOD inputs,
and the energy score function E(x; f) is defined as follow:

E(x; f) = −log
∑

i

exp(fi),
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where score function E(x; f) maps all logits to a non-probabilistic scalar called
the energy score [15].

The energy score mitigates a critical problem of softmax confidence with
arbitrarily high values for OOD examples [4]. It is less susceptible to overconfi-
dence, proves to be a better substitute for the conventional approaches using the
softmax confidence score. In this work, we focus on improving the performance
of energy score for OOD detection.
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Fig. 1. Sparsity-Regularized OOD detection framework. We proposed the red modules
as the picture shown above, the solid lines indicate the flow of Din loss in neural
network, and the dashed lines indicate the flow of DOE

out loss in neural network. Note
that the dashed part is optional. The total tune loss LTune = LCE +α ·LSparsity when
there is no DOE

out available; otherwise, LTune = LCE + α · LSparsity + β · LOE (Color
figure online)

3 The Sparsity-Regularized Framework

In this section, we present our parameter-free sparsity-regularized (SR) learning
method for fine-tuning the classification models in order to improve the perfor-
mance of energy-based OOD detection [15]. Then we show how to incorporate
the parameter-free learning strategy into the traditional Outlier Exposure [6]
to form Sparsity-Regularized Outlier Exposure (SROE), which further improves
the performance. Finally we describe how the new tiny auxiliary dataset DOE

out

is built to reduce time and space consumptions in the learning process. The
framework of our work is shown in Fig. 1.

3.1 Sparsity-Regularized Loss Function

The intuitive motivation is that the energy-based OOD detection algorithm may
work better if we further increase the sparsity of the feature vector generated by
neural networks for in-distribution data, while giving no limitations for those of
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the out-of-distribution data. In this work we focus on fine-tuning a pre-trained
classifier and then use energy-score based detector to measure its performance
of OOD detection.

Pre-training Model. Firstly, we train a neural classifier under the supervision
of labeled in-distribution training samples Din. Unless otherwise noted, we use
the standard cross-entropy loss as follow:

LCE = − 1
|Din|

∑
(xi,yi)∈Din

log
(
pyi

(y|xi)
)
. (1)

Fine-Tuning Model. A classifier is built once the network converges, which
contain a backbone feature extractor F . Then we start to fine-tune the network
using a proposed learning objective, which combines the original cross-entropy
along with a sparsity regularization term LSparsity:

LSR = LCE + α · LSparsity, (2)

where the hyperparameter α > 0 controls the trade-off between the two objec-
tives, and we use the L1 norm as the sparsity regularization term in order to
penalize the feature vector and make it sparser:

LSparsity =
1

|Din|
∑

xi∈Din

(
‖F (xi)‖1

)
. (3)

Unlike the energy-bounded loss function [15] that introduces two dataset-
dependent hyperparameters, the LSparsity is a nearly parameter-free strategy.
We believe that this strategy could guide the networks generating sparser fea-
ture vectors for in-distribution data, while not limiting/ignoring the out-of-
distribution data. This corresponds to the solid lines in Fig. 1, which achieve
better OOD detection performance without any auxiliary datasets, just using
the in-distribution training dataset for tuning the network.

3.2 Sparsity-Regularized Outlier Exposure

Fine-Tuning Model with DOE
out . Same as Sect. 3.1, we construct a pre-trained

neural network model. Unlike the previous sparsity regularization method, we
further introduce an auxiliary dataset DOE

out to it by OE loss [6], forming
our Sparsity-Regularized Outlier Exposure (SROE). The overall framework
is shown in Fig. 1, composing by both the solid lines and the dashed lines:

LSROE = LCE + α · LSparsity + β · LOE , (4)

where the hyperparameters α > 0, and β > 0 control the trade-off between the
three objectives.
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(a) Pretrained (b) Sparsity Regularization (c) Sparsity-Regularized OE

Fig. 2. Distribution of energy scores. We contrast the distribution of the models from
Pretrained, Sparsity-Regularization, Sparsity-Regularized Outlier Exposure, respec-
tively. We chose the CIFAR-100 as the Din and the SVHN as the Dtest

out , which performed
consistently on the other OOD test datasets. (Color figure online)

The cross-entropy loss keeps the performance of classification on in-
distribution samples, the OE loss forces the predictive distribution on out-of-
distribution samples to be closer to the uniform one, and our sparsity-regularized
loss increases the sparsity of the feature vectors generated by neural networks
for in-distribution samples. By combining the above three losses and adjusting
their weights, the overall learning objective LSROE maintains the classification
performance while guiding the representation sparser on in-distribution samples,
and more uniform for the predictive distribution on OOD samples.

