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Abstract. In recent years, although the Alternating Direction Method of Mul-
tipliers (ADMM) has been empirically applied widely to many multi-convex
applications, delivering an impressive performance in areas such as nonnega-
tive matrix factorization and sparse dictionary learning, there remains a dearth
of generic work on proposed ADMM with a convergence guarantee under mild
conditions. In this paper, we propose a generic ADMM framework with multiple
coupled variables in both objective and constraints. Convergence to a Nash point
is proven with a sublinear convergence rate o(1/k). Two important applications
are discussed as special cases under our proposed ADMM framework. Extensive
experiments on ten real-world datasets demonstrate the proposed framework’s ef-
fectiveness, scalability, and convergence properties. We have released our code at
https://github.com/xianggebenben/miADMM.

1 Introduction

Due to the advantages and popularity of non-differentiable regularized and distribu-
tive computing for complex optimization problems, the Alternating Direction Method
of Multipliers (ADMM) has received a great deal of attention in recent years [6]. The
standard ADMM was originally proposed to solve the following separable convex op-
timization problem:

minx,z f(x) + g(z) s.t. Ax+Bz = c.

where f(x) and g(z) are closed convex functions, A and B are matrices and c is a vec-
tor. There are extensive reports in the literature exploring the theoretical properties for
convex optimization problems related to ADMM and its variants, including multi-block
ADMM [12], Bregman ADMM [30], fast ADMM [14, 18], and stochastic ADMM [24].
ADMM has now been extended to cover a wide range of nonconvex problems, and it
has achieved outstanding performance in many practical applications [40].

Unlike convex problems, the convergence theory on the nonconvex ADMM is much
more difficult, and considerable progress has been made on this problem, please refer
to Section 2 for a detailed summary. Recently, however, there has been an increasing
number of real-world applications where the objective functions are multi-convex (i.e.
nonconvex for all the variables but convex for each when all the others are fixed). For
example, nonnegative matrix factorization, which aims to decompose a matrix into a
product of two matrices, has been applied widely in computer vision, machine learning,
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and various other fields [19]; A bilinear matrix inequality problem has been designed
for the analysis of linear and nonlinear uncertain systems [16].

All of the above applications can be considered as special cases of multi-convex op-
timization problems. However, such problems have not yet been rigorously and system-
atically investigated by ADMM. Moreover, the convergence properties of the ADMM
required to solve such problems remain unknown. In this work, we propose mild con-
ditions to ensure the convergence of ADMM to a Nash point on the multi-convex prob-
lems with a sublinear convergence rate o(1/k). We also discuss how our ADMM is
applied to two important applications. Extensive experiments show the effectiveness of
our proposed ADMM. Our contributions in this paper include:

– We propose an ADMM framework to solve the multi-convex problem, and we
investigate the convergence properties of the proposed ADMM. Specifically, we
prove that the objective value and the residual are convergent. Moreover, any limit
point generated by the proposed ADMM is a Nash point of the original problem.
The convergence rate of the proposed ADMM is o(1/k).

– We demonstrate two important and promising applications that are special cases of
our proposed ADMM framework and benefit from its theoretical properties. Specif-
ically, we show how these applications can be transformed equivalently to fit into
the proposed ADMM framework.

– We conduct extensive experiments to validate our proposed ADMM. Experiments
on ten real-world datasets demonstrate its effectiveness, scalability, and conver-
gence properties.

The rest of this paper is summarized as follows: Section 2 summarizes previous work
related to this paper. Section 3 introduces the ADMM algorithm and its convergence
properties. In Section 4, the proposed ADMM algorithm is applied to several important
applications. Extensive experiments are described in Section 5. The paper concludes
with a summary of the work in Section 6.

2 Related Work

Multi-convex optimization problems: Some works studied multi-convex problems.
The earliest work required that the objective function was differentiable continuous and
strictly convex [38]. Various conditions on separability and regularity on the objec-
tive functions have been discussed in [28, 29]. In the most recent work, Xu and Yin
presented three types of multi-convex algorithms and analyzed convergence based on
either Lipschitz differentiability or strong convexity assumption [39]. For a comprehen-
sive survey, please refer to [26].
Convergence analysis of ADMM: Existing literature on the convergence analysis of
ADMM can be categorized into two classes: the convex ADMM and the nonconvex
ADMM. The convex ADMM is investigated relatively well compared with the noncon-
vex ADMM. Existing works either study suitable stepsizes of the convex ADMM or
extend ADMM to the stochastic version. For example, Bai et al. proposed a general-
ized symmetric ADMM to solve the multi-block separable objective by updating the
Lagrange multiplier twice with suitable stepsizes [3]; Gu et al. extended contractive



Peaceman-Rachford splitting method to ADMM with larger stepsizes [15]; Ouyang et
al. proposed a stochastic ADMM with a convergence rate O( 1√

t
). Despite the outstand-

ing performance of the nonconvex ADMM, its convergence theory is not well estab-
lished due to the complexity of both coupled objectives and various (inequality and
equality) constraints. Most existing works discussed the convergence of the nonconvex
ADMM on separable objectives: they provided convergence guarantee to the stationary
solutions with different assumptions [5, 9, 10, 20]. Some works explored more diffi-
cult cases where the objectives are coupled: for example, Wang et al. presented mild
convergence conditions of the nonconvex ADMM where the objective can be nons-
mooth [37]; Gao et al. explored the convergence condition of ADMM on multi-affine
constraints [13]; Wang et al. gave the convergence proofs of ADMM in the nonconvex
deep learning problems [31, 33, 34]; while experiments by Wang and Zhao showed that
the ADMM was not necessarily convergent in the nonlinear-constrained problems [35].

3 ADMM on the Multi-convex Problems

In this section, we present an ADMM framework to solve Problem 1.

3.1 Preliminaries

First, the definition of Lipschitz differentiability is shown as follows [8]:

Definition 1 (Lipschitz Differentiability). Any arbitrary differentiable function G1 :
Rm → R is Lipschitz differentiable if for any x

′
, x
′′ ∈ Rm,

‖∇G1(x
′
)−∇G1(x

′′
)‖ ≤ D‖x

′
− x

′′
‖.

where D ≥ 0 is constant and∇G1(x) denotes the gradient of G1(x).

The following defines strong convexity, which is indispensable for the proof of conver-
gence to a Nash point.

Definition 2 (Strong Convexity). A convex function G4(x) is strongly convex if there
exists H > 0 such that for ∀x′ , x′′ ∈ dom(G4), the following holds

G4(x
′′
) ≥ G4(x

′
) + (v

′
)T (x

′′
− x

′
) + (H/2)‖x

′′
− x

′
‖22.

where ∀v′ ∈ ∂G4(x
′
) is a subdifferential of G4 at x

′
.

Finally, the Nash point is defined as follows [39]:

Definition 3 (Nash Point). Given G5(a1, a2, · · · , am), a Nash point (a∗1, a
∗
2, · · · , a∗m)

satisfies the following property:

G5(a
∗
1, · · · , a∗i−1, a∗i , a∗i+1, · · · , a∗m) ≤ G5(a

∗
1, · · · , a∗i−1, ai, a∗i+1, · · · , a∗m),

∀(a∗1, · · · , a∗i−1, ai, a∗i+1, · · · , a∗m) ∈ dom(G5), (i = 1, · · · ,m).

Naturally, when we optimize one variable while fixing others, the Nash point ensures
the optimality of this variable [39]. Without loss of generality, we assume that Problem
1 has at least a Nash point, and in the next section, we will prove that any limit point
generated by ADMM converges to a Nash point.



3.2 The ADMM algorithm

The following problem is our focus in this paper:

Problem 1.

minx1,··· ,xn,z F (x1, · · · , xn, z) = f(x1, · · · , xn)+ h(z) s.t.
∑n

i=1
Aixi − z = 0.

where xi ∈ Rpi(i = 1, · · · , n), z ∈ Rq , f(x1, · · · , xn) : Rp → R ∪ {∞}(p =∑n
i=1 pi) are proper, continuous, multi-convex and possibly nonsmooth functions, h(z)

is a proper, differentiable and convex function.Ai ∈ Rq×pi(i = 1, · · · , n) are matrices.
Obviously, the domain of F is dom(F ) = {(x1, · · · , xn, z)|

∑n
i=1Aixi − z = 0}.

Without the loss of generality, the objective of Problem 1 is assumed to be bounded
from below.

To ensure the convergence of the proposed ADMM, some mild assumptions are
imposed, which are shown as follows:

Assumption 1 (Lipschitz Differentiability) h(z) is Lipschitz differentiable with con-
stant H ≥ 0.

Most loss functions such as the cross-entropy loss and the square loss are Lipschitz dif-
ferentiable [34]. In order to propose the ADMM algorithm, the augmented Lagrangian
function can be formulated mathematically as follows:

Lρ(x1,· · · ,xn,z,y) = F (x1,· · · ,xn, z)+yT (
∑n

i=1
Aixi−z)+(ρ/2)‖

∑n

i=1
Aixi−z‖22.

(1)

where y is a dual variable and ρ > 0 is a penalty parameter. The proposed ADMM aims
to optimize the following n+ 1 subproblems alternately.

xk+1
i ← argminxi f(· · · , xk+1

i−1 , xi, x
k
i+1, · · · ) + (yk)TAixi

+ (ρ/2)‖
∑i−1

j=1
Ajx

k+1
j +Aixi +

∑n

j=i+1
Ajx

k
j − zk‖22. (2)

zk+1 ← argminz Lρ(· · · , xk+1
n , z, yk) (3)

=argminz h(z)−(yk)T z+(ρ/2)‖
∑n

i=1
Aix

k+1
i −z‖22.

Algorithm 1 The Proposed ADMM to
Solve Problem 1
Require: Ai(i = 1, · · · , n), δ > 0.
Ensure: xi(i = 1, · · · , n), z.
1: Initialize ρ, k = 0.
2: repeat
3: for i=1 to n do
4: Update xk+1

i in Equation (2).
5: end for
6: Update zk+1 in Equation (3).
7: rk+1 ←

∑n
i=1 Aix

k+1
i − zk+1. # update primal

residual
8: yk+1 ← yk + ρrk+1.
9: k ← k + 1.
10: until ‖rk+1‖ ≤ δ.
11: Output xi(i = 1, · · · , n), z.

Algorithm 1 is presented for Prob-
lem 1. Concretely, Lines 3-5 and 6 up-
date xk+1

i (i = 1, · · · , n) and zk+1,
respectively. Line 7 updates the pri-
mal residual rk+1, which is defined in
accordance with the standard ADMM
[6]: it measures how the linear con-
straint

∑n
i=1Aixi − z = 0 is violated.

Line 8 updates the dual variable yk+1,
which follows the routine of the standard
ADMM. Line 10 uses the norm of the
primal residual r as a condition to ter-
minate the algorithm, where δ > 0 is a
threshold. Each subproblem is convex and implicitly assumed to be solvable.



3.3 Convergence Analysis

This section focuses on the convergence of the proposed ADMM algorithm. Specifi-
cally, the first lemma states that the augmented Lagrangian Lρ keeps decreasing, which
is stated as follows.

Lemma 1 (Objective Descent). If ρ > 2H so that C1 = ρ/2 − H/2 − H2/ρ > 0,
then there exists C2 = min(ρ/2, C1) such that

Lρ(x
k
1 , · · · , xkn, zk, yk)− Lρ(xk+1

1 , · · · , xk+1
n , zk+1, yk+1)

≥ C2(‖zk+1 − zk‖22 +
∑n

i=1
‖Ai(xk+1

i − xki )‖22). (4)

Lemma 1 holds under Assumption 1, and its proof can be found in Section B in the
supplementary materials1. The next lemma states that the augmented Lagrangian is
bounded from below, as shown below:

Lemma 2 (Objective Bound). If ρ > 2H , thenLρ(xk1 , · · · , xkn, zk, yk) is lower bounded.

The proof of Lemma 2 can be found in Section B in the supplementary materials 1. Now
we can prove that the proposed ADMM converges globally in the following theorem.

Theorem 1 (Residual and Objective Convergence). If ρ > 2H , then for the bounded
sequence (xk1 , · · · , xkn, zk, yk), then it has the following properties:
a). Residual convergence. This means that as k → ∞, rk → 0, where rk is defined in
Algorithm 1.
b). Objective convergence. This means that as k →∞, F (xk1 , · · · , xkn, zk) converges.

Theorem 1 guarantees the convergence of the proposed ADMM, whose proof is in
Section C in the supplementary materials 1. However, xki (i = 1, · · · , n) and zk are not
necessarily shown to be convergent. The next theorem states that any limit point is a
feasible Nash Point of Problem 1.

Theorem 2 (Convergence to a Nash Point). Let ρ > 2H , if either of two assump-
tions hold: (a). Ai(i = 1, · · · , n) have full rank. (b). F is strongly convex with re-
gard to xi. Then for bounded variables (xk1 , · · · , xkn, zk), it has at least a limit point
(x∗1, · · · , x∗n, z∗), and any limit point (x∗1, · · · , x∗n, z∗) is a feasible Nash point of F
defined in Problem 1. That is∑

Aix
∗
i − z∗ = 0. (feasibility)

F (x∗1, · · · , x∗n, z∗) ≤ F (x∗1, · · · , x∗i−1, xi, x∗i+1, · · · , x∗n, z∗),
∀(x∗1, · · · , x∗i−1, xi, x∗i+1, · · · , x∗n, z∗) ∈ dom(F ), (i = 1, · · · , n).
F (x∗1, · · · , x∗n, z∗) ≤ F (x∗1, · · · , x∗n, z)∀(x∗1, · · · , x∗n, z) ∈ dom(F ) (Nash point).

