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Abstract. A fundamental step in any comparative whole genome anal-
ysis is the annotation of homology relationships between segments of the
genomes. Traditionally, this annotation has been based on coding seg-
ments, where orthologous genes are inferred and then syntenic blocks
are computed by agglomerating sets of homologous genes into homolo-
gous regions. More recently, whole genomes, including intergenic regions,
are being aligned de novo as whole genome alignments (WGA). In this
article we develop a test to measure to what extent sets of homology
relationships given by two different software are hierarchically related
to one another, where matched segments from one software may con-
tain matched segments from the other and wvice versa. Such a test should
be used as a sanity check for an agglomerative syntenic block software,
and provides a mapping between the blocks that can be used for fur-
ther downstream analyses. We show that, in practice, it is rare that two
collections of homology relationships are perfectly hierarchically related.
Therefore we present an optimization problem to measure how far they
are from being so. We show that this problem, which is a generaliza-
tion of the assignment problem, is NP-Hard and give a heuristic solution
and implementation. We apply our distance measure to data from the
Alignathon competition, as well as to Mycobacterium tuberculosis, show-
ing that many factors affect how hierarchically related two collections
are, including sensitivities to guide trees and the use or omission of an
outgroup. These findings inform practitioners on the pitfalls of homol-
ogy relationship inference, and can inform development of more robust
inference tools.
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1 Introduction

The increasing ease of whole genome sequencing and assembly has opened a new
era of comparative genomics. With the data available today, not only can the
phylogenetic histories of all the genes between a set of genomes be analyzed, but
also the interaction between these genes, linking gene regulation and function
to the positions of groups of genes. These analyses require a reliable grouping of
homologous genomic segments from the multiple genomes in question.

Thus, the inference of sets of homologous genomic segments is of fundamental
importance. Such a homology statement comes in the form of a set of genomic
segments that contains at least one, but potentially multiple, segments from
several genomes. Each pair of segments from the set shares common ancestry
over some proportion of their intervals, which varies depending on the scale and
level of precision required by the application.

The most basic segment on which statements are made has traditionally
been the gene, detected through either manual or automatic means. The number
of tools designed to infer homology relationships between annotated genes has
grown, provoking the formation of the Quest for Orthologs (QfO) consortium
dedicated to the evaluation and comparison of these tools [12].

General genomic intervals, that can contain both coding and noncoding po-
sitions, have also been used as homology statements. In this case, researchers
have considered bidirectional best hits as evidence for orthology [22,31]. More re-
cently, “whole genome alignment” methods partition entire genomes into blocks
that can be aligned into multiple sequence alignments (MSAs), de novo, with
no special input from the user. The Alignathon collaborative competition was
developed to evaluate and compare these methods [9].

Study of the large scale changes between genomes has inspired a more vague
notion of homology between genome segments. Even before the discovery of
the double helix, groups were studying homology of large segments of genomes
from the salivary glands of drosophila [29]. More precise lengths of roughly con-
served chromosomal segments began to be studied using linkage maps [23]. In the
postgenomic era, basic homology segments are agglomerated into syntenic blocks,
possibly separated by micro-rearrangements. GRIMM-synteny was developed for
the study of large scale chromosomal changes, in response to the whole genome
sequencing efforts in human and mouse [27]. Since then, many syntenic block
inference tools have been introduced but, despite twenty years of development,
a unified definition of syntenic block has yet to be found. Indeed, most tools rely
on operational definitions rather than biological or mathematical ones [11,30].

There are several tests used for comparing and evaluating homology state-
ments. For orthology statements between coding sequences, the QfO project
has established tests that: 1) compare trees inferred from orthologous families to
agreed-upon species trees, 2) compare the subsets of orthologs from curated gene
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families, and 3) use consistency in gene ontology annotation [1]. For statements
between syntenic blocks, comparisons of inclusion and exclusion of segments be-
tween methods have been done, and blocks from a single method have been
compared to known gene clusters [19]. Other sources of ground truth, such as
RNA-seq data, have been used to confirm co-regulation between genes occurring
in a proposed block [33].

For general statements (on both coding and noncoding DNA), the Alignathon
competition used three different measures [9]. If homology statements are given
as a set of (potentially gapped) equal-length segments from several genomes,
then each homologous pair of positions between two genomes as given by one
method, can be queried in another method. The number of such shared positions
is a measure of similarity and, when one of the methods is taken as ground truth,
the number of shared positions can be used to measure precision and recall.
The mafComparator tool estimates these values by sampling positions [9]. For
sets of aligned homology statements (i.e. MSAs), probabilistic sampling-based
alignment reliability (PSAR) was used to assess each aligned column [16]. PSAR
fixes all rows of the alignment but one, and samples from the many ways to
align that row within the fixed alignment. After this is repeated for each row, an
alignment reliability score for each pair of positions in a column can be assigned.
When aligned homology statements are augmented with a phylogeny, another
statistical test called StatSigMA can be used [28]. For each edge of the phylogeny,
the rows of the alignment are split into two alignments. The two alignments
are then tested for exhibiting “unrelated behaviour” using Karlin-Altschul log
likelihood scores. If the test for all branches passes, then the homology statement
is validated.

For homology statements that come in the form of syntenic blocks, Ghiur-
cuta and Moret outline some necessary conditions for a valid agglomeration of
homologous units into such blocks [11].

There exists very few methods that compare homology statements in the form
of sets of genomic segments, unmarried to connotations of orthologous genes, and
independent of multiple sequence alignments. To our knowledge, the Jaccard
distance (e.g. as computed by mafComparator) applied to pairwise homology
statements, is the only known comparison that falls into this category.

In this article we introduce a simple definition of homology block (Section 2.1)
and formally characterize the conditions under which a set of homology blocks
are valid (Section 2.2). We show what it means for collections of blocks to be hi-
erarchically related and use this to develop a method for measuring disagreement
between two different collections of blocks. In Section 2.3 we show a necessary
condition for two collections of blocks to be in a hierarchical relationship (in the
form of Lemma 1), based on a graph representing the overlap between the sets.
For different parts of the genomes in question, our test allows for the collections
of blocks to be hierarchically related in both ways; in some parts of the genomes
the first set could be more general than the second, while in other parts of the
genomes the opposite can be true. We introduce an optimization problem, called
MINIMUM DELETION INTO DISJOINT STARS (MDDS), which gives a lower bound
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on the number of positions that must be ignored so that the two collections of
blocks could be related through a hierarchical relationship. Not only does a solu-
tion to MDDS give a measure as to the degree of hierarchical dissonance between
two collections, but it serves as an unambiguous mapping between the blocks of
the two. This mapping could be used for further downstream comparisons, an
illustration of which is shown in Appendix C.

We show that the MDDS problem is NP-Hard, before presenting a polynomial
time heuristic based on an exact algorithm for solving MDDS on a tree. In
Section 4 we define the homology discordance ratio and use this measure as a
distance between block collections built on Alignathon data and on a set of
94 Mycobacterium tuberculosis isolates. On the tuberculosis strains we study
the relationship between blocks built using an outgroup or no outgroup, using
annotations or no annotations, using maf2synteny to agglomerate or not, as well
as study the effect of the guide tree on Cactus MSA blocks. On the simulated
data from the Alignathon project, we highlight differences between our method
and the Jaccard distance (as computed with mafComparator).

For the entirety of the article we focus on the general case of homology
statements, although most of the discussion also applies to the restricted case of
orthology statements.

2 Methodological Foundations

2.1 Overlapping Homology Statements and the Block Graph

We use g;[k..£] to denote a segment between positions k and £ of genome g;
and we let T" denote the universe of all segments over all possible genomes and
position-pairs. Define the overlap op(si, s2) between two segments s; and s as
the number of positions where they overlap in the same genome. For example

op(g1[1..5], ¢1[3..9]) = 3 but op(g1[1..5], g2[3..9]) = 0.

Definition 1 (homology statement block). A homology statement block
(called a block for short) B is a set of segments B C T such that all pairs of
segments in B have zero overlap.

The right panel of Fig. 1 depicts two collections of homology statement
blocks A = {Al, A2, A3} and B = {B1,B2,B3}. The blocks of A are Al =
{g1[1..12], g2[13..24]}, A2 = {g1[14..28], g2[26..41]}, A3 = {g1[53..66], g2[101..113] },
while the blocks of B are B1 = {¢1[1..28], g2[13..41]}, B2 = {g1[46..68], g2[94..115] },
and B3 = {g1[34..39], g2[42..46], g2[116..121] }.

Before discussing the semantic interpretation of a homology statement block,
we first introduce a graph that represents the overlap between blocks. The over-
lap op(B1,B2) = > . cpixp20P(s1,82) between blocks Bl and B2 is the
total overlap between all pairs of segments in the two. A collection of blocks
B = {B1,B2,...} is considered to be clean if the overlap between any pairs of
blocks in B is zero. Both collections depicted in Fig. 1 are clean.

For two collections of blocks A and B, we build a bipartite block graph
BG(A, B) where there is an edge between A and B for any A € A and B € B if



Quantifying Hierarchical Conflicts in Homology Statements 5
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Fig.1: To the right, the collections of blocks A = {Al, A2, A3} and B =
{B1, B2, B3} appearing in genomes g; and go, along with the graph BG(A, B).
Segments are depicted with brackets and lined up according to their positions on
the chromosomes. They are labeled by their tuple (when space permits) and the
block to which they belong. The configuration of positive and negative witness
pairs shows that B generalizes A. Some of the genome positions are highlighted
with boxes, and two such positions are connected by a solid line if they appear
as a positive witness in B, and that line is bold if they are also in A. The
dashed line represents one of the (many) negative homology witnesses between
Al and A2 that are negative witness pairs for A but not for B. To the left, the
graph BG(A, B) appears with edges labeled by overlap length in gray. All of the
connected components are stars.

and only if blocks A and B overlap (i.e. op(A, B) > 0). Thus, the block graph
BG(A, A) for a clean collection A is a perfect matching. E(G) is the set of
edges of the graph G. We associate to each edge AB € E(G) a weight function
w : E(G) — N such that w(AB) = op(A, B). The left side of Fig. 1 shows the
block graph for the collections to the right.

2.2 Homology Witnesses and Block Hierarchies

A homology block can be interpreted as a positive and negative statement of ho-
mology (i.e. statements about common ancestry). On the positive side, the block
{g1[1..5],92[11..16]} says that positions 1 through 5 in genome g¢; are somehow
homologous to positions 11 through 16 in genome g5 (in this case the segments
are not the same length, so we assume that each position from the segment
g1[1..5] is homologous to either a position in g2[11..16] or to none other in gs).
On the negative side, the block could be interpreted as saying that no position
in g1[1..5] is homologous to any other position in g or any other position in ga,
outside of g,[11..16].

In this section we suppose that we know the truth about the ancestral rela-
tionships between the base-pair positions of the genomes in question. With this
supposed knowledge, we can categorize pairs of homology witness positions as
positive or negative, depending on their evolutionary relationship. Using these
relationships, we define properties that a valid collection of homology blocks must
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respect. These definitions are extended to encompass hierarchical relationships
between collections of blocks.

