Skip to main content

Using Computational Synthetic Biology Tools to Modulate Gene Expression Within a Microbiome

  • Conference paper
  • First Online:
Comparative Genomics (RECOMB-CG 2022)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13234))

Included in the following conference series:

Abstract

The microbiome is an interconnected network of microorganisms, which exist and influence a wide array of natural and synthetic environments. Genetic information is constantly spread across the members of the microbial community in a process called horizontal gene transfer, causing exposure of genetic alterations and modifications to all members of the community.

In order to accurately and effectively engineer microbiomes, genetic modifications must be introduced to certain species, as selectivity is a key factor in creating and fixing functional abilities within microbial environments. Moreover, introduction of genes into unwanted hosts may cause unprecedented ecological impacts, posing a major biosafety issue. Technologies in the field are usually experimentally developed for a specific host or environment, and the lack of automization and generalization limit them to a specific microbiome. Additionally, they only deal with the transformation process itself at best and do not modulate the different elements of the genetic material, neglecting considerations related to the interactions between the new genetic material and the population.

This work presents a set of computational models that automatically design a microbiome-specific plasmid that is selectively expressed in certain parts of the bacterial population. The underlying algorithm fine-tunes genetic information to be optimally expressed in the wanted hosts of the plasmid, while simultaneously impairing expression in unwanted hosts. We take into account and selectively optimize the main elements linked to gene expression and heredity. In addition, we have provided both in-silico and in-vitro analysis supporting our claim. This study was part of the TAU IGEM 2021 project (https://2021.igem.org/Team:TAU_Israel).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steinfeld, H.M.: Length of life of Drosophila melanogaster under aseptic conditions. Dissertation Thesis, 1927, University of California, Berkeley (1928)

    Google Scholar 

  2. Dekaboruah, E., Suryavanshi, M.V., Chettri, D., Verma, A.K.: Human microbiome: an academic update on human body site specific surveillance and its possible role. Arch. Microbiol. 202(8), 2147–2167 (2020)

    Article  Google Scholar 

  3. Appleton, J.: The Gut-Brain axis: influence of microbiota on mood and mental health. Integrat. Med. (Encinitas, Calif.), 17(4), 28–32 (2018)

    Google Scholar 

  4. Reed, H.E., Martiny, J.B.H.: Testing the functional significance of microbial composition in natural communities. FEMS Microbiol. Ecol. 62(2), 161–170 (2007)

    Article  Google Scholar 

  5. Suskind, D.L., et al.: Fecal microbial transplant effect on clinical outcomes and fecal microbiome in active Crohn’s disease. Inflamm. Bowel Dis. 21(3), 556–563 (2015)

    Article  Google Scholar 

  6. Bajaj, J.S., et al.: Fecal microbial transplant capsules are safe in hepatic encephalopathy: a phase 1, randomized. Placebo-Controlled Trial. Hepatology 70(5), 1690–1703 (2019)

    Google Scholar 

  7. Vaughn, B.P., et al.: Increased intestinal microbial diversity following fecal microbiota transplant for active crohn’s disease. Inflamm. Bowel Dis. 22(9), 2182–2190 (2016)

    Article  Google Scholar 

  8. Martin, A., Anderson, M.J., Thorn, C., Davy, S.K., Ryan, K.G.: Response of sea-ice microbial communities to environmental disturbance: an in situ transplant experiment in the Antarctic. Mar. Ecol. Prog. Ser. 424, 25–37 (2011)

    Article  Google Scholar 

  9. Foo, J.L., Ling, H., Lee, Y.S., Chang, M.W.: Microbiome engineering: current applications and its future. Biotechnol. J. 12(3), 1600099 (2017)

    Google Scholar 

  10. Koonin, E.V., Makarova, K.S., Aravind, L.: Horizontal gene transfer in prokaryotes: quantification and classification. Annu. Rev. Microbiol. 55, 709–742 (2001)

    Article  Google Scholar 

  11. Khosravi, A., Mazmanian, S.K.: Disruption of the gut microbiome as a risk factor for microbial infections. Curr. Opin. Microbiol. 16(2), 221–227 (2013)

    Article  Google Scholar 

  12. Sharp, P.M., Li, W.H.: The codon adaptation index–a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15(3), 1281–1295 (1987)