1The supplementary materials are available at https://github.com/
xianggebenben/miADMM/blob/main/multi_convex_ADMM-13-18.pdf

https://github.com/xianggebenben/miADMM/blob/main/multi_convex_ADMM-13-18.pdf
https://github.com/xianggebenben/miADMM/blob/main/multi_convex_ADMM-13-18.pdf


The proof of Theorem 2 is detailed in Section C in the supplementary materials 1. The
third theorem states that our proposed ADMM can achieve a sublinear convergence rate
of o(1/k) under Assumption 1, despite the nonconvex and complex nature of Problem
1. Such a rate is state-of-the-art even compared to those methods for simpler convex
problems. The theorem is shown as follows:

Theorem 3 (Convergence Rate). If ρ > 2H , for a bounded sequence (xk1 , · · · , xkn, zk, yk),
define uk = min0≤l≤k(‖zl+1− zl‖22+

∑n
i=1 ‖Ai(x

l+1
i −xli)‖22), then the convergence

rate of uk is o(1/k).

The proof of this theorem is in Section C in the supplementary materials 1. The o(1/k)
convergence rate of the proposed ADMM is consistent with much existing work analyz-
ing the convex ADMM, including [12, 17, 22]. Our contribution in term of convergence
rate is that we extend the guarantee of o(1/k) into the multi-convex Problem 1.

Our proposed ADMM is more general than some influential works in terms of for-
mulation. The relations between our proposed ADMM and previous works are summa-
rized as follows:
1. Generalization of Block Coordinate Descent (BCD) for multi-convex problems.
When the linear constraint

∑n
i=1Aixi = z is removed in Problem 1, then the proposed

ADMM is reduced to the Block Coordinate Descent [39].
2. Generalization of multi-block ADMM. When f(x1, · · · , xn) = 0, the proposed
ADMM is reduced to the convex multi-block ADMM [27], i.e. the ADMM with no less
than three variables.

Apart from general formulations, the convergence guarantees of our proposed ADMM
cover more applications than previous literature. For example, [37] requires the coupled
objective f(x1, · · · , xn) to be Lipschitz differentiable. However, some important appli-
cations such as weakly-constrained multi-task learning (Section 4.1) and learning with
signed-network constraints (Section 4.2) do not satisfy this condition. But they are cov-
ered by our convergence guarantees of the multi-convex ADMM to a Nash point.

4 Applications

In this section, we apply our proposed ADMM to two real-world applications, both
of which conform to Problem 1 and benefit from the convergence properties of the
proposed ADMM.

4.1 Weakly-constrained Multi-task Learning

In multi-task learning problems, multiple tasks are learned jointly to achieve a better
performance compared with learning tasks independently [32]. Most work on multi-task
learning has tended to enforce the assumption of similarity among the feature weight
values across tasks [2, 11, 36, 32, 43] because this makes it possible to use convex
regularization terms like `2,1 norms [36] and Graph Laplacians [43]. However, this as-
sumption is usually too strong and is seldom satisfied by the real-world data. Instead of
requiring feature weights to be similar in magnitude, a more conservative but probably
more reasonable assumption is that multiple tasks share similar polarities for the same



feature, which means that if a feature is positively relevant to the output of a task, then
its weight will also be positive for other related tasks. This assumption is appropriate for
many applications. For example, the feature ‘number of clinic visits’ will be positively
related to flu outbreaks, while the feature ‘popularity of vaccination’ will be negatively
related to them, even though their feature weights can vary dramatically for different
countries (namely tasks here). This is achieved by enforcing the requirement for every
pair of tasks with neighboring indices to have the same weight sign. This optimization
objective is shown as follows:

minw1,··· ,wn

∑n

i=1
(Lossi(wi) +Ωi(wi)) (5)

s.t. wi,jwi+1,j ≥ 0 (i = 1, 2, · · · , n− 1, j = 1, 2, · · · ,m).

where n and m denote the number of tasks and features, respectively, wi,j is the weight
of the j-th feature in the i-th task, wi is the weight of the i-th task, and Lossi(wi) and
Ωi(wi) are the loss function and the regularization term of the i-th task, respectively.
The inequality constraint implies that the i-th and the i+1-th tasks share the same sign
for their weights. Equation (5) is rewritten in the following form to fit in our proposed
ADMM framework:

minw1,··· ,wn,z
∑n

i=1
(Lossi(wi) +Ωi(zi)) + λ1

∑n−1

i=1

∑m

j=1
c1(wi,jwi+1,j) (6)

s.t. zi = wi (i = 1, 2, · · · , n).

where z = [z1; · · · ; zn] is an auxiliary variable, and λ1 > 0 is a tuning parameter. No-
tice that the inequality constraint wi,jwi+1,y ≥ 0 is transformed to a quadratic penalty

c1(x) such that c1(x) =

{
x2 x < 0

0 x ≥ 0
which makes the formulation consistent with

Problem 1. The proposed ADMM algorithm for this case is shown in Appendix D.1 in
the supplementary materials 1.

4.2 Learning with Signed-Network Constraints

The application of network models for social network analysis has attracted the atten-
tion of a large number of researchers [7]. For example, influential societal events often
spread across many social networking sites and are expressed in different languages.
Such multi-lingual indicators usually transmit similar semantic information through
networks and have thus been utilized to facilitate social event forecasting [41]. The
problem with network constraints is formulated as follows:

minβ1,··· ,βn Loss(β1, · · · , βn) +
∑n

i=1
ωi(βi)

s.t. ∃(βi, βj) ∈ Es,∃(βp, βq) ∈ Ed (1 ≤ i, j, p, q ≤ n).

where βi is the weight of the i-th node. Loss(β1, · · · , βn) is a loss function and ωi(βi)
is a regularization term for the i-th node. Es = {(βi, βj)|βiβj ≥ 0} and Ed =
{(βp, βq)|βpβq ≤ 0} are two edge sets to represent two opposite relationships: (βi, βj) ∈



Es means that βiβj ≥ 0, while (βp, βq) ∈ Ed means that βpβq ≤ 0. The constraint
means that some pair (βi, βj) satisfies the edge setEs, and that some pair (βp, βq) satis-
fies the edge setEd. For example, in the problem of social event forecasting with French
and English, Es and Ed are edge sets of synonyms and antonyms between French and
English, and the weight pair of the French word ”bien” and the English word ”good” be-
longs to Es. The problem with network constraints can be reformulated approximately
to the following:

minβ1,··· ,βn,z Loss(β1, · · · , βn) +
∑n

i=1
ωi(zi) + λ2(

∑
(βi,βj)∈Es

c2(βi, βj)

+
∑

(βp,βq)∈Ed
c3(βp, βq))s.t. zi = βi (i = 1, 2, · · · , n) (7)

where z = [z1; · · · ; zn] is an auxiliary variable, and λ2 > 0 is a tuning parameter. The
constraint (βi, βj) ∈ Es and (βp, βq) ∈ Ed(1 ≤ i, j, p, q ≤ n) are transformed to two
quadratic penalties c2(βi, βj) and c3(βp, βq) as follows:

c2(βi, βj) =

{
(βiβj)

2 (βi, βj) 6∈ Es
0 (βi, βj) ∈ Es

, c3(βp, βq) =

{
(βpβq)

2 (βp, βq) 6∈ Ed
0 (βp, βq) ∈ Ed

.

The proposed ADMM for this case is also shown in Appendix D.2 in the supplementary
materials 1.

5 Experiments

In this section, we test our proposed ADMM using ten real-world datasets on two ap-
plications detailed in Section 4. Scalability, effectiveness, and convergence properties
are compared with several existing state-of-the-art methods on ten real datasets. All
experiments were conducted on a 64-bit machine with Intel(R) Core(TM) processor
(i7-6820HQ CPU@ 2.70GHZ) and 16.0GB memory.

(a). Residual on
Experiment I.

(b). Objective on
Experiment I.

(c). Residual on the VE
dataset of

Experiment II.

(d). Objective on the VE
dataset of

Experiment II.
Fig. 1: Convergence curves on Experiments I and II.

5.1 Experiment I: Weak-constrained Multi-task Learning

To evaluate the effectiveness of our method on the application of weak-constrained
multi-task learning described in Equation (6), a real-world school dataset is used to
evaluate the effectiveness of our proposed ADMM. It consists of the examination scores
in three years of 15,362 students from 139 secondary schools, which are treated as tasks
for examination scores prediction based on 27 input features such as year of the exam-
ination, school-specific features, and student-specific features. The dataset is publicly



available and the detailed description can be found in the original paper [21]. ρ was
set to 1000. Here we chose two kinds of λ1: (1) λk1 = 105; (2) λk+1

1 = λk1 + 10 with
λk1 = 1. λ1(1) and λ1(2) are the first and the second choice of λ1, respectively.
Metrics. In this experiment, five metrics were utilized to evaluate model performance.
Mean Squared Error (MSE) measures the average of the squares of the difference be-
tween observation and estimation. Different from MSE, Mean Squared Logarithmic
Error (MSLE) measures the ratio of observation to estimation. Mean Absolute Error
(MAE) is also an error measurement but computed in the absolute value. The less the
above three metrics are, the better a regression model is. Explained Variance (EV) com-
putes the ratio of the variance of the error to that of observation. The coefficient of
determination or R2 score is the proportion of the variance in the dependent variable
that is predictable from the independent variable. The higher score of EV and R2 are,
the better a regression model is.
Baselines. To validate the effectiveness of the proposed ADMM, five benchmark multi-
task learning models served as comparison methods. Loss functions were set to least
square errors. The number of iterations was set to 5, 000. The regularization parameter
α was set based on 5-fold cross-validation on the training set.

1. multi-task learning with Joint Feature Selection (JFS) [2, 43] . JFS is one of the
most commonly used strategies in multi-task learning. It captures the relatedness of
multiple tasks by a constraint of a weight matrix to share a common set of features. α
was set to 100.

2. Clustered Multi-Task Learning (CMTL) [42, 43]. CMTL assumes that multiple
tasks are clustered into several groups. Tasks in the same group are similar to each other.
α was set to 1.

3. multi-task Lasso (mtLasso) [43]. mtLasso extends the classic Lasso model to the
multi-task learning setting. α was set to 10.

4. a convex relaxation of Alternating Structure Optimization (cASO) [43, 1]. cASO
decomposes each task into two components: task-specific feature mapping and task-
shared feature mapping. α was set to 0.01.

5. Block Coordinate Descent (BCD) [39]. BCD is an intuitive method to solve
multi-convex problems, which optimizes each variable alternately. α was set to 10.

Table 1: Performance in Experiment I.
Mean

Method MSE MSLE MAE EV R2
JFS 114.1052 0.4531 8.4349 0.2948 0.2948

CMTL 114.9892 0.4647 8.4756 0.2876 0.2875
mtLasso 115.3143 0.4625 8.4725 0.2873 0.2873
cASO 137.8336 0.5204 9.3450 0.1606 0.1605
BCD 149.2313 0.5577 9.8057 0.1299 0.0777

ADMM(λ1(1)) 113.6975 0.4423 8.4024 0.2950 0.2960
ADMM(λ1(2)) 113.2400 0.4428 8.3943 0.3002 0.3002

Standard Deviation
Method MSE MSLE MAE EV R2

JFS 2.02 0.02 0.06 0.02 0.02
CMTL 1.85 0.02 0.05 0.01 0.01

mtLasso 1.77 0.02 0.05 0.01 0.01
cASO 7.26 0.01 0.06 0.01 0.01
BCD 1.41 0.01 0.06 0.15 0.01

ADMM(λ1(1)) 0.83 0.005 0.03 0.01 0.01
ADMM(λ1(2)) 0.95 0.01 0.04 0.02 0.02

Performance. As discussed in Sec-
tion 4.1, the convergence of our proposed
ADMM is guaranteed based on our theo-
retical framework. To verify this, Figures
1(a) and 1(b) illustrate the residual and
objective values in different iterations,
which demonstrates the convergence of
the proposed ADMM on this nonconvex
problem. Then the performance of exam-
ination score prediction on this dataset is
illustrated in Table 1. Table 1 shows the
mean and the standard deviation of all
methods, which were repeated 10 times
by initializing parameters randomly, to
make experimental evaluation robust. It



shows that λ1(2) outperforms λ1(1) in four out of five metrics for the proposed ADMM.
In addition, the proposed ADMM achieves the best performance in all the metrics,
compared to all comparison methods. Moreover, the standard deviation of the proposed
ADMM is about 30% smaller than any other comparison method. This is because our
method only enforces that the sign of the feature weight across different tasks is the
same, while comparison methods typically perform too aggressive assumptions on the
similarity among tasks. For example, CMTL enforces that the correlated tasks need
to have similar feature weights using squared regularization on the difference between
feature weights. JFS and mtLasso still tend to enforce similar weights on features in
different tasks by `2,1 norm. Because their enforcement is weaker than CMTL, their
performance is better. cASO gets relatively weak performance because it optimizes
an approximation of a nonconvex problem, and thus the approximate solution may be
distant from the true solution to the original problem. Finally, the BCD performs the
worst among all methods, even though it shares the same formulation with our pro-
posed ADMM. This reflects the advantage of our proposed ADMM algorithm: dual
information in one iteration can be passed to its following iteration by dual variables,
which yields better performance.

Fig. 2: The training time of all
methods in Experiment I.

Scalability. To investigate the scalability of
the proposed ADMM compared with all baselines
in Experiment I, we measured the training time
of them in the school dataset when the number of
features varies. The training time was averaged by
running 20 times. Figure 2 shows the training time
of all methods when the number of features ranges
from 10 to 28. The training time of all methods
increased linearly concerning the number of fea-
tures. cASO was the most efficient of all methods,
while the proposed ADMM was ranked second.
mtLasso and JFS also trained a model within 5 seconds on average. CMTL was time-
consuming for training, which spent more than 10 seconds.

5.2 Experiment II: Event Forecasting with Multi-lingual Indicators

Datasets. To evaluate the performance of our proposed ADMM on the application in
Section 4.2, extensive experiments on nine real-world datasets have been performed.
The dataset is obtained by randomly sampling 10% (by volume) of the Twitter data
from Jan 2013 to Dec 2014. The data in the first and second years are used and training
and test set, respectively. For the topic (i.e., social unrest) of interest, 1,806 keywords in
the three major languages in Latin America, namely English, Spanish, and Portuguese,
were provided by the paper [41]. Their translation relationships have also been labeled
as semantic links among them, such as “protest” in English, “protesta” in Spanish, and
“protesto” in Portuguese. The event forecasting results were validated against a labeled
event set, known as the Gold Standard Report (GSR), which is publicly available [25].
Metric and Baselines. The metric used to evaluate the performance is Area Under
the receiver operating characteristic Curve (AUC). Five comparison methods includ-
ing the state-of-the-art Multi-Task learning (MTL), Multi-Resolution Event Forecast-



ing (MREF), and Distant-supervision of Heterogeneous Multitask Learning (DHML)
as well as classic methods Logistic Regression (LogReg) and Lasso. ρ was set to 10.
Here we chose two kinds of λ2: (1) λk2 = 105; (2) λk+1

2 = λk2 + 10 with λk2 = 1.
λ2(1) and λ2(2) are the first and the second choice of λ2, respectively. All the hyper-
parameters were tuned by 5-fold cross-validation.

Table 2: Event forecasting performance in AUC in each
of the 9 datasets.

BR CL CO EC EL MX PY UY VE
LogReg 0.686 0.677 0.644 0.599 0.618 0.661 0.616 0.628 0.667
LASSO 0.685 0.677 0.648 0.603 0.636 0.665 0.615 0.666 0.669
MTL 0.722 0.669 0.810 0.617 0.772 0.795 0.600 0.811 0.771
MREF 0.714 0.563 0.515 0.784 0.612 0.693 0.658 0.681 0.588
DHML 0.845 0.683 0.846 0.839 0.780 0.793 0.737 0.835 0.835
BCD 0.847 0.668 0.850 0.830 0.773 0.800 0.736 0.835 0.856
ADMM (λ2(1)) 0.864 0.699 0.870 0.848 0.794 0.820 0.746 0.850 0.867
ADMM (λ2(2)) 0.867 0.701 0.872 0.851 0.798 0.823 0.747 0.847 0.865

Performance. As shown in
Table 2, λ2(2) outperforms
λ2(1) marginally in seven
out of nine datasets for
the proposed ADMM, and
they generally perform the
best among all the methods,
with DHML and BCD the
second-best performer. They all outperform the others typically by at least 5%-10%.
This is because they leverage the multilingual correlation among the features to
boost up the model’s generalizability. Thanks to the framework of multi-task learn-
ing, MTL and MREF obtained a competitive performance with AUC typically over
0.7, which outperforms simple methods like LogReg and LASSO by 5% on average.

LogReg LASSO MTL MREF DHML ADMM
BR 30193 1535 233 25889 332 14
CL 2981 242 35 6521 852 11
CO 8060 780 108 14714 87 31
EC 312 295 17 4332 46 25
EL 551 261 17 4669 33 3
MX 17712 2043 853 31349 175 29
PY 7297 527 40 9495 242 5
UY 748 336 20 5305 82 3
VE 5563 1008 49 5769 179 28

Table 3: Comparison of running time (in
seconds) on 9 datasets in Experiment II.

Efficiency. In Experiment II, we also
compared the training time of the proposed
ADMM in comparison with all baselines
on 9 datasets. The training time was aver-
aged by running 5 times. The training time
was shown in Table 3. We do not show
BCD because its training time is similar
to the proposed ADMM. Overall, the pro-
posed ADMM was the most efficient of all
methods for all datasets. It consumed no
more than 30 seconds on all datasets. MTL
ranked second, but it spent hundreds of seconds on some datasets, like BR and MX. As
the most time-consuming baselines, LogReg and MREF trained a model in thousands
of seconds or more.

6 Conclusions
We propose an ADMM framework for multi-convex problems with multiple coupled
variables. It not only inherits the merits of general ADMMs but also provides advanta-
geous theoretical properties on convergence conditions and properties under mild con-
ditions. Besides, several machine learning applications of recent interest are discussed
as special cases of our proposed ADMM. Extensive experiments have been conducted
on ten real-world datasets, and demonstrate the effectiveness, scalability, and conver-
gence properties of our proposed ADMM.
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Appendix

A Preliminary Lemmas
In this section, we give preliminary lemmas which are also used in the proof the proofs of Lemmas 1 and 2. While Lemmas
4 and 5 depend on the optimality conditions of subproblems, Lemmas 3, 6 and 7 require Assumption 1.

Lemma 3. It holds that ∀z1, z2 ∈ Rq ,

h(z1) ≤ h(z2) +∇h(z2)T (z1 − z2) + (H/2)‖z1 − z2‖2, −h(z1) ≤ −h(z2)−∇h(z2)T (z1 − z2) + (H/2)‖z1 − z2‖2.

Proof. Because h(z) is Lipschitz differentiable by Assumption 1, so is−h(z). Therefore, this lemma is proven exactly as
same as Lemma 2.1 in [4].

Lemma 4. It holds that yk = ∇h(zk) for all k ∈ N.

Proof. The optimality condition for the problem with regard to zk gives rise to

∇h(zk)− yk−1 − ρ(
∑n

i=1
Aix

k
i − z

k
) = 0.

Because yk = yk−1 + ρ(
∑
Aix

k
i − z

k), we have yk = ∇h(zk).

Lemma 5. It holds that for ∀k ∈ N,

Lρ(· · · , xk+1
i−1 , x

k
i , · · · )− Lρ(· · · , x

k+1
i , x

k
i+1, · · · ) ≥ (ρ/2)‖Aixki − Aix

k+1
i ‖22. (8)

Proof.

Lρ(· · · , xk+1
i−1 , x

k
i , · · · )− Lρ(· · · , x

k+1
i , x

k
i+1, · · · )

= f(· · · , xk+1
i−1 , x

k
i , · · · )− f(· · · , x

k+1
i , x

k
i+1, · · · )

+ (y
k
)
T
(Aix

k
i − Aix

k+1
i ) + (ρ/2)‖

∑i−1

j=1
Ajx

k+1
j +

∑n

j=i
Ajx

k
j − z

k‖22 − (ρ/2)‖
∑i

j=1
Ajx

k+1
j +

∑n

j=i+1
Ajx

k
j − z

k‖22

= f(· · · , xk+1
i−1 , x

k
i , · · · )− f(· · · , x

k+1
i , x

k
i+1, · · · )

+ (y
k
)
T
(Aix

k
i − Aix

k+1
i ) + (ρ/2)‖Aixki − Aix

k+1
i ‖22 + ρ(

∑i

j=1
Ajx

k+1
j +

∑n

j=i+1
Ajx

k
j − z

k
)
T
(Aix

k
i − Aix

k+1
i )

= f(· · · , xk+1
i−1 , x

k
i , · · · )− f(· · · , x

k+1
i , x

k
i+1, · · · )

+ (A
T
i y

k
+ ρA

T
i (

∑i

j=1
Ajx

k+1
j +
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j=i+1
Ajx

k
j − z

k
))
T
(x
k
i − x

k+1
i ) + (ρ/2)‖Aixki − Aix

k+1
i ‖22.

where the second equality follows from the cosine rule: ‖b+ c‖2 − ‖a+ c‖2 = ‖b− a‖2 + 2(a+ c)T (b− a) with
a = Aix

k+1
i , b = Aix

k
i and c =

∑i−1
j=1 Ajx

k+1
j +

∑n
j=i+1 Ajx

k
j − z

k .

The optimality condition of xk+1
i leads to

0 ∈ ∂xiLρ(· · · , x
k+1
i , x

k
i+1, · · · )

= ∂xif(· · · , x
k+1
i , x

k
i+1, · · · ) + A

T
i y

k
+ ρA

T
i (

∑i

j=1
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k+1
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− ATi y
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k+1
j +
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j=i+1
Ajx

k
j − z

k
) ∈ ∂xif(· · · , x

k+1
i , x

k
i+1, · · · ).

We have the following result according to the definition of subgradient

f(· · · , xk+1
i−1 , x

k
i , · · · )

≥ f(· · · , xk+1
i , x

k
i+1, · · · ) + (−ATi y

k − ρATi (
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Ajx
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k
j − z

k
))
T
(x
k+1
i − xki )
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Ajx

k+1
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T
(x
k
i − x
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i ).

Therefore, the lemma is proved.



Lemma 6. If ρ > 2H so that C1 = ρ/2−H/2−H2/ρ > 0, then it holds that

Lρ(· · · , xk+1
n , z

k
, y
k
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, y
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≥ (−H/2)‖zk+1 − zk‖22 + (ρ/2)‖zk+1 − zk‖22 − (1/ρ)‖∇h(zk+1
)−∇h(zk)‖22

(−∇h(z) is Lipschitz differentiable, Lemma 3 and Lemma 4)

≥ (−H/2)‖zk+1 − zk‖22 + (ρ/2)‖zk+1 − zk‖22 − (H
2
/ρ)‖zk+1 − zk‖22 (Assumption 1)

= C1‖zk+1 − zk‖22.

We choose ρ > 2H to make C1 > 0.

Lemma 7. ∀k ∈ N, we have ‖yk+1 − yk‖ ≤ H‖zk+1 − zk‖.

Proof.

‖yk+1 − yk‖ = ‖∇h(zk+1
)−∇h(zk)‖ (Lemma 4) ≤ H‖zk+1 − zk‖ (Assumption 1).

B Proofs of Lemmas 1- 2

Proof (Proof of Lemma 1). This follows directly from Lemmas 5 and 6.

Proof (Proof of Lemma 2). There exists z′ such that
∑n
i=1 Aix

k
i − z

′ = 0. Therefore, we have

f(x
k
1 , · · · , x

k
n) + h(z

′
) ≥ minS > −∞.



where S = {f(x1, · · · , xn)+h(z) :
∑n
i=1 Aixi− z = 0}, which is the objective value of Problem 1, and therefore

bounded from below. Then we have
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≥ f(xk1 , · · · , x
k
n) + h(z

′
) + (ρ−H)/2‖

∑n

i=1
Aix

k
i − z

k‖22 (Lemmas 3 and 4 ,h(z) is Lipschitz differentiable)

≥ minS + (ρ−H)/2‖
∑n

i=1
Aix

k
i − z

k‖22 ≥ minS > −∞.

Therefore, Lρ(xk1 , · · · , x
k
n, z

k, yk) is bounded from below.

C Proofs of Theorems 1-3
Proof (Proof of Theorem 1). We show residual convergence and objective convergence based on Lemmas 1 and 2.
From Lemma 1,Lρ(xk1 , · · · , x

k
n, z

k, yk) decreases monotonically, andLρ(xk1 , · · · , x
k
n, z

k, yk) is lower bounded by
Lemma 2. Therefore, Lρ(xk1 , · · · , x

k
n, z

k, yk) is convergent because a monotone bounded sequence converges (Mono-
tone Convergence Theorem). According to the continuity of Lρ, we take k → ∞ on the both sides of Inequality (4) to
obtain

lim
k→∞

(Lρ(x
k
1 , · · · , x

k
n, z

k
, y
k
)− Lρ(xk+1

1 , · · · , xk+1
n , z

k+1
, y
k+1

))

≥ lim
k→∞

C2(‖zk+1 − zk‖22 +
∑n

i=1
‖Ai(xk+1

i − xki )‖
2
2).

On one hand, Lρ(x1, · · · , xn, z, y) is convergent, so we have

lim
k→∞

C2(‖zk+1 − zk‖22 +
∑n

i=1
‖Ai(xk+1

i − xki )‖
2
2) ≤ 0.

On the other hand, C2(‖zk+1 − zk‖22 +
∑n
i=1 ‖Ai(x

k+1
i − xki )‖

2
2 is nonnegative, so we get

lim
k→∞

C2(‖zk+1 − zk‖22 +
∑n

i=1
‖Ai(xk+1

i − xki )‖
2
2) = 0.

This suggests that limk→∞(zk+1 − zk) = 0 and limk→∞ Ai(x
k+1
i − xki ) = 0(i = 1, · · · , n). Moreover, by

Lemma 7, limk→∞ ‖yk+1 − yk‖ ≤ H limk→∞ ‖zk+1 − zk‖ = 0. So we have limk→∞(yk+1 − yk) = 0.
a). For residual convergence, by the Line 8 of Algorithm 1, we have

limk→∞ r
k
= limk→∞(y

k − yk−1
)/ρ = 0.

b). For objective convergence, since

Lρ(x
k
1 , · · · , x

k
n, z

k
, y
k
) = F (x

k
1 , · · · , x

k
n, z

k
, y
k
) + (y

k
)
T
r
k
+ (ρ/2)‖rk‖22

andLρ(xk1 , · · · , x
k
n, z

k, yk) is convergent, rk converges to 0 and yk is bounded, then F (xk1 , · · · , x
k
n, z

k, yk) is also
convergent.

Proof (Proof of Theorem 2). Obviously limk→∞(zk+1 − zk) = 0 and limk→∞(yk+1 − yk) = 0 from the
proof of Theorem 1. In order to prove this theorem, we firstly prove that limk→∞(xk+1

i − xki ) = 0(i = 1, · · · , n) if
either of two assumptions holds, then prove that any limit point (x∗1 , · · · , x

∗
n, z
∗) is a feasible Nash point of Problem 1.

(a). SupposeAi(i = 1, · · · , n) have full rank. Because limk→∞ Ai(x
k+1
i −xki ) = 0 from the proof of Theorem

1, then obviously limk→∞(xk+1
i − xki ) = 0 [22].

(b). Suppose F is strongly convex with regard to xi. Because Lρ(x1, · · · , xn, z, y) = F (x1, · · · , xn, z) +

yT (
∑
Aixi− z)+ (ρ/2)‖

∑
Aixi− z‖22, F (x1, · · · , xn, z), and yT (

∑
Aixi− z)+ (ρ/2)‖

∑
Aixi− z‖22

are strongly convex, Lρ is also strongly convex regard to xi [23] with the assumed constantDi > 0. We have

Lρ(x
k+1
1 , · · · , xk+1

i−1 , x
k
i , x

k
i+1, · · · , x

k
n, z

k
, y
k
) ≥ Lρ(xk+1

1 , · · · , xk+1
i−1 , x

k+1
i , x

k
i+1, · · · , x

k
n, z

k
, y
k
) + (v

k+1
i )

T
(x
k
i − x

k+1
i )

+ (Di/2)‖xk+1
i − xki ‖

2
2



where ∀vk+1
i ∈ ∂xiLρ(x

k+1
1 , · · · , xk+1

i−1 , x
k+1
i , xki+1, · · · , x

k
n, z

k, yk). The optimality condition of xk+1
i leads

to
0 ∈ ∂xiLρ(x

k+1
1 , · · · , xk+1

i−1 , x
k+1
i , xki+1, · · · , x

k
n, z

k, yk). Therefore, we have

Lρ(x
k+1
1 , · · · , xk+1

i−1 , x
k
i , x

k
i+1, · · · , x

k
n, z

k
, y
k
) ≥ Lρ(xk+1

1 , · · · , xk+1
i−1 , x

k+1
i , x

k
i+1, · · · , x

k
n, z

k
, y
k
) + (Di/2)‖xk+1

i − xki ‖
2
2

(10)

We sum up Inequality (10) from i = 1, · · · , n and Inequality (9) to obtain

Lρ(x
k
1 , · · · , x

k
n, z

k
, y
k
)− Lρ(xk+1

1 , · · · , xk+1
n , z

k+1
, y
k+1

) ≥
∑n

i=1
(Di/2)‖xk+1

i − xki ‖
2
2 + C1‖zk+1 − zk‖22

(11)

whereC1 > 0 by Lemma 6 if ρ > 2H . According to the continuity ofLρ, we take k →∞ on the both sides of Inequality
(11) to obtain

lim
k→∞

(Lρ(x
k
1 , · · · , x

k
n, z

k
, y
k
)− Lρ(xk+1

1 , · · · , xk+1
n , z

k+1
, y
k+1

)) ≥ lim
k→∞

(
∑n

i=1
(Di/2)‖xk+1

i − xki ‖
2
2 + C1‖zk+1 − zk‖22)

On one hand, Lρ(x1, · · · , xn, z, y) is convergent, so we have

lim
k→∞

(
∑n

i=1
(Di/2)‖xk+1

i − xki ‖
2
2 + C1‖zk+1 − zk‖22) ≤ 0

On the other hand,
∑n
i=1(Di/2)‖x

k+1
i − xki ‖

2
2 + C1‖zk+1 − zk‖22 is nonnegative, so we get

lim
k→∞

(
∑n

i=1
(Di/2)‖xk+1

i − xki ‖
2
2 + C1‖zk+1 − zk‖22) = 0

This suggests that limk→∞(xk+1
i − xki ) = 0(i = 1, · · · , n) and limk→∞(zk+1 − zk) = 0.

Therefore, limk→∞(xk+1
i −xki ) = 0(i = 1, · · · , n) if either of two assumptions holds. Because (xk1 , · · · , x

k
n, z

k, yk)
is bounded, there exists a subsequence (xs1, · · · , x

s
n, z

s, ys) such that (xs1, · · · , x
s
n, z

s, ys)→ (x∗1 , · · · , x
∗
n, z
∗, y∗)

where (x∗1 , · · · , x
∗
n, z
∗, y∗) is a limit point. Because lims→∞(xs+1

i −xsi ) = 0(i = 1, · · · , n), lims→∞(zs+1−
zs) = 0 and lims→∞(ys+1−ys) = 0, we have (xs+1

1 , · · · , xs+1
n , zs+1, ys+1)→ (x∗1 , · · · , x

∗
n, z
∗, y∗). Now

we prove that the limit point (x∗1 , · · · , x
∗
n, z
∗) is a feasible Nash point of Problem 1.

For feasibility, since limk→∞ rk = limk→∞
∑n
i=1 Aix

k
i−z

k = 0, so for the subsequence (xs1, · · · , x
s
n, z

s, ys)→
(x∗1 , · · · , x

∗
n, z
∗, y∗), we have lims→∞ rs = lims→∞(

∑n
i=1 Aix

s
i − z

s) = 0 then
∑n
i=1 Aix

∗
i − z

∗ = 0.
For the Nash point, we obtain the following according to the optimality conditions of xs+1

i (i = 1, · · · , n) and zs+1

in Equations (2) and (3), respectively.

Lρ(x
s+1
1 , · · · , xs+1

i−1 , x
s+1
i , x

s
i+1, · · · , x

s
n, z

s
, y
s
) ≤ Lρ(xs+1

1 , · · · , xs+1
i−1 , xi, x

s
i+1, · · · , x

s
n, z

s
, y
s
),

∀(xs+1
1 , · · · , xs+1

i−1 , xi, x
s
i+1, · · · , x

s
n, z

s
) ∈ dom(F )

Lρ(x
s+1
1 , · · · , xs+1

n , z
s+1

, y
s
) ≤ Lρ(xs+1

1 , · · · , xs+1
n , z, y

s
), ∀(xs+1

1 , · · · , xs+1
n , z) ∈ dom(F )

According to the continuity ofLρ, we take s→∞ on the both sides of two inequalities. Because (xs1, · · · , x
s
n, z

s, ys)→
(x∗1 , · · · , x

∗
n, z
∗, y∗) and (xs+1

1 , · · · , xs+1
n , zs+1, ys+1)→ (x∗1 , · · · , x

∗
n, z
∗, y∗), we have

Lρ(x
∗
1 , · · · , x

∗
n, z
∗
, y
∗
) ≤ Lρ(x∗1 , · · · , x

∗
i−1, xi, x

∗
i+1, · · · , x

∗
n, z
∗
, y
∗
), ∀(x∗1 , · · · , x

∗
i−1, xi, x

∗
i+1, · · · , x

∗
n, z
∗
) ∈ dom(F )

Lρ(x
∗
1 , · · · , x

∗
n, z, y

∗
) ≤ Lρ(x∗1 , · · · , x

∗
n, z
∗
, y
∗
), ∀(x∗1 , · · · , x

∗
n, z) ∈ dom(F )

Here∀(x∗1 , · · · , x
∗
i−1, xi, x

∗
i+1, · · · , x

∗
n, z
∗) ∈ dom(F ) and∀(x∗1 , · · · , x

∗
n, z) ∈ dom(F ) mean∀xi s.t.

∑n
j=1,j 6=i Ajx

∗
j+

Aixi − z∗ = 0 and ∀z s.t.
∑n
j=1 Ajx

∗
j − z = 0, respectively. Using the fact that (x∗1 , · · · , x

∗
n, z
∗) is feasible in

Problem 1, we obtain Lρ(x∗1 , · · · , z
∗, y∗) = F (x∗1 , · · · , z

∗), Lρ(x∗1 , · · · , x
∗
i−1, xi, x

∗
i+1, · · · , x

∗
n, z
∗, y∗) =

F (x∗1 , · · · , x
∗
i−1, xi, x

∗
i+1, · · · , x

∗
n, z
∗) andLρ(x∗1 , · · · , x

∗
n, z, y

∗) = F (x∗1 , · · · , x
∗
n, z). Therefore, we prove

that (x∗1 , · · · , x
∗
n, z
∗) is a feasible Nash point of F defined in Problem 1.

Proof (Proof of Theorem 3). To prove this theorem, we will first show that uk satisfies two conditions: (1). uk ≥ uk+1.
(2).

∑∞
k=0 uk is bounded. We then conclude the convergence rate of o(1/k) based on these two conditions. Specifically,

first, we have

uk = min0≤l≤k(‖zl+1 − zl‖22 +
∑n

i=1
‖Ai(xl+1

i − xli)‖
2
2)

≥ min0≤l≤k+1(‖zl+1 − zl‖22 +
∑n

i=1
‖Ai(xl+1

i − xli)‖
2
2)

= uk+1



Therefore uk satisfies the first condition. Second,∑∞

k=0
uk

=
∑∞

k=0
min0≤l≤k(‖zl+1 − zl‖22 +

∑n

i=1
‖Ai(xl+1

i − xli)‖
2
2)

≤
∑∞

k=0
(‖zk+1 − zk‖22 +

∑n

i=1
‖Ai(xk+1

i − xki )‖
2
2)

≤ (Lρ(x
0
1, · · · , x

0
n, z

0
, y

0
)− L∗ρ)/C2 (Lemma 1)

where L∗ρ = limk→∞ Lρ(x
k
1 , · · · , x

k
n, z

k, yk). So
∑∞
k=0 uk is bounded and uk satisfies the second condition.

Finally, it has been proved that the sufficient conditions of convergence rate o(1/k) are: (1)uk ≥ uk+1, and (2)
∑∞
k=0 uk

is bounded, and (3) uk ≥ 0 (Lemma 1.2 in [12]). Since we have proved the first two conditions and the third one uk ≥ 0
is obvious, the convergence rate of o(1/k) is proven.

D Algorithms for Applications

D.1 Weakly-constrained Multi-task Learning

Applying the proposed ADMM to solve the problem in Equation (6), we get Algorithm 2. Specifically, Lines 4-9 update
primal variables wi(i = 1, · · · , n) and zi(i = 1, · · · , n), Line 10 updates the dual variable yi(i = 1, · · · , n).

Algorithm 2 The Proposed ADMM to Solve Equation (6).
1: Denote z = [z1; · · · ; zn],y = [y1; · · · ; yn].
2: Initialize ρ, k = 0.
3: repeat
4: Update wk+1

1 by Equation (12).
5: for i=2 to n-1 do
6: Update wk+1

i by Equation (13).
7: end for
8: Update wk+1

n by Equation (14).
9: Update zk+1

i by Equation (15) in parallel.
10: yk+1

i ← yki + ρ(wk+1
i − zk+1

i ) (i = 1, · · · , n) in parallel.
11: k ← k + 1.
12: until convergence.
13: Output wi(i = 1, · · · , n), z.

All subproblems are detailed as follows:
1. Update wk+1

The wk+1
i (i = 1, · · · , n) are updated as follows:

w
k+1
1 ← argminw1

Loss1(w1) + λ1

∑m

j=1
c1(w1,jw

k
2,j) + (ρ/2)‖w1 − zk1 + y

k
1/ρ‖

2
2. (12)

w
k+1
i ← argminwi Lossi(wi) + λ1

∑m

j=1
c1(wi,jw

k
i+1,j) + λ1

∑m

j=1
c1(w

k+1
i−1,jwi,j) + (ρ/2)‖wi − zki + y

k
i /ρ‖

2
2.

(13)

w
k+1
n ← argminwn Lossn(wn) + λ1

∑m

j=1
c1(w

k+1
n−1,jwn,j) + (ρ/2)‖wn − zkn + y

k
n/ρ‖

2
2. (14)

They can be solved by the Iterative Soft Thresholding Algorithm (ISTA) [4]. Take wk+1
1 as an example, The ISTA leads to

w
t+1
1 ← λ1

∑m

j=1
c1(w1,jw

k
2,j) + 1/(2η)‖w1 − (w

t
1 − η∇φ(w

t
1))‖

2
2.

wherewt1 is the t-th iteration in the ISTA, η > 0 is a learning rate, φ(wt1) = Loss1(w
t
1) + ρ/2‖wt1 − z

k
1 + yk1/ρ‖

2
2.

For each entry of wt+1
1,j (j = 1, 2, · · · ,m), we have the following closed-form solution as follows:



1). If wt+1
1,j w

k
2,j ≤ 0, then wt+1

1,j ← (wt1,j − η∇jφ(w
t
1))/(2ηλ1w

2
2,j + 1).

2). If wt+1
1,j w

k
2,j ≥ 0, then wt+1

1,j ← wt1,j − η∇jφ(w
t
1). where∇jφ(wt1) is the j-th entry of∇φ(wt1).

2. Update zk+1

The zk+1
i (i = 1, · · · , n) are updated as follows:

z
k+1
i ← argminzi Ωi(zi) + (ρ/2)‖wk+1

i − zi + y
k
i /ρ‖

2
2(i = 1, · · · , n). (15)

For `1 or `2 regularization, they have closed-form solutions.

D.2 Learning with Signed-Network Constraints
Applying proposed ADMM to solve the problem in Equation (7), we get Algorithm 3. Specifically, Lines 4-7 update primal
variables βi(i = 1, · · · , n) and z, Line 8 updates the dual variable y. All subproblems are detailed as follows:

Algorithm 3 The Proposed ADMM to Solve Equation (7).
1: Denote z = [z1; · · · ; zn],y = [y1; · · · ; yn].
2: Initialize ρ, k = 0.
3: repeat
4: for i=1 to n do
5: Update βk+1

i by Equation (16).
6: end for
7: Update zk+1

i (i = 1, · · · , n) by Equation (17) in parallel.
8: yk+1

i ← yki + ρ(βk+1
i − zk+1

i ) (i = 1, · · · , n) in parallel.
9: k ← k + 1.

10: until convergence.
11: Output βi(i = 1, · · · , n), z.

1. Update βk+1

The βk+1
i (i = 1, · · · , n) are updated as follows:

β
k+1
i ← argminβi Loss(· · · , β

k+1
i−1 , βi, β

k
i+1, · · · ) + λ2(

∑
(βi,β

k+1
j

)∈Es,j<i
c2(βi, β

k+1
j ) +

∑
(βi,β

k
j
)∈Es,j>i

c2(βi, β
k
j )

+
∑

(βi,β
k+1
q )∈Ed,q<i

c3(βi, β
k+1
q ) +

∑
(βi,β

k
q )∈Ed,q>i

c3(βi, β
k
q ) + (ρ/2)‖βi − zki + y

k
i /ρ‖

2
2).

(16)

Similar to updating wk+1
i in Algorithm 2, they can be solved efficiently by the ISTA [4].

2. Update zk+1

The zk+1
i (i = 1, · · · , n) are updated as follows:

z
k+1
i ← argminzi ωi(zi) + (ρ/2)‖βk+1

i − zi + y
k
i /ρ‖

2
2(i = 1, · · · , n). (17)

Similar to updating zk+1
i in Algorithm 2, they usually have closed-form solutions.


	 Convergence and Applications of ADMM on the Multi-convex Problems