The experimental results validate the effectiveness of our method. As shown
in Fig. 2, the green curve is the distribution of energy scores on in-distribution
examples, and the red curve is the distribution of energy scores on OOD exam-
ples. The intersecting region of the two curves indicates that in-distribution and
OOD examples cannot be effectively distinguished by energy score. The larger
area of the intersecting region is, the worse performance of OOD detection for the
model will be, and vice versa. From Fig. 2, we see that using the proposed spar-
sity regularization could significantly reduce the area of the intersecting region,
which demonstrates the performance of OOD detection has been improved. And
the area of the intersecting region reduces more by combining the OE Loss with
our sparsity regularization term.

3.3 A New Auxiliary Outlier Dataset

Previous works use the 80 Million Tiny Images as the DOE
out [6,15]. It is bulky

and bloated, the volume size is bigger than 230G. Furthermore, when using as
the auxiliary dataset for OOD researches, samples within 80 Million Tiny Images
should be removed manually if it appears as (or similar as) the in-distribution
samples. However, the dataset is too enormous and it is impossible to cleanly
remove such samples manually or even by automated technique. This motivates
us to reconstruct a dataset DOE

out in a more economical and friendly way [19].

The auxiliary dataset needs to meet two constraints [6]:

1) Diverse enough to represent unknown out-of-distribution data in some way;
2) Completely disjoint with the in-distribution data and the data to be tested.
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in out outout outin

Fig. 3. The data pool is filled with a wide variety of data. The samples labeled “out” in
the data pool can be kept as auxiliary outlier data. The samples labeled “in” indicate
that those samples have similar semantic information as in-distribution data, and we
need to filter it out from the data pool manually.

The Tiny ImagesNet dataset [10] is a 200-class subset of the ImageNet dataset
[18], we use it as a data pool to build our auxiliary dataset. The data pool
selected is shown in Fig. 3, which is filled with a wide variety of data. We spend
a lot of time manually filtering out data with similar semantic information to
in-distribution data from it. Once the filtering operation in the data pool is
completed, we then resize all images to 32 × 32. The volume size of our dataset
is small enough compared to the previous one (40M vs. 230G), we call it “tiny”.

4 Experiments

In this section, we describe the experimental setup, including evaluation metrics,
evaluation datasets, network architectures and training details. Then, we also
demonstrate the effectiveness of our proposed method by comparing it with the
SOTA ones.

4.1 Experimental Setup

At inference time, given one test image, if it comes from CIFAR-10 or CIFAR-
100 datasets, it is viewed as an in-distribution example; otherwise, it will be
viewed as an out-of-distribution example.

Evaluate Metrics. In order to measure the effectiveness of our method on
distinguishing in-distribution with OOD examples, we followed the same metrics
as previous methods [5,6,15]. (1) FPR95 shows the false positive rate (FPR) of
OOD examples when the true positive rate (TPR) of in-distribution examples is
95%; (2) AUROC is the area under the receiver operating characteristic (ROC)
curve; and (3) AUPR is the area under the Precision-Recall (PR) curve. In our
experimental results, all the values of metrics are percentages and the results
are averaged over 10 runs. The larger values are better for AUROC and AUPR,
while the lower value is better for FPR95.
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In-Distribution Datasets. We use CIFAR-10 and CIFAR-100 as in-
distribution datasets Din where CIFAR-10 contains 10 classes; CIFAR-100 is
more complicated and it contains 100 classes [9]. Both of them are consisted by
60,000 32 × 32 natural color images, with 50,000 for training and 10,000 for
testing. CIFAR-10 and CIFAR-100 are disjoint but have similarities.