Consider any pair of positions g;[x] and g;[y] from genomes g; and g;. This
pair is called a positive homology witness if the two positions descend from the
same ancestral position, otherwise the pair is called a negative homology witness
(positive homology witnesses represent pairs of positions that are typically called
“homologous” positions). Note that the true relationship between positions is
unknown, yet it imposes constraints on what we consider a valid collection of
blocks according to the following definition.

Consider any position-pair (g;[x], g;[y]) such that g;[z] is contained in a seg-
ment from a block B in a collection B. If (g;[x], g;[y]) is a positive homology
witness, then either

1. g;]y] appears in B, and we say that the pair is a positive witness in B, or
2. g;ly] appears in no block of B.

By this definition no position-pair (g;[x], g;[y]) with g;[z] and g;[y] in different
blocks of B, can be a positive homology witness and, since all position-pairs are
either positive or negative homology witnesses, (g;[x], g;[y]) must be a negative
homology witness. Any position-pair (g;[x], g;[y]), where g;[z] and g;[y] are in
different blocks of B or in no block of B, is called a negative witness for B.

Note that, for a clean collection B, no position-pair can be both a positive
and negative witness in/for B. There may also be position-pairs that are neither
positive nor negative witnesses in/for B, such as those pairs that have one po-
sition contained in a block of B and the other outside all blocks of B. Finally,
note that not all position-pairs appearing between segments in a homology block
need necessarily be positive homology witnesses.

Positive witness pairs limit what can exist in two different blocks; a block
containing one position of a positive homology witness imposes the constraint
that the other position must either be in the same block, or in no block. On the
other hand, we will see in the following that negative homology witnesses existing
between two different blocks in a collection enforce constraints on the hierarchical
relationships that this collection can have with another block collection.

Consider the collections of blocks in Fig. 1 and note that whenever a positive
homology witness is a positive witness in 4, it must also be a positive witness in
B, whereas not all positive witnesses in B exist in .A. Conversely, every negative
witness for B is also a negative witness for A. In this sense, the blocks of B are
“more general” than the blocks of A. This motivates the following definition, for
which we focus on subcollections of blocks A" C A and B’ C B.

Definition 2 (generalization). A clean (sub)collection of blocks B' generalizes
a clean (sub)collection A’ if and only if every positive witness in A’ is also a
positive witness in B’ and every negative witness for B’ is also a negative witness

for A'.

Note that any clean collection generalizes itself.
While some subcollections of B may generalize subcollections of A, other
subcollections of A may generalize subcollections of B. Partition them A =
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AT UA U---UA, and B = By UBy U --- U By according to the connected
components of BG(A, B) (e.g. Ay UBy is the set of vertices in the first connected
component).

Definition 3 (hierarchical). We say that A and B have a hierarchical rela-
tionship if and only if A; generalizes B;, or B; generalizes A;, for 1 <i <k.

The existence of hierarchical relationships between collections of blocks are
interesting to us for at least two reasons. Consider two block inference meth-
ods, MethodA and MethodB, producing different clean collections of blocks A
and B respectively. If MethodB is meant to agglomerate blocks from MethodA,
then we would expect B to generalize A. This is useful for the verification of
agglomeration methods, and as a sanity check for the practitioner. In this case,
if MethodB also trims spurious blocks or segments from MethodA, B may not
generalize A, but A and B would still be hierarchically related. Another reason
for interest in the hierarchical relationship may be that, if B generalizes A, then
we can define a mapping from each block A € A to a block B € B. This mapping
can be used for further comparisons between the collections. The refinement of
orthology assignments, as illustrated in Appendix C is an example of one such
comparison.

2.3 Relating Block Hierarchy to Stars in the Block Graph

While simple hierarchical relationships are easy to detect, real-world data are
not so well behaved, and require a formalism to measure the extent to which
a relationship is hierarchical. The types of connected components in the block
graph give us insight into collections that cannot have a hierarchical relationship.

Lemma 1. Let A and B be clean collections of blocks such that B generalizes A
and BG(A, B) is connected. Then, all vertices of A have degree one in BG(A, B),
that is, BG(A, B) is a star with center in B.

Proof. Let A be a block in A, and assume that it has at least two distinct neigh-
bors B1, B2 € Bin BG(A, B), that is, both B1 and B2 overlap A. Thus, there are
positions g;[z| and g;[y] appearing in A such that g;[x] appears in B1 and g;[y]
appears in B2. Since B is clean, we also know that these positions are distinct.
Since (gi[z], gj[y]) appears in different blocks in B, we know that it is a negative
homology witness for B. However, since g;[z] and g,[y] appear in the same block
in A, the pair is not a negative witness for A. Thus, (g;[z], g;[y]) is a negative
witness for B but not for A, contradicting the fact that B generalizes .A. ad

We say that a graph is hierarchical if it is a collection of vertex-disjoint stars,
that is, if no component has two vertices of degree greater than one. It is easy to
check if a graph meets this criterion. Note that the condition of a graph BG(A, B)
being hierarchical is necessary for A and B to have a hierarchical relationship,
but it is not sufficient. Also note that, Lemma 1 outlines a property on each
individual connected component, allowing some parts of A to generalize parts
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Fig. 2: Two subsets of blocks from collections A and B that are not hierarchically
related. The top panel depicts a subset of blocks for part of the genome g7, but
not the other genomes. Positions a and S form a negative homology witness for
A, but not for B, while g and « form a negative homology witness for B, but not
for A. This contradicts properties of a hierarchy and, therefore, yields the non-
star topology to the left. The bottom panel depicts a subset of blocks for part
of the genomes g; and g». These segments contradict properties of a hierarchy in
a different way, and yield the non-star topology to the left. This kind of scenario
would arise when orthologs are matched in one way from MethodA, and in
another way for MethodB. Note that even if the block A5 was not in collection
A, the contradiction still holds and the connected component is not a star.

of B, while allowing other parts of B to generalize parts of A. Thus, a natural
corollary to Lemma 1 is that if A and B are hierarchically related, then BG (A, B)
is hierarchical.

