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ABSTRACT

Deep neural networks have been shown to be very powerful methods for many supervised learning
tasks. However, they can also easily overfit to training set biases, i.e., label noise and class imbalance.
While both learning with noisy labels and class-imbalanced learning have received tremendous
attention, existing works mainly focus on one of these two training set biases. To fill the gap,
we propose Prototypical Classifier, which does not require fitting additional parameters given the
embedding network. Unlike conventional classifiers that are biased towards head classes, Prototypical
Classifier produces balanced and comparable predictions for all classes even though the training
set is class-imbalanced. By leveraging this appealing property, we can easily detect noisy labels
by thresholding the confidence scores predicted by Prototypical Classifier, where the threshold is
dynamically adjusted through the iteration. A sample reweghting strategy is then applied to mitigate
the influence of noisy labels. We test our method on CIFAR-10-LT, CIFAR-100-LT and Webvision
datasets, observing that Prototypical Classifier obtains substaintial improvements compared with state
of the arts.

Keywords noisy labels · class imbalance · contrastive learning

1 Introduction

Deep neural networks (DNNs) have been widely used for machine learning applications. Despite of their success, it has
been shown that the training of DNNs requires large-scale labeled and unbiased data. However, in many real-world
applications, training set biases are prevalent [21, 27, 28, 9], which typically have two types: i) class-imbalanced data
distribution; and ii) noisy labels. For example, in autonomous driving, the vast majority of the training data is composed
of standard vehicles but models also need to recognize rarely seen classes such as emergency vehicles or animals with
very high accuracy. This will sometime lead to biased training models that do not perform well in practice. Moreover,
large-scale high-quality data annotations are expensive and time-consuming to obtain. Although coarse labels are cheap
and of high availability, the presence of noise will hurt the model performance. Therefore, it is desirable to develop
machine learning algorithms that can accommodate not only class-imbalanced training set, but also the presence of
label noise.

Both learning with noisy labels and class-imbalanced learning (a.k.a. long-tailed learning) have been studied for many
years. When dealing with label noise, the most popular approach is sample selection where correctly-labeled examples
are identified by capturing the training dynamics of DNNs [11, 29]. When dealing with class imbalance, many existing
works propose to reweight examples or design unbiased loss functions by taking into account the class distribution of
training set [26, 3, 8]. However, most existing methods focus on only one of these two training set biases.

In this paper, we address both training set biases simultaneously. As shown in Figure 1a, it is known that the classifier
directly learned on class-imbalanced data is biased towards head classes [8, 32] which results in poor generalization
on tail classes. Moreover, using sample loss/confidence produced by biased classifiers fails to detect label noise,
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Figure 1: Illustration of normal classifier and Prototypical Classifier.

because both clean and noisy samples of tail classes have large loss and low confidence. To solve this problem,
we propose to use Prototypical Classifier which is demonstrated to produce balanced predictions even through the
training set is class-imbalanced. Our basic idea is that there exists an embedding in which examples cluster around a
single prototype representation for each class. In order to do this, we learn a non-linear mapping of the input into an
embedding space using a neural network and take a class’s prototype to be the normalized mean vector of examples in
the embedding space. Classification is then performed for an embedded test example by simply finding the nearest
class prototype. Notably, Prototypical Classifier does not need additional learnable parameters given embedding of
examples. Unfortunately, it is easy to observe that simply using prototypes for classification may lead to many wrong
predictions for samples of head classes as shown in Figure 1b. The reason is that the representations are supposed to
be modified when the classification boundaries of tail classes expand. We therefore train the neural networks to pull
together embedding of examples and the prototype of their class, while pushing apart examples from prototypes of
other classes. By doing this, it can avoid many mis-classifications for samples of head classes, as shown in Figure 1c.
Subsequently, we find that the confidence scores produced by Prototypical Classifier is balanced and comparable
across classes. By leveraging this property, we can simply detect noisy labels via thresholding where the threshold is
dynamically adjusted, followed by a sample re-weighting strategy.

In summary, our key contributions of this work are:

• We propose to learn from training set with mixed biases, which is practical but has been understudied;
• Our approach, Prototype Classifier, is simple yet powerful. It produces more balanced predictions over all

classes than normal classifiers even when the training set is class-imbalanced. This property further benefits
the detection of label noise.