    Article  Google Scholar 

  13. Parmley, J.L., Hurst, L.D.: How do synonymous mutations affect fitness? Bioessays: news and reviews in molecular. Cell. Dev. Biol. 29(6), 515–519 (2007)

    Google Scholar 

  14. Comeron, J.M., Aguadé, M.: An evaluation of measures of synonymous codon usage bias. J. Mol. Evol. 47(3), 268–274 (1998)

    Article  Google Scholar 

  15. Victor, M.P., Acharya, D., Begum, T., Ghosh, T.C.: The optimization of mRNA expression level by its intrinsic properties-Insights from codon usage pattern and structural stability of mRNA. Genomics 111(6), 1292–1297 (2019)

    Article  Google Scholar 

  16. Bahiri-Elitzur, S., Tuller, T.: Codon-based indices for modeling gene expression and transcript evolution. Comput. Struct. Biotechnol. J. 19, 2646–2663 (2021)

    Article  Google Scholar 

  17. Sabi, R., Volvovitch Daniel, R., Tuller, T.: stAIcalc: tRNA adaptation index calculator based on species-specific weights. Bioinformatics 33(4), 589–591 (2017)

    Google Scholar 

  18. Paget, M.S.: Bacterial sigma factors and anti-sigma factors: structure: function and distribution. Biomolecules 5(3), 1245–1265 (2015)

    Article  Google Scholar 

  19. Bailey, T.L.: STREME: Accurate and versatile sequence motif discovery. Bioinformatics 37(18), 2834–2840 (2021)

    Google Scholar 

  20. Bailey, T.L., Gribskov, M.: Combining evidence using P-values: application to sequence homology searches. Bioinformatics 14(1), 48–54 (1998)

    Article  Google Scholar 

  21. Wigley, D.B.: Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AddnAB. Nat. Rev. Microbiol. 11(1), 9–13 (2013)

    Article  Google Scholar 

  22. Roberts, R.J., Vincze, T., Posfai, J., Macelis, D.: REBASE--a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res. 38(Database issue), D234–6 (2010)

    Google Scholar 

  23. Zulkower, V., Rosser, S.: DNA Chisel, a versatile sequence optimizer. Bioinformatics 36(16), 4508–4509 (2020)

    Google Scholar 

  24. Bai, Y., et al.: Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528(7582), 364–369 (2015)

    Google Scholar 

  25. Camacho, C., et al.: BLAST+: architecture and applications. BMC Bioinf. 10, 421 (2009)

    Article  Google Scholar 

  26. Azam, A.H., Tanji, Y.: Bacteriophage-host arm race: an update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy. Appl. Microbiol. Biotechnol. 103(5), 2121–2131 (2019)

    Article  Google Scholar 

  27. Dana, A., Tuller, T.: The effect of tRNA levels on decoding times of mRNA codons. Nucleic Acids Res. 42(14), 9171–9181 (2014)

    Article  Google Scholar 

  28. Diebold, P.J., New, F.N., Hovan, M., Satlin, M.J., Brito, I.L.: Linking plasmid-based beta-lactamases to their bacterial hosts using single-cell fusion PCR. Elife 10, e66834 (2021)

    Google Scholar 

  29. DeAngelis, K.M., Ji, P., Firestone, M.K., Lindow, S.E.: Two novel bacterial biosensors for detection of nitrate availability in the rhizosphere. Appl. Environ. Microbiol. 71(12), 8537–8547 (2005)

    Article  Google Scholar 

  30. Hynninen, A., Virta, M.: Whole-cell bioreporters for the detection of bioavailable metals. Whole Cell Sens. Syst. II, 31–63 (2009)

    Article  Google Scholar 

  31. Kreniske, J.S., Harris, A., Safadi, W.: Landmines in the Golan Heights: A patient's perspective. Case Reports (2014)

    Google Scholar 

  32. Tecon, R., Van der Meer, J.: Bacterial biosensors for measuring availability of environmental pollutants. Sensors 8(7), 4062–4080 (2008)

    Article  Google Scholar 

  33. Belkin, S., et al.: Remote detection of buried landmines using a bacterial sensor. Nat. Biotechnol. 35(4), 308–310 (2017)