For a graph that is not a collection of stars, one may want to measure to what
degree it deviates from being so. Lemma 1 inspires the search for star packings

on G = BG(A,B).

MINIMUM DELETION INTO DISJOINT STARS (MDDS)
Input: a bipartite graph G with weight function w: E(G) - N
Output: E’ C F(G) such that the subgraph of G formed by the edge set
(E(B) \ E') is a collection of vertex-disjoint stars
Measure: ) .. w(e)

A solution to MDDS gives a lower bound on the number of overlapping
positions that must be ignored so that A and B can be hierarchically related.
For example, Fig. 2 shows two connected components that are not stars. Consider
the graph from the upper panel and assume that in the non-depicted genomes
(i.e. g; for i > 1) there is no overlap of the segments of A1 with those of B2, or of
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segments of A2 with those of B1. Then, the solution to MDDS on this component
would result from the removal of the edge between B1 and A2, since this edge has
the minimume-size overlap. In Section 4.1 we highlight the differences between
our MDDS method, and the Jaccard similarity index used in the Alignathon.

3 Algorithms

In this section we show that the MINIMUM DELETION INTO DISJOINT STARS
problem is NP-Hard, and then present a practical heuristic based on solving
MDDS optimally on a tree. For simplicity and without loss of generality, we will
assume that all block graphs are connected.

Other generalizations of the assignment problem, similar to MDDS, have
been studied for decades, the closest of which has most recently been called
the T-STAR PACKING problem [4]. This problem asks for a star packing where
the size of the star is limited by an input parameter 7. When the measure is
the number (or weight) of edges, Hell and Kirkpatrick show that the T-STAR
PACKING is NP-Hard by reduction to the version of the problem that asks for
a decomposition of a given graph into subgraphs isomorphic to the star with
T edges [13]. Since the only difference between MDDS and the edge-weighted
T-STAR PACKING problem is the parameter T, it is tempting to adapt the same
series of reductions to MDDS by setting 7" to the maximum degree over all
vertices in the graph. This approach is not clearly feasible, however, since the
reduction from 3-DIMENSIONAL MATCHING to the decomposition version of the
problem creates vertices of degree higher than T [17].

Babenko and Gusakov give a %TL_H approximation algorithm for the T-STAR
PACKING problem based on a reduction to the max-network flow problem [4]. We
could use this elaborate approximation algorithm by fixing 7" to the maximum
degree of the input graph, but we choose instead to implement the much simpler
heuristic presented in Section 3.2.

3.1 NP-Hardness of MDDS

We will show that the decision version of MDDS is NP-hard by reducing the
well-known 3-SAT problem to it. Our construction uses similar techniques as
the NP-hardness proof of the TRANSITIVITY EDGE DELETION problem [32].

Construction 1 (see Fig. 3) Let ¢ be an instance of 3-SAT with variables
X = {x1,x2,...,x,} and clauses C := {C1,Cs,...,Cp} such that each clause
contains exactly three literals. For each variable x;, let n; denote the number of

clauses that contain z; or —x; and let 42, v}, ... ,'yi""_l be any sequence of these
clauses. We construct an edge-weighted graph (G,w) as follows:
1. For each variable x; create a cycle Q; containing 6n; vertices v), v}, ... v"~!

and give all edges weight m.
2. For each clause Cy, € C, create a single vertex ug.
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Fig. 3: Example of Construction 1. The clause C' := (z1 V3V —xg) corresponding
to the center vertex is equal to 73 = 73 = 73, that is, it is the 4*" clause
containing z1, the 2 clause containing 3 and the 6" clause containing zg. A
truth-assignment setting x; to TRUE and x3 and zg to FALSE corresponds to
the star cover indicated by gray highlights. Note that taking the edge between
vi® and C instead of the edge between v3? and C corresponds to satisfying the
clause C by z7 instead of —xsg.

3. For each i,j let £ be such that ’yg = Cy and, if x; occurs non-negated in Cy,
then add the edge {vfj,w} with weight 1, otherwise add the edge {vfjJrQ,w}
with weight 1.

Note that the image of w is {1,m}, the total weight of all edges is 18m? + 3m,
and G is bipartite, since any edge from part 3 of the construction, connecting a

(variable) cycle to a (clause) vertex ug, connects to an even numbered vertez in

the cycle.

Besides NP-hardness, our reduction implies exponential lower bounds assuming
widely believed complexity-theoretic hypotheses. The “Exponential-Time Hy-
pothesis” (combined with results by Impagliazzo et al. [15]) roughly states that
3SAT on formulas with m clauses cannot be decided in 2°(™) time. This lower
bound transfers since the constructed graph G has only 21m edges.

Theorem 1. MINIMUM DELETION INTO DISJOINT STARS is NP-hard and can-
not be solved in 2°UF(ON time on graphs G, even if G is restricted to mazimum
degree three, assuming the Exponential-Time Hypothesis.

3.2 A Heuristic for MDDS

In light of the hardness result presented in Section 3.1, we devised a heuristic that
first computes a maximum-weight spanning tree T on each connected component
of BG. It then transforms each T into a star packing by computing MDDS on 7.

We present a dynamic programming algorithm solving MDDS on a tree T'. To
this end, we root T" at an arbitrary vertex, and compute a dynamic programming
table for vertices in a post-order traversal. Consider a set S of edges that, after
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removal from T, yields a collection of disjoint stars. We denote the result of this
removal as T — S = (V(T),E(T) \ S). Each vertex x has one of three states
relative to S:

1. x is the center of a star in T'— S (covered by D, (z) in the DP),

2. x has degree one in T'— S and the edge between x and its parent is in T'— S
(covered by Dy (x) in the DP), and

3. x has degree one in T — S and the edge between = and its parent is not in
T — S (covered by D_(z) in the DP).