• On both simulated datasets and a real-world dataset Webvision with label noise, Prototype Classifier achieves
substaintial performance improvement.

2 Related Work

Class-Imbalanced Learning. Recently, many approaches have been proposed to handle class-imbalanced training set.
Most extant approaches can be categorized into three types by modifying (i) the inputs to a model by re-balancing the
training data [22, 16, 32]; (ii) the outputs of a model, for example by post-hoc adjustment of the classifier [8, 25, 17];
and (iii) the internals of a model by modifying the loss function [2, 23, 6, 20]. Each of the above methods are intuitive,
and have shown strong empirical performance. However, these methods assume the training examples are correctly-
labeled, which is often difficult to obtain in real-world applications. Instead, we study a realistic problem to learn from
class-imbalanced data with label noise.

Label Noise Detection. Plenty of methods have been proposed to detect noisy labels [7, 4, 10]. Many works adopt
the small-loss trick, which treats samples with small training losses as correctly-labeled. In particular, MentorNet [7]
reweights samples with small loss so that noisy samples contribute less to the loss. Co-teaching [4] trains two networks
where each network selects small-loss samples in a mini-batch to train the other. DivideMix [10] fits a Gaussian mixture
model on per-sample loss distribution to divide the training data into clean set and noisy set. In addition, AUM [19]
introduces a margin statistic to identify noisy samples by measuring the average difference between the logit values for
a sample’s assigned class and its highest non-assigned class. The above methods only consider class-balanced training
sets, thus is not directly applicable for class-imbalanced problems. Ref. [12] observes that real-world dataset with label
noise also has imbalanced number of samples per-class. Nevertheless, they only inspect a particular setup of class
imbalance.
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3 Prototypical Classifier with Dynamic Threshold

3.1 Motivation

Consider a binary classification problem with the data generating distribution PXY being a mixture of two Gaussians.
In particular, the label Y is either positive (+1) or negative (-1) with equal probability (i.e., 1

2 ). Condition on
Y = +1,P(X | Y = +1) ∼ N (µ1, σ1) and similarly, P(X | Y = −1) ∼ N (µ2, σ2). Without loss of generality, let
µ1 > µ2. It is straightforward to verify that the optimal Bayes’s classifier is f(x) = sign(x− µ1+µ2

2 ) [30], i.e., classify
x as +1 if x > µ1+µ2

2 . This reminds us the nearest neighbor classifier, whose classification boundary is at the middle of
two data points (i.e., balanced classification boundary). For general multi-class tasks, this motivates us to measure the
distance of samples to class prototypes, which is empirically observed to produce balanced classification boundary even
though the training set is class-imbalanced, as shown in Figure 2.
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Figure 2: Experiment on CIFAR-100-LT. x-axis is the class labels with decreasing training samples and y-axis is the
marginal likelihood p(y) on the test set.

In order to do this, we learn a non-linear mapping of the input into an embedding space using a neural network fθ
parameterized by θ using training set D = {(xi, yi)}Ni=1. The class prototype is taken as the normalized mean vector of
the embedded examples belonging to its class. For example, the prototype for class k ∈ {1, . . . ,K} is computed as:

ck = Normalize

(
1

|Dk|
∑
i∈Dk

fθ(xi)

)
,Dk = {i | yi = k} . (1)

Prototypical Classifier produces a distribution over classes for sample x based on a softmax over distances to the
prototypes in the embedding space. In particular, when use cosine similarity as distance measure, we have:

Pθ(Y = k | x) =
exp

(
fθ(x)>ck

)∑
k′ exp (fθ(x)>ck′)

. (2)

Learning proceeds by minimizing the negative log-probability J(θ) = − logPθ(Y = k | x) of the true class label k via
SGD. Notably, the model in Equation (2) is equivalent to a linear model with a particular parameterization [18]. To see
this, expand the term in the exponent:

c>k fθ(x) = w>k fθ(x) + bk, where wk = ck and bk = 0. (3)

Our results indicate that Prototypical Classifier is effective despite the equivalence to a linear model. We hypothesize
this is because all of the required non-linearity can be learned within the embedding function [24]. Indeed, this is the
approach that modern neural network classification systems currently use.

3.2 Dynamic Thresholding for Label Noise Detection

However, the existence of label noise may hurt the representation learning of the network. To tackle this issue, it
is a common practice to correct noisy labels. Let ŷ = [ŷ1, · · · , ŷK ] = Pθ(Y | x) be the prediction of Prototypical
Classifier, the labels are refined as stated by the following rule:

ỹ =

{
yi if ŷyi > τt
arg maxj ŷj otherwise. (4)

3



Prototypical Classifier for Robust Class-Imbalanced Learning A PREPRINT

In words, we deem samples as clean if the confidence scores on their original labels is greater than a threshold τt.
It is notably that using normal classifiers cannot achieve this goal due to its biased predictions, while predictions of
Prototypical Classifier are balanced and comparable. We illustrate this finding in Figure 3. We then need to construct τt.
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Figure 3: Experiment on CIFAR-100-LT. x-axis is the class labels with decreasing training samples and y-axis is the
confidence scores of classifiers on training set.

Intuitively, with the increase of the optimization iteration t, the predictive confidence also increases in general, so that
τt is also required to increase. Mathematically, we set the dynamic threshold τt as an increasing function of t, which is
given by:

τt = γtτ0. (5)

Here, τ0 is the initial threshold and γ is set to 1.005 in our experiments. We provide more analysis about τt in
supplementary materials. Lemma 1 summarizes the performance bound of the label noise detection method.

Lemma 1 With probability at least p, the F1-score of detecting noisy labels in Dj by thresholding the predictive

scores of Prototypical Classifier is at least 1 − e−v max(N−,N+)+α

N− when the noise ratio is known, where p =∫ µtrue−µfalse−∆

−1
f(t)dt, f(t) is the probability density function of the difference of two independent beta-distributed

random variables β1 − β2, where β1 ∼ Beta (N−, 1), β2 ∼ Beta (α+ 1, N+ − α).

Lemma 1 shows that the performance of noise detection depends on the intraclass concentration of clean samples in the
embedding space (denoted by ∆2

v ), which is optimized by the prototypical contrastive loss defined in Equation (6). The
theory was first shown in Ref. [33]. We further justify the effectiveness of our method in Figure 4, which produces high
F1-score for both head and tail classes.
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Figure 4: Experiment on CIFAR-100-LT. We show the F1-score of clean examples selection module for many, medium
and few classes.
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3.3 Example Reweighting

In standard training, we aim to minimize the expected loss for the training set, where each input example is weighted
equally. Here we aim to learn a reweighting of the inputs to cope with hard mislabeled samples whose labels are not
correctly refined, where we minimize a weighted loss:

Lpc =
−1∑N
i=1 wi

N∑
i=1

wi log
exp (fθ(x) · cyi/τ)∑K
k=1 exp (fθ(x) · ck/τ)

. (6)

With a slight abuse of the notation, we re-define wi to be the weight for the i-th example and τ is a temperature
parameter. We expect the weights can reflect the likelihood of examples being correctly-labeled. In that regard, we
devise a weighted version for computing prototypes as:

ck = Normalize

(
1∑

i∈Dk
wi

∑
i∈Dk

wifθ(xi)

)
,Dk = {i | yi = k} . (7)

Recall that, one appealing property of Prototypical Classifier is balanced predictions across all classes, as opposite to
biased normal classifiers. We therefore simply set examples weights as the predicted score of Prototypical Classifier
on the training label, i.e., for the i-th example, we set wi = Pθ(Y = yi | xi) where yi is the training label of xi. For
samples whose labels are rectified, we update their weights by w′ = τt−w

2 to reflect the uncertainty. The modified
example weights are always positive since the label is refined if and only if w = P(Y = yi | xi) ≤ τt. The optimization
of Lpc is realized by contrastive learning, which has been demonstrated effective in learning representations [13].
Observing that the presence of label noise may have negative effect on representation learning, we train networks to
optimize the unsupervised contrastive loss, which does not use the biased training labels. The basic idea of unsupervised
contrastive learning is to pull together two embeddings of the same example, while pushing apart from other examples.
Formally, let zi = fθ(xi) and z′i be the embedding of augmented version of xi, the unsupervised contrastive loss is
computed as:

Licc = − log
exp (zi · z′i/τ)∑B
b=0 exp (zi · z′b/τ)

, (8)

where τ is a scalar temperature parameter and B is mini-batch size.