Out-of-Distribution Datasets. The OOD evaluation benchmarks are rigor-
ously selected to ensure that the semantic knowledge in these datasets does not
overlap with in-distribution data. We use six OOD common test datasets Dtest

out to
evaluate our method, including fine-grained images, scene images, and textural
images, etc. All the datasets considered are listed below: iSUN [3], SVHN [17],
Texture [2], Places365 [25], LSUN-Crop and LSUN-Resize [23]. For the
auxiliary outlier dataset DOE

out that is required during the training procedure in
the experiment, the proposed tiny dataset introduced in Sect. 3.3 is used.

Table 1. OOD detection performance improvements by sparsity-regularized strategy.
↑ indicates larger values are better, and ↓ indicates smaller values are better. Boldface
values indicate the relatively better results.

Din Dtest
out FPR95 ↓ AUROC ↑ AUPR ↑

Baseline [15]/Ours

CIFAR-10 iSUN 44.65/20.55 88.61/96.31 98.85/99.22

SVHN 30.35/29.70 93.70/94.07 98.52/98.64

Texture 53.10/26.70 85.04/94.05 95.48/98.45

Place 365 42.75/ 27.50 88.31/93.51 96.75/98.36

LSUN-Crop 7.90/3.20 98.26/99.25 99.63/99.84

LSUN-Resize 37.55/16.10 91.46/98.88 97.82/99.32

Average 34.92/20.26 91.27/95.70 97.57/98.97

CIFAR-100 iSUN 77.15/52.19 79.54/87.53 94.91/97.57

SVHN 82.41/58.25 81.59/85.86 95.92/95.52

Texture 82.10/58.90 77.26/85.86 94.14/96.52

Place 365 82.10/58.90 77.26/85.86 94.14/96.52

LSUN-Crop 40.60/33.30 92.73/93.93 98.46/98.71

LSUN-Resize 77.05/66.40 78.59/84.36 94.51/96.32

Average 71.86/56.59 81.94/87.49 95.59/97.10

Network Architectures and Training Details. All the images from CIFAR-
10 and CIFAR-100 are normalized using per-channel mean and standard devia-
tion. WideResNet-40-2 is used as the classification network. When pre-training
the model, a SGD optimizer with a weight decay of 0.0005 and a momentum
of 0.9 is used; the initial learning rate is 0.1 with cosine decay and the dropout
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rate is 0.3; the batch size is 128 for 100 epochs. When fine-tuning the classi-
fication model, we use the same network configuration as the training phase.
The learning rate reduces to 0.001, and set the number of epochs to 10. In
the sparsity-regularized (SR) experiment, the α in Eq. (3) is 0.001. And in the
sparsity-regularized outlier exposure (SROE) experiment, the batch size is 256
for axuiliary data DOE

out . the α and β in Eq. (4) is 0.001 and 0.5, respectively.

4.2 Experimental Results

OOD Performance Improved by Sparsity Regularization. At train-
ing time, we use the WideResNet-40–2 network architecture trained on in-
distribution Din as our energy-score based OOD detection baseline, and use
neural networks fine-tuned by the proposed sparsity-regularized learning objec-
tive as the comparison.

Table 1 reports the details of OOD detection performance when using CIFAR-
10 and CIFAR-100 as Din against six OOD test datasets Dtest

out . The results
show that the proposed parameter-free sparsity-regularized loss achieved better
performance even without any external data. The average FPR95 reduced by
14.66% on CIFAR-10 and 15.27% on CIFAR-100 respectively, which demonstrate
the effectiveness of the sparsity-regularized strategy.

Table 2. Comparisons between previous methods and ours on the Din. ↑
indicates larger values are better, and ↓ indicates smaller values are better. Boldface
values indicate the relatively better results. Our method obtains consistently better
results on almost all metrics.