Then, D, (x), D4 (z), and D_(z) contain the weight of an optimal solution S,
for the subtree rooted at x, for each of the three cases respectively. If = is a
leaf of T, then set D,(x) := D_(z) := Dy (x) := 0. Otherwise, let v1,va, ...,y
denote the children of x in T'. We visit the children in this order and accumulate
each partial subsolution, starting with D9(z) := DY (z) := D%(z) := 0 and
proceeding as follows for each 1 <17 < m:

Di(z) := DI Y (z) + min (D4 (v;), w(zv;) + min(D,(v;), D_(v;)))

That is, if x is the center of a star, then the edge xv; must be in S if either v;
is the center of a star or the edge between v; and its parent x is not in T' — S.

D' (z) := D7 (%) + w(v;) + min(D.(v;), D—(v;))

That is, if = is a leaf of a star centered at the parent of x, then the edge xv;
must be in S.

i . DY () + w(zvs) + min(D, (vs), D_(v;)),
D! (z) := min (Di_l(a:) +D.(v) )

The case of D! (z) is a bit more subtle. Since z is not the center of a star, all
but at most one edge between x and its children are in S, so if zv; is not in §
then D' (z) forces all zv; to be in S, for 1 < j < i. Finally, the subsolutions
rooted at x are, then, given by:

D,y (x) := D7 (x) D_(z) := D" (x) D.(z) := D" (x)

4 Quantifying Hierarchical Conficts

We applied our MDDS heuristic to homology statements on a set of prokary-
otes, and on a set of eukaryotes. The solution to MDDS provides an estimate
of the minimum number of positions that must be ignored so that the neces-
sary conditions for a hierarchy, highlighted by Lemma 1, are achieved. Before
applying the heuristic of Section 3.2 we cleaned the syntenic blocks according to
Appendix B, and preprocessed the graphs for segmental duplications according
to Appendix C.
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4.1 Discordance Ratio and Distinction from Jaccard Index

Define coverage(B) of a collection of blocks B as the total number of positions
covered by all segments in blocks of B. We report the hierarchical discordance
ratio between collections A and B as d(A, B) = w/(coverage(A) + coverage(B)),
where w is the weight of the MDDS on BG(A, B). A discordance ratio of 0.1
means that we have to ignore at least 10% of the total coverage of the blocks (in
both methods) in order to have a hierarchical relationship between them.

Alignathon used mafComparator to compute the straightforward Jaccard
similarity index between collections of blocks. In this case, the elements of the
sets in question are the pairwise alignments of positions implied by the blocks.
So if a pair of positions are aligned in one class of blocks but not the other, this
will contribute one to the denominator.

Consider collections .4 and B such that A only contains blocks with segments

from {g;[2002+1..2002+100] | 0 < = < [ %9 |1 and B only contains blocks with

segments from {g;[200z + 101..200x + 200] | 0 < = < Lzz(gg)J}, for all genomes g;
with length £(g;). In other words, the collections can only have blocks of length
100 that do not overlap with each other. In this case the Jaccard similarity mea-
sure will be zero no matter the length of the genomes, indicating the most severe
dissimilarity, whereas the two collections are hierarchically related, showing no
conflicts, and the block graph is composed only of degree zero vertices. In that
sense, our comparison method is tolerant to collections that conservatively make
no assertion about a region.

We consider the two measures complementary in that they capture different
qualities of the overlap properties of block collections. We see in Section 4.3
instances from the Alignathon data where the Jaccard similarity is low, yet the
two collections are hierarchically related, and vice versa.

4.2 Mycobacterium tuberculosis clinical isolates

For the prokaryotes, we used a set of 94 Mycobacterium tuberculosis strains [21,5]
with homology statements given by the methods listed in Table 1. These sets of
blocks are those produced in [10], where the methods were compared to assess
their impact on inferring rearrangement phylogenies. Note that all Cactus blocks
used in this subsection had segments with fewer than 50 positions filtered out.

The collections of blocks for four of the methods, along with their maf2synteny
counterparts are compared in Fig. 4. As expected, each collection of blocks had
a very low discordance ratio with its counterpart agglomerated by maf2synteny.
Further, the agglomerated blocks always have lower discordance to all the other
methods, when compared to their unagglomerated counterparts. Of the unag-
glomerated methods, SibeliaZ is the least discordant.

There were a couple of surprises. The first is that the most discordant pairs
are between the gene-based annotation method and the de novo inference meth-
ods Cactus and SibeliaZ. Contrary to the other methods, the agglomerated
annotation blocks show a small improvement against Cactus, and a surprising
degradation (going up from 4% to 5%) in the discordance ratio for SibeliaZ.
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Table 1: Homology statement determination methods applied to the M. tuber-
culosis genomes

Method Description

Cactus (SNP) Cactus [3] alignment guided by a ML tree based on
concatenated substitutions with respect to reference
strain H37Rv (NCBI accession NC_000962.3)
Cactus(SibeliaZ) [Cactus alignment guided by a MLWD[14] adjacency tree
computed from SibeliaZ+M2S synteny blocks.

Cactus(Mash) Cactus alignment guided by a B(I)ONJ tree based on the
genomes’ Mash([25] distance matrix.

SibeliaZ Locally collinear blocks produced in the first step of the
SibeliaZ pipeline[20].

Annotation Simultaneous annotation and orthology assignment by

95% amino acid sequence identity and 95%
alignment coverage.

Modifiers Description
+out Synteny blocks computed while including the outgroup
strain M. canettii (NCBI accession NC_019951.1)
+M2S Agglomerated with maf2synteny [18§]

This implies that either 1) many blocks from the Cactus method bridge between
coding regions, or 2) many duplicate regions are assigned in discordant ways.
The second surprise is that the unagglomerated Cactus methods, with different
guide trees, are more discordant from each other than they are with SibeliaZ. It
has been reported that Cactus’s sensitivity to guide trees also has implications
on the downstream phylogenetic analyses [10].

In Fig. 5, the checkered pattern shows that the inclusion of an outgroup af-
fects Cactus blocks more than the choice of a guide tree. The inclusion of the out-
group strain also decreases the discordance between the Cactus blocks on differ-
ent guide trees. For example, Cactus (Mash) has discordance ratios of 0.044 and
0.061 against Cactus (SNP) and Cactus(SibeliaZ), but for Cactus(Mash)+out
these values are 0.022 and 0.026. Table 2 shows the discordance between a
method and its version with the outgroup. Cactus is most highly affected by
the inclusion of the outgroup. While SibeliaZ is somewhat affected, Annota-
tion is barely affected. Agglomerating the blocks with maf2synteny diminishes
the discordance in all cases but Annotation.

4.3 Alignathon

The Alignathon competition was created to compare “whole genome alignment”
methods [9]. Authors of WGA software were invited to submit the collections
of blocks computed by their program, which were compared using the measures
described in the introduction. The project fabricated two synthetic datasets that



14 Swenson, Elghraoui, Valafar, Mirarab and Weller

= 0.10

Cactus (SNP) -
Cactus (SNP) +M2S —0.08

Cactus(SibeliaZ) -
Cactus (SibeliaZ)+M2s -8 0.06

SibeliaZ
0.04
SibeliaZ+M2S '
Annotation -1.36e-01 1.33e-01 0.02
Annotation+M2S -

0.00

Cactus(SNP) -
Cactus (SNP) +M2S -
Cactus(SibeliaZ) -|

SibeliaZ+M2S -

Annotation -

Annotation+M2S -

Cactus(SibeliaZ)+M2S -

Fig.4: The discordance ratio between each pair of block collections. Each of
methods Cactus(SNP), Cactus(SibeliaZ), SibeliaZ, and Annotation along
with their maf2synteny counterpart.
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Fig.5: The inclusion of an outgroup affects Cactus blocks more than the choice
of a guide tree.

were used to evaluate the block collections, one that mimicked the properties of
set of Primates, and another that mimicked the properties of a set of Mammals.

We applied our MDDS heuristic to each pair of block collections. Note that
we were limited to the collections available on the Alignathon downloads page,
so were unable to compare to some methods, such as Mercator/Pecan [26].
The results for the Primate dataset are depicted in Fig. 6 while results for the
mammal dataset are depicted in Fig. 7. Being evolutionarily closely related, the
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Table 2: Comparison of discordance ratios between blocks computed by the same
method, with and without an outgroup in the input genome set. maf2synteny
usually reduces the high discordance (shown as a percentage) between the blocks.
For example, Cactus (SNP) applied to the TB sets with and without the outgroup
shows a very high divergence ratio, yet a much lower one after maf2synteny has
been applied to the two block collections.

manSynteny?‘ Cactus (SNP) SibeliaZ‘Annotation
no 10.09% 3.57% 0.00263%
yes 1.57% 2.37% 0.0547%

VISTA-LAGAN - —0.10
Cactus |
EBI-MP - —0.08
PSAR-Align -f
AutoMz -E&! — 0.06
Mugsy -|
progressiveMauve - — 0.04
Robusta —
Genomematch 2 —ﬁ — 0.02
Multiz -
— 0.00

Y
AutoMz [

VISTA-LAGAN -
EBIL
PSAR-Align -|
Mugsy -
Genomematch 2 -|
Multiz -

progressiveMauve -|

Fig. 6: Discordance ratios for simulated Primates.

Primates dataset mostly shows discordance ratios below 2%. While this trend
is consistent with the Alignathon findings, including GenomeMatch2 (SoftBerry,
Mount Kisco, NY) being relatively more discordant, there were differences with
the Jaccard index reported by Alignathon. VISTA-LAGAN [8], for instance, stands
out as generally more discordant than the others, being rather dissimilar to
PSAR-Align [16], AutoMz, and Multiz [6]. EBI-MP stands out as having both the
best, and the worse discordance ratios of the dataset; despite having a ratio of
over 12% against progressiveMauve [7], it also is the only method in the set
to be hierarchically related to another one (Robusta [24]). Cactus has very low
discordance with all methods except GenomeMatch2.

The simulated mammal dataset contained genomes that were separated by
a larger evolutionary distance, and this was reflected in surprisingly large dis-
cordance ratios. We observe several discrepancies with the Jaccard distances
reported by Alignathon ([9] — Fig. 8B). GenomeMatch3 was extremely dissimilar
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Fig. 7: Discordance ratios for simulated Mammals.

to all methods but Mugsy [2], yet we observe high hierarchical discordance ra-
tios only against Robusta and Multiz. Cactus has low hierarchical discordance
against all other methods, whereas it had high Jaccard distances against Mugsy,
GenomeMatch3, and EBI-EP0. On the other hand, Robusta seemed to have poor
comparisons for both the Jaccard and hierarchical measures.

5 Discussion and Conclusions

In this article we addressed the question of how to relate two collections of ho-
mology statement blocks to each other. We established a relationship between
collections where we allowed overlapping parts of those collections to be hierar-
chically related. In the absence of these conditions, we developed a method that
gives a lower bound on the number of positions that must be ignored in order
for the two to be hierarchically related.

The notion of being hierarchically related depends on semantics that we
imposed on the blocks, which speak to the pairwise homology relationships be-
tween the constituent genomic positions appearing in the blocks. As Ghiurcuta
and Moret [11] used “homology statements” to define their “syntenic blocks”,
we used “positive homology witness” pairs to limit which segments can be con-
tained within a homology statement block; while they required every homology
statement within a segment to occur in all other segments of the block, we al-
lowed positions that do not appear in a positive witness pair in the block, as long
as they do not occur in another block. We went further by associating semantic
meaning to the fact that two positions appear in different blocks. This allowed us
to define what it means for some (sub)collection of blocks to generalize another
(sub)collection.

On the algorithmic side, we showed the MINIMUM DELETION INTO DISJOINT
STARS problem to be NP-Complete. Our heuristic for MDDS is based on a
dynamic program that solves MDDS exactly on a tree. Future improvements
will include the exploration of other algorithms with provable guarantees to
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the quality of their solutions. The solution to the MDDS problem gives the
number of nucleotides that must be ignored so as to make the components of
the block graph stars. This is a necessary condition for the two collections to
be hierarchically related, but not sufficient, and thus is a lower bound on the
number of nucleotides that must be ignored so as to make the two collections
hierarchically related. Future work will explore ways to tighten this bound.

We studied block collections on a set of 94 Mycobacterium tuberculosis strains,
built by annotation and non-annotation based means. We showed on this data
that the agglomeration of blocks using maf2synteny almost always yielded col-
lections that were less discordant. We showed surprising discordance between the
gene-based annotation method and the de novo block inference methods Cactus
and SibeliaZ. Cactus showed great heterogeneity, dependent on the guide tree
that was used to construct the blocks.

When performing a phylogenetic analysis on the blocks, one is tempted to
incorporate an outgroup for the sake of rooting the tree. We showed the inclusion
of that outgroup had drastic effects on blocks, producing blocks that were less
sensitive to the Cactus guide tree. This was concordant with our results from a
phylogenetic study [10].

We studied block collections from the Alignathon project. The simulated
Primates dataset showed that EBI-MP had both the best discordance ratio, and
the worst, among all pairwise comparisons, being hierarchically related to the
Robusta blocks while having ratio over 0.13 with progressiveMauve. For the less
closely related simulated mammalian genomes, we showed several discrepancies
between the Jaccard index reported by Alignathon and our discordance ratio,
the most notable one being that while Cactus had a poor Jaccard index against
a few methods, it had very low hierarchical discordance with all other methods
(except GenomeMatch?2).

While WGA tools and syntenic block agglomeration methods have continued
to be developed, the methods to compare and analyze them has lagged behind,
and the definitions of syntenic blocks are usually procedural or based on co-
linearity. In this article we outlined constraints on homology blocks based on
the homology relationships between pairs of positions in the genome. These
constraints put as much importance on the ends of the blocks as it does their
contents; if two genomic segments are put into different blocks, we interpret this
as a statement that should only be contradicted in a generalization of the blocks.
Our new measure should inform future block inference tool development, and
serve as a sanity check for the practitioner studying large scale structure of sets
of genomes.

6 Availability of Code

All of the code associated with this paper is publicly availble at the following
URL: https://bitbucket.org/thekswenson/homology-evaluation.
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Note that the notion of star and induced star coincide on bipartite graphs since,
for any bipartite GG, the vertices of any star-subgraph of GG also form an induced
star in G. Further, no collection of node-disjoint stars can contain the triangle C's
or the path on 4 vertices Py as a subgraph and it can be seen that this condition
is also sufficient.

Observation 1 A bipartite graph G is a collection of stars if and only if G does
not contain a Py subgraph.

For the correctness proof, we will make two assumptions on the structure of
the input formula ¢, without loss of generality. First, we assume that no variable
occurs in all clauses. If a variable x does occur in all clauses, then we simply add
a new variable y and the singleton clause on y. Second, we assume that each
clause in ¢ has exactly three literals. If a clause C' has at most two literals, we
can simply double the occurrence of any literal in C.

Lemma 2. Let ¢ be an instance of 3SAT and let (G = (V, E),w) be the result
of applying Construction 1 to @. Then, ¢ is satisfiable if and only if (G,w) has
a star packing of weight at least 12m? + m.

Proof. For each variable x; of ¢, let us define the edge sets

D a1 3949 34 1 3t 3ii0 34
T; = U{U?Jv;‘_’u-ﬁ- vt ,U?JGB?)} and F, = U{U?J"r U;‘_’>1+ vt vf’]@?’}

» Yq L)
0<5<2n, 0<5<2n,

where 3j ® 3 := (35 + 3) mod 6n;. Note that any v? has degree two in subgraph
(V,T;) if and only if j =0 mod 3 and any vf has degree two in (V, F}) if and only
if j =2 mod 3. Further, w(T;) = w(F;) = 4mn;. We prove the two directions of
the lemma separately.

= Let ¢ be satisfiable, that is, there is a set L of literals over variables in
¢ such that each clause C}, intersects L in at least one literal £ and L contains
exactly one of z; and —x; for all i. If ¢, is the literal z; in clause Cy =/, then
let ey, := ukv?j and, if ¢, is the literal —z;, then let e} := ukv?j+2. Note that all
ey, are distinct, ex € E(G) for all k. Let S€129s¢ contain ey, for all clauses Cy, of ¢
and note that w(S2"¢) = m. Further, for all variables z; of ¢, let S}&" := T} if
x; € L and Sy* := F;, otherwise (that is, ~z; € L). Finally, let the selected edges
be S := Selausey| J. Syar (see gray edges in Fig. 3), noting that w(S) = 12m2+m.
It remains to show that (V,.S) does not contain a P, as a subgraph. Towards a
contradiction, assume that (V,.S) contains a Py p := (a, b, ¢, d). By construction,
neither J, Sy nor Gelause contains a Py, and p must contain edges from both of
these sets. Thus, p contains wuy for some clause Cy. Since any wuy has degree one
in (V,S), we can assume without loss of generality that ab = ex. By definition of
e, there are ¢ and j such that either b = U?J and z; e LNCy or b= ’U?J+2 and
—x; € LN Cy. Since 65 = 0 mod 3 and 65 + 2 = 2 mod 3 we know that in both
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cases b has degree two in (V,.52"), and both of its neighbors have degree one in
(V, Sy2") and, thus, in (V,S). This contradicts (a, b, ¢, d) being a path in (V,.5).
«: Let S be a maximum-weight subset of E such that w(S) > 12m? +m
and (V,S) does not contain a P; as a subgraph. First, let S°%Us¢ denote the
set of edges of S incident with a clause node uj. Second, for each xz;, let S
denote the set of edges of S on the variable cycle corresponding to x; and note
that, for each P3 (a,b,c) in (V, S}*"), both a and ¢ have degree one in (V, Sy2")
since, otherwise, (V,S) contains a Py. For each ¢, the connected components of
(V, Sy2*) are paths of lengths 1, 2, or 3 and we denote the number of Pis, Pss,
and Pss in (V,S2") by r;, s; and t;, respectively. By construction, each P, is
adjacent to at most one clause vertex uy in (V,S), and since (V,S) does not
contain Py, each Pj is also adjacent to at most one clause vertex wuy in (V,S).

Claim. ), t; = 6m.

Proof. By decomposing the 18m vertices of the variable cycles into P3 subgraphs
separated by single edges, the upper bound of 6m is attained. It suffices to show
>, ti > 6m so, towards a contradiction, assume that ), ¢; < 6m. Then, there is
a variable z; such that t; < 2n; implying |SY*"| < 4n,; — 1 by construction. Let S’
result from S by removing all edges incident with vertices of the variable cycle
corresponding to x; and adding the edges in T;. Since x; does not occur in all
clauses, we removed edges of total weight strictly less than m—+(4n;—1)m = 4mn;
and we added edges of total weight m|T;| = 4mn;. Since neither (V, S) nor (V, T;)
contains a Py, neither does (V,S’), thus contradicting optimality of S. |

Corollary 1. FEach subgraph (V,SP") decomposes into disjoint copies of Ps.

Corollary 2. Let vf and vg/ be nodes of degree two in some subgraph (V, SPe").
Then, |j —j'| =0 mod 3.

Corollary 3. Let ukv{ be an edge in S°%¢. Then, vf has degree two in (V, SY7).

Note that each Ps in (V,J; Sy*") has weight exactly 2m, so S contains exactly m
edges of S2use Further, by Corollary 3, all clause vertices uj; have degree at
most one since they are not adjacent to degree-one vertices. Together, this means
that all clause vertices uy are incident to ezactly one edge in S.

We now construct an assignment 8 and show that it satisfies ¢. To this end,
let S(z;) = TRUE if and only if S contains the edge ukviﬁj for some j,k € N.
Note that, if S contains the edge ukv?j for any j,k € N then, by Corollary 1,
vfj has degree two in (V, 5}2"). Then, by Corollary 2, S cannot contain the edge
uk/v?j+2 for any j’, k' € N. Thus, 3 is well-defined. It remains to show that
satisfies ¢. To this end, let C be any clause in ¢, let ugz be the unique edge
incident with uy in S and let z; be the variable whose variable cycle contains z.
If z; occurs non-negated in Cj, then z = vf 7 for some j € N by construction.
But then, B(z;) = TRUE and z; satisfies C. If ; occurs negated in Cy, then
z = viﬁ]+2 for some j € N by construction. But then, 8(z;) = FALSE and z;
satisfies Cj. In both cases, C}, is satisfied. O
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B Collections of Block that are not Clean

Many of the software we studied produced blocks that were not clean, containing
blocks with overlapping segments. We removed overlapping segments by visiting
pairs of blocks in an arbitrary order, removing the overlap between their over-
lapping segments. Although the order in which overlaps are removed can effect
the final set of blocks, we made the process deterministic by visiting the pairs
in a fixed order.

C Segmental Duplications

If some method makes orthology predictions that may contain multiple segments
from the same genome (e.g. clusters of orthologous groups that contain paralogs
from a single genome), the block graph may provide insight into how to refine
the orthology groups using blocks from another method. This section outlines
such a case.

When a block A € A contains multiple segments from multiple genomes,
blocks from another set B1l, B2 € B could overlap in ways that create non-star
graph topologies. Fig. 8 shows one such example.

Al Al A3 A2

r 1T 1 .132 r 1T 1
g
L 1oL )
Bl B2

93
[ ]

" 2 a1 S » N
T 1 T 1 r — 1 r - 1
92 94
L J L J L J L J
Bl B2 Bl B2

B1

L J L J
B1 B2

B

Fig.8: The block Al € A has two (duplicated) segments in genomes g; and go.
The blocks B1, B2 € B each overlap with one of the two copies. This configu-
ration creates the non-star topology depicted in the middle. The block Al can
easily be split into two so that the graph becomes only stars. This results in a
refinement of the blocks of A, based on the blocks of B.

Blocks B1 and B2 each overlap one of the two duplicate copies of Al in
genomes ¢g; and go. The block A1 can be split into two blocks A1’ and A1” such
that the collections {A1’; A1”, A2, A3} and B are hierarchically related. The two
connected components of BG({A1’, A1”, A2, A3}, B) are both stars with vertices
{A2, B2, A1’} and {A1”,B1, A3}. This transformation can be generalized to
vertices of higher degree, as long as the overlapping segments can be split in this
way.