Given the above definitions and denoting Lce as conventional cross-entropy loss, the overall training objective is written
as:

L = Lce + λ1Lcc + λ2Lpc, (9)
where hyperparameters λ1 and λ2 are trade-off parameters. We adopt DNNs as feature extractor and a linear layer
as projector to generate latent feature representation zi. Another linear layer following the feature extractor is used
as classifier. When minimizing Lpc, we apply mixup [31] to improve the generalization which has been shown to be
effective for learning with noisy labels [29].

4 Experiments

We perform experiments on CIFAR-10 and CIFAR-100 datasets by controlling label noise ratio and imbalance factor of
the training set. Additionally, we perform experiments on a commonly used dataset Webvision with real-world label
noise.

4.1 Results on Simulated Datasets

Class-Imbalanced Dataset Generation. Formally, for a dataset with K classes and N training examples for each
class, by assuming the imbalance factor is ρ, the number of examples for the k-th class is set to Nk = N/ρ

k−1
K−1 .

Label Noise Injection. Let Y denote the variable for the clean label, Ȳ the noisy label, and X the instance/feature, the
transition matrix T (X = x) is defined as Tij(X) = P(Ȳ = j | Y = i,X = x). In this work, we follow the setup in
RoLT+ [28] by setting T (X = x) according to the estimated class priors P(y), e.g., the empirical class frequencies in
the training dataset. Formally, given the noise proportion γ ∈ [0, 1], we define:

Tij(X) = P(Ȳ = j | Y = i,X = x) =

{
1− γ i = j
Nj

N−Ni
γ otherwise. (10)

Here, N is the size of training set and Nj is frequency of class j.
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Noise Ratio 0.2 0.5
Imbalance Factor 10 50 100 10 50 100

(1) CE Best 77.86 64.38 61.79 60.72 46.50 38.43
Last 74.00 61.38 55.69 44.29 32.69 27.78

(2) LDAM Best 83.48 72.01 66.41 63.57 38.92 34.08
Last 82.91 71.23 66.22 62.13 37.97 32.56

(3) LDAM-DRW Best 84.98 76.77 73.24 69.53 49.90 42.60
Last 84.71 75.98 72.46 68.76 47.71 40.47

(4) DivideMix∗ Best 88.79 75.34 66.90 87.54 67.92 61.81
Last 88.10 73.48 63.76 86.88 65.22 59.65

(5) RoLT+∗ Best 87.95 77.26 72.31 88.17 75.11 64.42
Last 87.54 75.90 69.12 87.45 73.92 61.15

(6) Prototypical Classifier Best 90.92 84.12 79.54 84.04 71.44 66.33
Last 90.81 83.71 78.34 83.51 71.44 64.69

Table 1: Test accuracy (%) on CIFAR-10. ∗ denotes ensemble models.

Noise Ratio 0.2 0.5
Imbalance Factor 10 50 100 10 50 100

(1) CE Best 45.97 33.41 29.85 28.70 18.49 16.24
Last 45.75 33.12 29.58 23.70 16.56 14.19

(2) LDAM Best 47.30 35.70 32.67 27.86 17.62 15.68
Last 47.12 35.50 32.60 24.20 17.50 14.73

(3) LDAM-DRW Best 47.85 36.29 33.38 27.86 17.91 15.68
Last 47.68 36.01 32.99 24.45 17.81 15.07

(4) DivideMix∗ Best 63.79 49.64 43.91 49.35 36.52 31.82
Last 63.17 48.37 42.59 48.87 35.72 31.05

(5) RoLT+∗ Best 64.22 51.01 45.35 53.31 39.78 35.29
Last 63.31 49.40 43.16 52.44 39.27 34.43

(6) Prototypical Classifier Best 65.23 51.73 47.38 57.65 42.51 38.42
Last 65.14 51.46 47.12 57.65 42.51 38.36

Table 2: Test accuracy (%) on CIFAR-100. ∗ denotes ensemble models.

Result. We train the PreAct ResNet-18 network using SGD optimizer with momentum 0.9 for all methods. We set
λ1 = 1 and λ2 = 5. We use τ0 = 0.1 for CIFAR-10 and τ = 0.01 for CIFAR-100. Table 1 and Table 2 respectively
summarize the results for CIFAR-10 and CIFAR-100 datasets. We compare our methods with several commonly used
baselines for long-tailed learning (1-3) and learning with noisy labels (4-5). As shown in the results, previous methods
dreadfully degrade their performance as the noise ratio and imbalance factor increase, while our methods retain robust
performance. In particular, compared with CE, Prototypical Classifier improves the test accuracy by 9% on average. It
can be observed that the improvement becomes more significant when the noise ratio is high, benefiting from proposed
noise detection method.

As DivideMix [10] and RoLT+ [28] are two strong baselines in this task, (4) and (5) obtain much higher performance
than (1-3), particularly when noise ratio is high. Although (4) and (5) use an ensemble of two networks, our method
(6) outperforms them in most cases. On CIFAR-100, Prototypical Classifier achieves the best results among all the
approaches and outperforms others by a large margin for both head and tail classes in Figure 5.

4.2 Results on Real-World Dataset

We test the performance of our method on a real-world dataset. WebVision [14] contains 2.4 million images collected
from Flickr and Google with real noisy and class-imbalanced data. Following previous literature, we train on a
subset, mini WebVision, which contains the first 50 classes. In Table 3, we report results comparing against state-
of-the-art approaches, including MentorNet [7], Co-teaching [4], ELR [15], HAR [1], and DivideMix [10]. We use
InceptionResNet-v2 for all methods. We set τ0 = 0.05, λ1 = 1 and λ2 = 2 in all experiments.

6
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Figure 5: Experiment on CIFAR-100-LT. We show the accuracy for many (#inst >100), medium (#inst ∈ [20, 100]) and
few (#inst < 20) classes.

To further uncover the advantages of our method, we run experiments by controlling the imbalance factor of Webvision
dataset. The test accuracy is reported in the Table 4. From the results, we can see that the superiority of our method is
more significant as the imbalance factor increases.

MentorNet Co-teaching ELR HAR DivideMix∗ Ours

Webvision top1 63.00 63.58 76.26 75.5 77.32 77.32
top5 81.40 85.20 91.26 90.7 91.64 92.60

ImageNet top1 57.80 61.48 68.71 70.3 75.20 75.12
top5 79.92 84.70 87.84 90.0 90.84 91.92

Table 3: Accuracy (%) on WebVision and ImageNet. ∗ denotes ensemble models.

Imbalance Factor Method Webvision ImageNet

top-1 top-5 top-1 top-5

ρ = 50 DivideMix∗ 64.56 83.56 62.68 85.24
Prototypical Classifier 68.00 88.44 65.00 86.32

ρ = 100 DivideMix∗ 55.76 73.48 53.92 74.00
Prototypical Classifier 62.12 85.88 59.60 84.20

Table 4: Top-1 (top-5) accuracy on Webvision. ∗ denotes ensemble models.

4.3 Ablation Studies

We examine the effectiveness of the each module of our method by removing it and comparing its performance with
the full framework. The results are reported in Table 5. Generally, it is easy to see that removing any part of the
method significantly drops the performance or even fails in some cases. The performance of re-weighting and dynamic
threshold shows their great effectiveness for dealing with label noise. Though we do not use the normal classifier trained
via Lce, it is observed to help improve the representation learning. We have a similar observation for the unsupervised
contrastive loss Lce. The strong augmentation method AugMix [5] also provides substaintial improvement.

Additionally, we also test our method on class-balanced training sets with label noise in Table 6. Prototypical Classifier
outperforms other methods in most cases, even though both DivideMix and RoLT+ uses an ensemble of two networks,
which shows the generality of Prototypical Classifier.

5 Conclusion

We propose Prototypical Classifier for learning with training set biases. Prototypical Classifier is shown to produce
balanced predictions for all classes even when learned on class-imbalanced training set. This appealing property

7
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Method CIFAR-10 CIFAR-100

w/o re-weighting Best 61.69 (H4.64) -
Last 58.57 (H6.12) -

w/o dynamic threshold Best 63.85 (H2.48) 39.04 (N0.62)
Last 56.01 (H8.68) 38.67 (N0.25)

w/o mixup Best 52.79 (H13.54) 33.09 (H5.33)
Last 51.43 (H13.26) 32.57 (H5.79)

w/o AugMix Best 62.51 (H3.82) 36.11 (H2.31)
Last 55.21 (H9.48) 35.68 (H2.68)

w/o Lcc
Best 55.34 (H9.35) 32.65 (H5.71)
Last 53.17 (H11.52) 32.39(H5.97)

w/o Lce
Best 57.61 (H7.08) 35.25 (H3.11)
Last 53.24 (H11.45) 35.02 (H3.34)

Table 5: Ablation studies. ρ = 0.5 and γ = 100. H (N) indicate performance loss (gain) compared with Prototypical
Classifier.

CIFAR-10 CIFAR-100
Noise Ratio 0.2 0.5 0.2 0.5

DivideMix∗ Best 92.79 95.03 77.25 73.84
Last 92.41 94.63 77.03 73.42

RoLT+∗ Best 92.46 94.59 78.60 74.11
Last 92.01 94.41 78.14 73.35

Prototypical Classifier Best 95.93 92.55 79.41 75.50
Last 95.80 92.40 79.41 75.10

Table 6: Accuracy (%) on class-balanced datasets. ∗ denotes ensemble models.

provides a way of detecting label noise by thresholding the predicted scores of examples. Experiments demonstrate the
superiority of the proposed method. We believe Prototypical Classifier can motivate solutions to more problems with
class-imbalanced training sets, for instance semi-supervised learning and self-supervised learning.
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A Ablations on Dynamic Threshold

Figure 6 shows a comparison of fixed threshold and the dynamic threshold τt with τ0 = 0.1. We consider both
exponential scheduler controlled by γ and linear scheduler controlled by the threshold of last iteration τT .

We test the performance of different choice of parameters and the results are reported in Table 7. From the results, we
have two observations: i) when using fixed threshold or the dynamic threshold grows too slow, performance drops in
the last iterations because many noisy labels are incorrectly flagged as clean; and ii) when dynamic threshold grows too
fast, the network cannot achieve best performance, because many clean labels are incorrectly flagged as noisy.
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Figure 6: Comparison of fixed threshold and dynamic threshold. Fix threshold τ = 0.1, exponential dynamic threshold
τt = 0.1γt and linear dynamic threshold τt = 0.1 + τT−0.1

T t.

Ours (γ = 1.005) Fix Exponential Linear

1.003 1.007 1.01 0.2 0.3 0.4 0.5

Best 66.33 66.01 66.27 63.47 56.81 65.18 66.09 61.78 59.41
Last 64.69 61.37 63.57 58.93 35.84 63.40 65.11 57.84 55.12

Table 7: Test accuracy (%) on CIFAR-10-LT with imbalance factor 100 and noise ratio 50%.

B Results on Clean Datasets

Although our method is particularly designed learning with noisy labels, it is interesting to study its performance on
clean but class-imbalanced datasets. In this experiment, we do not use sample re-weighting and label noise correction.
We report the results in Table 8. For fair comparison, we do not apply AugMix in this experiment.

CIFAR-10 CIFAR-100

Imbalance Factor 10 50 100 10 50 100

CE 88.42 79.56 73.43 60.14 45.79 41.87
LDAM 87.43 80.32 74.50 59.84 47.61 42.59
LDAM-DRW 88.15 83.18 79.43 60.40 48.90 43.63
cRT 88.26 79.22 73.61 60.69 46.67 42.26
NCM 89.45 83.06 79.36 61.46 49.36 45.49

Prototypical Classifier 92.78 86.03 83.11 68.71 56.60 50.94

Table 8: Test accuracy (%) on clean datasets with different imbalanced factor.
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