Din Method FPR95 ↓ AUROC ↑ AUPR ↑
CIFAR-10 MSP [5] 51.35 90.45 97.82

ODIN [14] 35.59 90.96 97.64

Maha [13] 37.08 93.27 98.49

EBD [15] 34.92 91.27 97.57

SR (ours) 19.19 96.03 99.08

CIFAR-100 MSP [5] 80.56 75.44 93.45

ODIN [14] 76.64 77.43 94.23

Maha [13] 62.03 80.33 95.02

EBD [15] 71.86 81.94 95.59

SR (ours) 56.59 87.49 97.10

Comparisons with Other Methods Which Need No Auxiliary Dataset.
We compare our work with previous methods that do not require any auxiliary
data. All experiments use WideResNet-40–2 [24] for fair comparisons. Specif-
ically, we compare the proposed sparsity-regularized strategy with MSP [5],
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ODIN [14], Mahalanobis [13], as well as energy-based detection [15]. Those meth-
ods do not require external data, only a pre-trained model needed.

Table 2 reports the OOD detection performance of various methods and all
numbers reported are averaged over six OOD test datasets Dtest

out . The experi-
ments show that the energy score (EBD) function is indeed a better replace-
ment for the softmax confident score (MSP). And our sparsity-regularized
learning objective could improve energy score OOD detection by fine-tuning the
pre-trained model with an extra sparsity related loss term.

Performance of SROE. Using an auxiliary dataset could further improve
OOD detection performance. We compare different methods which need fine-
tuning the networks. WideResNet-40–2 network model is used as the baseline,
and it is used as the pre-trained model before fine-tuning for all different meth-
ods. We reproduced the results of the Outlier Exposure and Energy based OOD,
using the 80 Million Tiny Images dataset as the auxiliary outlier dataset. As for
SROE, we use the propsed tiny dataset instead, this greatly save a lot of disk
space and training time consumptions.

Table 3 reports the performances of various fine-tuning OOD detection meth-
ods. The experimental results illustrate that the fine-tuning methods only
affect the classification ability of the model on in-distribution data slightly.
In contrast, SROE is dataset-dependent-parameter-free, while the energy-based
method(EBD) introduces two dataset-dependent hyperparameters, which have
to be fixed manually. More importantly, SROE greatly improve the performance
of the outlier exposure by incorporating the proposed sparsity-regularized loss
strategy.

Table 3. OOD detection performance comparisons when using auxiliary
datasets to fine-tune the networks. The unit of “Time” is second, and all values
except “Time” are percentages. Note that the “Time” in the table represents time
required when fine-tuning the model, and the “Time = -” for the Baseline method
means that the model needs not fine-tuning. We could see that the total fine-tuning time
of the model is largely reduced when using our tiny dataset. ↑ indicates larger values
are better, and ↓ indicates smaller values are better. Boldface values indicate relative
the better results. SROE obtains consistently better results on almost all metrics.

Din Method FPR95 ↓ AUROC ↑ AUPR ↑ Time ↓ Err(Din ) ↓
CIFAR-10 Baseline[15] 34.92 91.27 97.57 – 5.24

OE [6] 8.53 95.30 99.63 48 5.30

Energy [15] 3.32 98.22 99.75 48 5.12

SROE (ours) 4.15 98.92 99.76 5 5.06

CIFAR-100 Baseline [15] 71.86 81.94 95.59 – 24.04

OE [6] 56.57 86.79 96.82 48 24.52

Energy [15] 49.28 88.23 97.09 49 24.56

SROE (ours) 28.04 93.14 98.12 5 23.98
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5 Conclusion

In this paper, we proposed a novel sparsity-regularized learning objective for
neural networks, making the energy-based OOD detector work better. Our
method does not introduce dataset-dependent hyperparameters, nor require
extra dataset for auxiliary neural network training. Furthermore, we also pro-
posed a new SROE OOD detector, which means Sparsity-Regularized Outlier
Exposure, by incoporating the sparsity-regularized learning objectives into the
traditional OE. To speed up the fine-tuning process, we built a tiny auxiliary
outlier dataset to replace the bulky and large-scale 80 Million Tiny Images
dataset.

Experimental results show that our method establishes a new state-of-the-art
performance on the OOD detection task. Although we primarily focus on image
classification in our experiments, our method can be applied to any other related
field, e.g., audios and videos etc.
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