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Abstract. We propose a method for estimating the frictional force
between a contacted surface and the human touch using thermal video
images captured using an infrared thermographic camera. Because this
method can estimate force remotely, its application to various situa-
tions, in which the measurement is difficult to obtain using conventional
contact-based methods, is expected. Furthermore, thermal images have
the advantage of measuring physical quantities directly related to fric-
tional force. As a result of machine learning using the measured data
from multiple subjects and materials, we succeeded in estimating the
frictional force with a high accuracy from the information of the tempera-
ture change on the surface. In addition, we account for both the frictional
and direct heat transferred between the finger and object affecting the
temperature change; therefore, we attempted to improve the accuracy
by extracting only frictional heat. Consequently, our method succeeded
in improving the accuracy.
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1 Introduction

We propose a method for estimating the frictional force between the surface of an
object and a human finger using thermal video recorded by an infrared thermo-
graphic camera. The frictional force is estimated using machine learning, which
accounts for the temperature of the surface changing because of the frictional
heat present when a human strokes an object. Because the surface temperature
of an object is measurable with a high spatial resolution using a non-contact
method, such as an infrared thermographic camera, remotely estimating the
force acting on various surfaces is possible.
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Specialized equipment is typically used to measure physical quantities related
to tactile sense. For example, a strain gauge sensor and durometer are used for
force and hardness measurements, respectively. Recently, methods have been pro-
posed for estimating tactile information remotely based on visible images. Previ-
ous studies [3,4,7,8] have proposed a method for estimating the applied pressing
force from images of fingernail using the change in fingernail color caused by the
changing blood flow when a finger presses an object. Unlike conventional meth-
ods that use measuring instruments, these image-based methods only require
cameras and are expected to be applied in various situations [6].

Previous studies have used thermal images instead of visible images to esti-
mate tactile events. For example, Dunn et al. proposed a method of classifying
the strength of pressure as strong or weak using a random forest based on ther-
mal images [2]. Several studies have also attempted to extract tactile histories
from thermal images [1,5].

Infrared thermographic camera-based methods have the following advantages
over general cameras: (1) Because the strength of the friction force appears as a
change in temperature from friction heat, an infrared thermographic camera can
measure physical quantities near the force. (2) Sequential information is useable
as spatial data because the touch history remains as the temperature changes.
Hence, although superficial changes are unobserved in a visible image, the touch
history can be captured in a thermal image.

This study propose a new technique for measuring tactile information
remotely in a non-contact manner, that is, a method that estimates frictional
force regressively using machine learning and thermal images. To verify the suit-
ability of this method for general use, we examined the accuracy within a simple
environment. Unlike previous methods, our estimates frictional force as a contin-
uous quantity, not as a classification of force strength. This method can improve
the means of information input. Moreover, the proposed method has the poten-
tial to measure force where conventional tactile sensors are difficult to install.
For example, if we use a contact-type sensor to measure the force between touch-
ing skin, the tactile experience may change. However, we can measure the force
without interference using a non-contact method.

2 Proposed Method

2.1 Problem Definition

Our method estimates frictional force using a thermal video in which the tem-
perature change of a surface is recorded when touched by humans. We use the
system shown in Fig. 1 to measure the training and validation data for machine
learning. Each material is fixed to a force sensor that measures the frictional
force when humans stroke it. While the contacted object is undeformed, a force
sensor placed underneath the object can measure the frictional force exerted on
the target surface. The thermographic camera is set above the target such that
the lens and surface are parallel. The subjects draw a straight line left-to-right
on the surface while changing the applied force. A thermographic camera and
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force sensor then simultaneously measure the temperature of the surface and
frictional force, respectively.

Force Sensing Stage

Material
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z

Thermographic Camera
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Fig. 1. An overview of the system. When subjects touch each material fixed on a
force sensor, a thermographic camera and force sensor measure the temperature of the
surface and frictional force, respectively.

2.2 Making Dataset

The measured thermal image sequence is used as input, and the force at the time
as output; thus, creating a training dataset that associates the thermal image
with force is necessary.

To begin, we preprocess each of the measured data. We crop thermal videos
using a fixed window to retain only the area around the straight line traced by
subjects. Because the spatial resolution of the thermographic camera we used
is 640 × 480, the input thermal video was cut to the range of ±64 pixels from
the straight line; thus, 640 × 128 was used. Next, we smooth the force data to
equalize the frame number of the force data and thermal video. The force sensor
now measures at 120 fps, and the thermographic camera at 30 fps. Thus, the
force sensor data is averaged every 4 frames.

We then extract the periods in which subjects touch objects. These are peri-
ods in which the vertical force is larger than the threshold of 0.1 N for longer
than 6 frames (200 ms). We denote each period as In (see Fig. 2). In addition,
each period In is divided every 6 frames (200 ms), and each is used as a seg-
ment Si. We generate input and output data from each segment, as shown in
Fig. 3. The input data are the six differential images in each segment obtained
by subtracting the thermal image of the previous frame, and the corresponding
label data are defined as the average value of the frictional force in the segment.
The use of the subtracted images between frames reduces the effect of variations
in the initial temperature of the surface. We show some examples of input and
label data in Fig. 4.

When the frictional force is measured, the thermal image does not con-
tain information beneath the finger. We assume that the tracing speed changes



Estimation of Frictional Force by Using Thermal Images 237

Fig. 2. An example of intervals {In}n. Each period is longer than 6 frames (200 ms),
and the vertical force is continuously larger than 0.1 N.
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Fig. 3. An overview of dataset generation. Label data are the average value of friction
force in a segment, and the corresponding input data are a set of differential thermal
images in a time-delayed segment.

insignificantly, and, by setting a constant delay time, the thermal image and
frictional force are made to correspond. That is, the thermal image information
after 3 frames (100 ms) is used when the frictional force at frame t is estimated.
This relies on the thermal image containing the contact history, and the fric-
tional force before 3 frames (100 ms) can be estimated from the image after the
finger moves.

2.3 Machine Learning Model

We use an efficient convolutional network model (ECO: the extended model of a
basic convolutional neural network (CNN) model [9]) to estimate the frictional
force from thermal images. Because the original ECO model is used for the
classification problem, we modify the output layer for the regression problem.
That is, in classification tasks, the probability of each class is output in the last
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(a) 0.2730 N (b) 2.4207 N

Fig. 4. These figures show examples of the input and label data used for learning: (a)
small force and (b) large force. The input images represent a heat map of the line
traced by the subject. Because the time resolution of the thermographic camera is not
exactly 30 fps, some frames without change are green. (Color figure online)

layer; thus, we output a single scalar quantity instead using the affine layer.
Moreover, because the size is different from that of the input image used in the
original ECO model, we change the kernel size of the convolution layer near the
input layer.

3 Experiment

Data were obtained from six subjects (three men and three women). We
experimented with the system illustrated in Fig. 1 and adopted two materials:
polystyrene foam and cardboard. We used a tactile force plate (Tech-Gihan,
TF-2020) and infrared thermographic camera (Testo, testo 883) to measure the
frictional force and temperature of the object surface, respectively. The force
plate had an A/D converter with a 16 bit resolution that can measure up to
10 N. In addition, the camera resolution was 640 × 480 px. We set the thermo-
graphic camera 30 cm above the target surface. To prevent the average surface
temperature from increasing when the subjects trace the surface, a fan blows air
such that the surface temperature remains constant while uncontacted.

We synchronize the time between the thermal video captured by the ther-
mographic camera and the force data measured by the tactile force plate using
the following method. First, we placed a finger on an object and quickly swiped
in a horizontal direction by momentarily adding force at the stationary state.
Because the time resolution of the thermographic camera was 30 fps at most, a
frame exists in which the position of the finger changed discontinuously. In con-
trast, the tactile force plate detected a horizontal impulse input. Hence, we treat
these as the same time data and as synchronized. Because the tactile force plate
measured forces at 120 fps, our dataset included time synchronization errors of
up to 33 ms.
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Subjects traced a 20 cm straight line left-to-right on each material while
changing the applied pressing force, and we measured the frictional force and
temperature change. Although the subjects were not required to use a precise
stroke speed, they attempted to stroke each trace in about a second. All subjects
traced each piece of material for 10 min, and the sensor output was recorded. We
used 80% of the data obtained for training and 20% for testing. Three datasets of
patterns were used for training and testing: (a) polystyrene foam and cardboard,
(b) polystyrene foam, and (c) cardboard. The data was obtained only for patterns
(b) and (c), whereas we mixed and used pattern (a).

In addition, we conducted another experiment to determine the effect of
direct heat transfer between the finger and object. When humans touch, two
factors change the temperature: frictional heat and heat transfer. However, the
temperature change owing to heat transfer is primarily caused by finger contact
time, which is independent of frictional force. Thus, we conducted the following
experiment to determine if the accuracy improved by removing the heat transfer
effect. Subjects wore a glove made of cotton and polyester to touch the object
instead of touching it with their fingers. Wearing a glove creates a layer that
insulates and reduces the effect of heat transfer between the finger and object.
We performed the same experiment as without the glove and compared the
results of both experiments.

4 Results and Discussion

The estimation results for each pattern in the skin and glove experiments are
shown in Fig. 5 for all patterns. The horizontal axis shows the actual value of
the frictional force, and the vertical axis the estimated value. This means that a
point closer to the 45◦ diagonal line can be estimated with high accuracy. Table 1
lists the root mean square error (RMSE).

Compared to the results without gloves, the accuracy improved when wearing
gloves for all patterns except (c), in which the accuracy deteriorates Therefore,
this improvement may be owed to the removed heat transfer when wearing gloves.
Possible reasons for accuracy deteriorating in (c) is the small friction coefficient
between the cardboard and glove and the temperature change owing to frictional
heat possibly being insufficiently large. Increasing the length of the segment
may solve this. Because the heat transfer is slower than finger motions, further
improvements in accuracy are expected by extending the segment length and
observing the heat transfer more carefully.

In our experiment, the method is limited to a fixed path, but the same
method may be applied to a path of arbitrary shape. For example, if we track
the position of a finger and crop a thermal image around it, the subsequent pro-
cedure is the same as that of the present method. Furthermore, by modifying
the model to simultaneously estimate the dynamic friction coefficient, the fric-
tional and normal forces can be estimated, and the spatial pressure distribution
is obtainable.

In both experiments, the results of pattern (a) are as accurate as those of
patterns (b) and (c), which used only one material. This result suggests that
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(a) (b) (c)

Fig. 5. Estimation results of the frictional force estimated from thermal images using
machine learning: (a) polystyrene foam and cardboard, (b) polystyrene foam, and (c)
cardboard.

the proposed method has a generalization performance with respect to tactile
objects.

Points with a lower estimation accuracy farther from the straight line, are
primarily distributed below the line, which means that they are estimated to
be smaller than the actual values. This result is attributable to the biased dis-
tribution of the label data used for training. More data for smaller forces than
larger ones exist in any given dataset; therefore, the model is likelier to estimate
smaller forces than the actual values. To address this problem, we may improve
our method in various ways, such as performing data augmentation to unify the
distribution of data and weighing a loss function to equalize the influence from
the data.

Table 1. RMSEs of each pattern in the skin and glove experiments.

(a) (b) (c)

RMSE(Skin) [N] 0.2676 0.3679 0.1941

RMSE(Glove) [N] 0.2480 0.2562 0.2988
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5 Conclusion

This paper proposes a method for estimating the frictional force between a finger
and object using the temperature change of the surface when humans stroke it.
As a result of the experiment using the data when 6 subjects touch two types of
materials, we succeeded in estimating with an error of less than 10% of the data
range. Because the number of materials used for the experiment was insufficient
for general applications; thus, more objects with varying heat capacities must
be tested. However, as a basic test of our proposed method for estimating the
frictional force using thermal images, we showed this possibility.

In addition, we confirmed that the estimation accuracy improved in many
cases by reducing the effect of direct heat transfer between the finger and object.

These results show the possibility of inputting information through finer
force changes, contrasting the classification of force strength demonstrated by
a previous study. In addition, we showed the possibility of measuring tactile
information in locations where installing tactile sensors is challenging.
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Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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