    Article  Google Scholar 

  34. Ramanathan, S., Ensor, M., Daunert, S.: Bacterial biosensors for monitoring toxic metals. Trends Biotechnol. 15(12), 500–506 (1997)

    Article  Google Scholar 

  35. Caplice, E.: Food fermentations: role of microorganisms in food production and preservation. Int. J. Food Microbiol. 50(1–2), 131–149 (1999)

    Article  Google Scholar 

  36. Adolfsson, O., Meydani, S.N., Russell, R.M.: Yogurt and gut function. Am. J. Clin. Nutr. 80(2), 245–256 (2004)

    Article  Google Scholar 

  37. Yu, Q., Li, Y., Wu, B., Hu, W., He, M., Hu, G.: Novel mutagenesis and screening technologies for food microorganisms: advances and prospects. Appl. Microbiol. Biotechnol. 104(4), 1517–1531 (2020)

    Article  Google Scholar 

  38. Chen, J., Zhang, W., Wan, Z., Li, S., Huang, T., Fei, Y.: Oil spills from Global Tankers: status review and future governance. J. Clean. Prod. 227, 20–32 (2019)

    Article  Google Scholar 

  39. Barron, M.G., Vivian, D.N., Heintz, R.A., Yim, U.H.: Long-term ecological impacts from oil spills: comparison of Exxon Valdez, Hebei spirit, and Deepwater Horizon. Environ. Sci. Technol. 54(11), 6456–6467 (2020)

    Article  Google Scholar 

  40. Chang, S.E., Stone, J., Demes, K., Piscitelli, M.: Consequences of oil spills: a review and framework for informing planning. Ecol. Soc. 19(2) (2014)

    Google Scholar 

  41. Lawson, C.E., et al.: Common principles and best practices for engineering microbiomes. Nat. Rev. Microbiol. 17(12), 725–741 (2019)

    Article  Google Scholar 

  42. Malla, M.A., Dubey, A., Kumar, A., Yadav, S., Hashem, A., Abd_Allah, E.F.: Exploring the human microbiome: the potential future role of next-generation sequencing in disease diagnosis and treatment. Front. Immunol. 9 (2019)

    Google Scholar 

  43. Bakken, J.S., et al.: Treating clostridium difficile infection with fecal microbiota transplantation. Clin. Gastroenterol. Hepatol. 9(12), 1044–1049 (2011)

    Article  Google Scholar 

  44. Malusá, E., Sas-Paszt, L., Ciesielska, J.: Technologies for beneficial microorganisms Inocula used as Biofertilizers. Sci. World J. 2012, 1–12 (2012)

    Article  Google Scholar 

  45. Rodriguez, H., Gonzalez, T., Goire, I., Bashan, Y.: Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium azospirillum spp. Naturwissenschaften 91(11), 552–555 (2004)

    Article  Google Scholar 

  46. Zhu, J., Li, M., Whelan, M.: Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review. Sci. Total Environ. 612, 522–537 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This work was continuously guided by the following researchers: Prof. Martin Kupiec, Professor Uri Gophna, and Professor Itai Benhar for valuable feedback and suggestions. Prof. Hagit Eldar-Finkelman and her lab members, which fully supported us with physical research facilities. Prof. Avigdor Eldar and PhD candidate Tasneem Bareia for both bacterial strains and plasmids, and in general advice. The authors thank the Faculties of Engineering and Life Science at Tel Aviv University for funding this research. This study was part of the TAU IGEM 2021 project (https://2021.igem.org/Team:TAU_Israel) and was also supported by Edmond J. Safra Center for Bioinformatics at Tel Aviv University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamir Tuller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chitayat Levi, L., Rippin, I., Ben Tulila, M., Galron, R., Tuller, T. (2022). Using Computational Synthetic Biology Tools to Modulate Gene Expression Within a Microbiome. In: Jin, L., Durand, D. (eds) Comparative Genomics. RECOMB-CG 2022. Lecture Notes in Computer Science(), vol 13234. Springer, Cham. https://doi.org/10.1007/978-3-031-06220-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06220-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06219-3

  • Online ISBN: 978-3-031-06220-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics