Skip to main content

Variable Embedding Based on L–statistic for Electrocardiographic Signal Analysis

  • Conference paper
  • First Online:
Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications (IWINAC 2022)

Abstract

In this paper, a variable embedding approach for reconstructing attractors of dynamical systems is proposed, using the L–statistic based on noise amplification. Particularly, the variable manifold is obtained from a time-series using delay coordinates and an embedding vector, the last one, is constructed based on a L–statistic matrix which contains the local reconstruction quality of whole attractor. The embedding vector contains the optimal embedding dimension for each point in the manifold. This approach were performed on electrocardiography databases, we obtain the first four statistical moments for the embedding dimension vectors and apply statistical tests to distinguish between normal and pathological signals. Results shown significant differences that lead to new classification strategies, infer about functional states, and establish a new path for processing signals with high embedding dimensions, i.e., high computer complexity.

This work is presented in partial fulfillment of the requirements for the “Call for the strengthening of vocations and training in ST&I for economic reactivation in the framework of the 2020 post-pandemic” No. 891 of MinCiencias- Colombia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abarbanel, H.D.I., Kennel, M.B.: Local false nearest neighbors and dynamical dimensions from observed chaotic data. Phys. Rev. E 47(5), 3057–3068 (1993). https://doi.org/10.1103/PhysRevE.47.3057

  2. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88(17), 174102 (2002). https://doi.org/10.1103/PhysRevLett.88.174102

  3. Buś, S., Jȩdrzejewski, K.: Two stage SVD-based method for QRST waves cancellation in atrial fibrillation detection. In: 2019 Signal Processing Symposium (SPSympo), pp. 24–28 (2019). https://doi.org/10.1109/SPS.2019.8882032

  4. Casdagli, M., Eubank, S., Farmer, J., Gibson, J.: State space reconstruction in the presence of noise. Physica D 51(1), 52–98 (1991). https://doi.org/10.1016/0167-2789(91)90222-U

    Article  Google Scholar 

  5. Cuesta-Frau, D., Murillo-Escobar, J.P., Orrego, D.A., Delgado-Trejos, E.: Embedded dimension and time series length. practical influence on permutation entropy and its applications. Entropy 21(4), 385 (2019). https://doi.org/10.3390/e21040385

  6. Espinosa, R.A., Calderón, R.: Choice of tau in the estimation of ApEn and SampEn entropy of EMG, ECG and EEG signals. In: 2019 XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA), pp. 1–5 (2019). https://doi.org/10.1109/STSIVA.2019.8730216

  7. Han, M., Ren, W., Xu, M., Qiu, T.: Characteristic lyapunov exponents and smooth ergodic theory. Russian Math. Surv. 32(4), 55–114 (1977). https://doi.org/10.1070/rm1977v032n04abeh001639

  8. Han, M., Ren, W., Xu, M., Qiu, T.: Nonuniform state space reconstruction for multivariate chaotic time series. IEEE Trans. Cybern. Ser. 1–14 (2018). https://doi.org/10.1109/tcyb.2018.2816657

  9. Henry, B., Lovell, N., Camacho, F.: Nonlinear dynamics time series analysis. Nonlinear Biomed. Signal Process. Dyn. Anal. Model. 2, 1–39 (2000)

    Google Scholar 

  10. Hirata, Y., Aihara, K.: Dimensionless embedding for nonlinear time series analysis. Phys. Rev. E 96(3), 032219 (2017). https://doi.org/10.1103/PhysRevE.96.032219

  11. Johnson, L.S., Persson, A.P., Wollmer, P., Juul-Möller, S., Juhlin, T., Engström, G.: Irregularity and lack of p waves in short tachycardia episodes predict atrial fibrillation and ischemic stroke. Heart Rhythm 15(6), 805–811 (2018). https://doi.org/10.1016/j.hrthm.2018.02.011

  12. Judd, K., Mees, A.: Embedding as a modeling problem. Physica D 120, 273–286 (1998). https://doi.org/10.1016/S0167-2789(98)00089-X

    Article  Google Scholar 

  13. Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45(6), 3403–3411 (1991). https://doi.org/10.1103/PhysRevA.45.3403

  14. Keselman, H.J., Rogan, J.C.: The Tukey multiple comparison test: 1953–1976. Psychol. Bull. 84(5), 1050–1056 (1977). https://doi.org/10.1037/0033-2909.84.5.1050

  15. Kraemer, K.H., Datseris, G., Kurths, J., Kiss, I.Z., Ocampo-Espindola, J.L., Marwan, N.: A unified and automated approach to attractor reconstruction. New J. Phys. 23, 033017 (2021). https://doi.org/10.1088/1367-2630/abe336

  16. Little, D.J., Kane, D.M.: Permutation entropy with vector embedding delays. Phys. Rev. E 96(6), 062205 (2017). https://doi.org/10.1103/PhysRevE.96.062205

  17. Ma, H., Han, C.: Selection of embedding dimension and delay time in phase space reconstruction. Front. Electr. Electron. Eng. China 1(1), 111–114 (2006). https://doi.org/10.1007/s11460-005-0023-7

  18. McKnight, P.E., Najab, J.: Innovation and intellectual property rights. In: Weiner, I.B., Craighead, W.E. (eds.) The Corsini Encyclopedia of Psychology. John Wiley & Sons, Inc. (2010). https://doi.org/10.1002/9780470479216.corpsy0524

  19. Moridani, M., Abdi Zadeh, M., Shahiazar Mazraeh, Z.: An efficient automated algorithm for distinguishing normal and abnormal ECG signal. IRBM 40(6), 332–340 (2019). https://doi.org/10.1016/j.irbm.2019.09.002

  20. Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time series. Phys. Rev. Lett. 45(9), 712–716 (1980). https://doi.org/10.1103/PhysRevLett.45.712

  21. Pecora, L.M., Moniz, L., Nichols, J., Carroll, T.L.: A unified approach to attractor reconstruction. Chaos Interdisciplinary J. Nonlinear Sci. 17(1), 013110 (2007). https://doi.org/10.1063/1.2430294

  22. Sauer, T., Yorke, J.A., Casdagli, M.: Embedology. J. Stat. Phys. 65(3–4), 579–616 (1991). https://doi.org/10.1007/bf01053745

  23. Sepulveda, J., Murillo-Escobar, J., Urda-Benitez, R., Orrego-Metaute, D., Orozco-Duque, A.: Atrial fibrillation detection through heart rate variability using a machine learning approach and poincare plot features. In: VII Latin American Congress on Biomedical Engineering CLAIB 2016, vol. 60, pp. 24–28 (2017). https://doi.org/10.1007/978-981-10-4086-3_142

  24. Song, Y., Nie, F., Zhang, C.: Semi-supervised sub-manifold discriminant analysis. Elsevier 29(13), 1806–1813 (2008). https://doi.org/10.1016/j.patrec.2008.05.024

  25. Stone, J., Mor-Avi, V., Ardelt, A., Lang, R.M.: Frequency of inverted electrocardiographic t waves (cerebral t waves) in patients with acute strokes and their relation to left ventricular wall motion abnormalities. Am. J. Cardiol. 121(1), 120–124 (2018). https://doi.org/10.1016/j.amjcard.2017.09.025

  26. Takens, F.: Dynamical Systems and Turbulence (Lecture Notes in Mathematics), vol. 898, chap. Detecting strange attractors in turbulence, pp. 366–381. Springer-Verlag (1981). https://doi.org/10.1007/bfb0091903

  27. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Sciencemag 290, 2319–2323 (2000). https://doi.org/10.1126/science.290.5500.2319

    Article  CAS  Google Scholar 

  28. Theiler, J.: Spurious dimension from correlation algorithms applied to limited time-series data. Phys. Rev. A 34(3), 2427–2432 (1986). https://doi.org/10.1103/PhysRevA.34.2427

  29. Ullah, A., Rehman, S.u., Tu, S., Mehmood, R.M., Ehatisham-ul haq, M.: A hybrid deep CNN model for abnormal arrhythmia detection based on cardiac ECG signal. Sensors 21(3) (2021). https://doi.org/10.3390/s21030951

  30. Uzal, L.C., Grinblat, G.L., Verdes, P.F.: Optimal reconstruction of dynamical systems: a noise amplification approach. Phys. Rev. A 84(3), 016223 (2011). https://doi.org/10.1103/PhysRevE.84.016223

  31. Venkataramanaiah, B., Kamala, J.: ECG signal processing and KNN classifier-based abnormality detection by VH-doctor for remote cardiac healthcare monitoring. Soft. Comput. 24(22), 17457–17466 (2020). https://doi.org/10.1007/s00500-020-05191-1

  32. Wijaya, C., Andrian, H.M., Christnatalis, T.M., Turnip, A.: Abnormalities state detection from p-wave, QRS complex, and t-wave in noisy ECG. J. Phys. Conf. Ser. 1230(1), 012015 (2019). https://doi.org/10.1088/1742-6596/1230/1/012015

  33. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining lyapunov exponents from a time series. Physica D 16(3), 285–317 (1985). https://doi.org/10.1016/0167-2789(85)90011-9

    Article  Google Scholar 

  34. Yan, S., Wang, H., Fu, Y., Yan, J., Tang, X., Huang, T.S.: Synchronized submanifold embedding for person-independent pose estimation and beyond. IEEE Trans. Image Process. 18(1), 202–210 (2009). https://doi.org/10.1109/TIP.2008.2006400

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Escobar-Correa .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Escobar-Correa, L., Murillo-Escobar, J., Delgado-Trejos, E., Cuesta-Frau, D. (2022). Variable Embedding Based on L–statistic for Electrocardiographic Signal Analysis. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds) Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications. IWINAC 2022. Lecture Notes in Computer Science, vol 13258. Springer, Cham. https://doi.org/10.1007/978-3-031-06242-1_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06242-1_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06241-4

  • Online ISBN: 978-3-031-06242-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics