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Abstract. Supervised face alignment methods need large amounts of
training data to achieve good performance in terms of accuracy and gen-
eralization. However face alignment datasets rarely exceed a few thou-
sand samples making these methods prone to overfitting on the spe-
cific training dataset. Semi-supervised methods like TS3 or 3FabRec
have emerged to alleviate this issue by using labeled and unlabeled
data during the training. In this paper we propose Skip-Connections
in Auto-encoder for Face alignment (SCAF), we build on 3FabRec by
adding skip-connections between the encoder and the decoder. These
skip-connections lead to better landmark predictions, especially on chal-
lenging examples. We also apply for the first time active learning to the
face alignment task and introduce a new acquisition function, the Nega-
tive Neighborhood Magnitude, specially designed to assess the quality of
heatmaps. These two proposals show their effectiveness on several face
alignment datasets when training with limited data.

Keywords: Face alignment · Semi-supervised training · Active learning.

1 Introduction

Face alignment (also called facial landmark detection) aims to localize a set of
pre-defined facial anatomical keypoints such as the corners of the mouth, the
boundaries of the eyes or the tip of the nose [25, 28, 17]. Many applications rely
on this task, for example, facial expression recognition or face swapping.

Although the rise of deep learning methods significantly improved the perfor-
mances, the algorithms are still limited by the amount of labeled data available
for training. Semi-supervised methods [1, 33, 23, 13, 8, 24, 12, 9] have emerged in
the field of face alignment to alleviate the lack of labeled data. In this work, we
follow this principle, we try to train face alignment models with as little labeled
data as possible. To do so, we build on 3Fabrec [1], this semi-supervised method
achieves impressing performance in face alignment even with very limited train-
ing data. However, because of its relatively simple architecture, its performance
degrades significantly on challenging datasets such as WFLW [28]. We try in this
work to alleviate this issue. Our contribution is twofold:
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– We enhance 3FabRec architecture with skip-connections between its encoder
and decoder during the supervised training. This addition significantly im-
proves its performances on both 300-W [25] and WFLW [28] datasets.

– We successfully apply active learning to face alignment and introduce a new
acquisition function, the Negative Neighborhood Magnitude, improving even
further the performance of our method when training with limited data.

The rest of the paper is organized as follows. Section 2 sums up the existing
work on face alignment, in particular with limited data, and introduces the active
learning procedure. In Section 3, we present our proposed methods to address
face alignment with limited data. The results of these methods are shown in
Section 4. Finally, we conclude this paper in Section 5.

2 Related work

In our context, face alignment methods can be divided into two families: super-
vised and semi-supervised methods.

2.1 Supervised face alignment

Before the deep learning development in the computer vision domain, face
alignment algorithms usually relied on parametric models, such as active shape
model [6] or active appearance model [20], or on cascade regression [5, 30, 29].
Nowadays, almost all methods are based on artificial neural networks. Among
recent approaches, while some methods still try to regress directly the landmark
coordinates [10], most of them are now based on heatmap regression [22, 3, 28, 27,
18, 7]. In this latter case, the network outputs a probabilistic heatmap for each
landmark and the landmark coordinates are computed from it, usually with the
best local maximum. Wu et al. [28] use facial boundaries heatmaps instead of
landmark heatmaps making the algorithm more robust to large poses and occlu-
sions. To take into account occlusions Kumar et al. [18] model the uncertainty
and visibility of landmarks as a mixture of random variables while Zhu et al. [32]
add in the model weights based on occlusion probability.

2.2 Semi-supervised face alignment

Annotating facial landmarks is time-consuming and can be difficult on faces with
large pose or occlusions. For this reason, face alignment datasets rarely exceed a
few thousand annotated faces. Semi-supervised methods try to alleviate the lack
of annotated training data by incorporating non annotated, or weakly annotated,
data into the learning process. Zhu et al. [33] augment the training dataset
with synthetics faces generated from a 3D face model. Similarly, Qian et al. [23]
generate images with different styles from an input pose image. Honari et al. [13]
impose the equivariance of landmark predictions over multiple transformations
of a face image. To deal with the large variance of different images styles Dong et
al. [8] transforms images into style-aggregated images, and Robinson et al. [24]
generate fake landmark heatmaps from unlabeled images using a Generative
Adversarial Network [12]. Dong et al. [9] train a teacher to assess the quality of
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student predicted landmarks, the best samples are added, along with real data,
to the next training set for retraining the student detectors. Finally, Browatzki
et al. [1] propose 3FabRec that we will detail in the next section.

2.3 3FabRec

In 3FabRec [1], first, an auto-encoder is trained on a large number of unlabeled
face images. During this unsupervised training, the hidden representation of the
auto-encoder learns implicit knowledge about face features (shape, skin color,
gender...) in order to reconstruct the image. The massive amounts of images
used for training make this representation robust to a large diversity of faces.

After the unsupervised training, the auto-encoder is modified to perform
face alignment, the decoder (also called generator) weights are frozen and con-
volutional layers called Interleaved Transfer Layers (ITLs) are added between
its layers to take advantage of its generative power to also generate landmark
heatmaps. The model is then trained on labeled face alignment datasets.

This method achieves impressive results even with few labeled data.

2.4 Active learning

In the academic field, authors usually sample randomly labeled data from the
full annotated training set to demonstrate the effectiveness of their method with
limited training data. However, in real-world applications, at first, no labeled
data is available and one must decide which samples to annotate.

Active learning aims to select the best samples to annotate to get the best
possible model. It is particularly useful when annotation is time-consuming such
as facial landmark annotations. It follows an iterative procedure: from an un-
labeled dataset UN , an initial set L0 is annotated, the model is trained on this
labeled set and all the remaining unlabeled samples are ranked using an acqui-
sition function, the K best samples are annotated and added to L0 giving a new
labeled set L1. The model is then trained from scratch on this new labeled set
and this procedure is repeated until the annotation budget has been exhausted.

The acquisition functions can be divided into two approaches even though
some combine both [16]. The first one is based on “uncertainty sampling” [11, 31],
meaning the acquisition function will try to select the samples where the model
is the least confident, the acquisition function acts as a proxy of the training loss
which is not available. The second approach is based on “diversity sampling” [26],
the acquisition function tries to find samples that represent the diversity existing
in the unlabeled dataset, it is particularly suited for classification tasks where
having a class-balanced training dataset is crucial. To the best of our knowledge,
before this work active learning had never been applied to face alignment.

3 Methods

3.1 SCAF: adding skip-connections to 3FabRec

To detect precisely a facial landmark, spatial information must be kept. How-
ever, in common convolutional networks such as the auto-encoder of 3FabRec
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Fig. 1. Our network architecture and the 2-stage training pipeline. We add skip-
connections between the encoder and the generator of 3FabRec.

[1], the spatial dimensions of the features maps are progressively reduced in the
encoder as global information emerges leading to a compact representation of the
face image. This representation contains strong semantic information useful to
reconstruct the whole face but may lack local details crucial to detect precisely
the landmarks. To address this issue, many recent architectures for face align-
ment [22, 3, 28, 27, 9] use the Hourglass architecture where “skip-connections”
are added between the encoder and decoder. These skip-connections between
the two parts of the network preserve spatial information at multiple resolu-
tions, the decoder can combine these different resolutions to generate better
heatmaps.

Following this principle, we propose SCAF which stands for Skip-Connections
in Auto-encoder for Face alignment, we enhance the 3FabRec architecture with
skip-connections between the encoder and the ITLs. Thus, the input of an ITL is
the element-wise sum of the output of the previous ResNet layer of the generator
and the output of the corresponding encoder layer (the one with the same spatial
dimensions). Before the sum, the output of the encoder layer is transformed
by a set of convolutions called “bottleneck block” as it is done in Hourglass
architectures. The full architecture can be seen in Fig. 1.

We also noticed that splitting the supervised training into two steps: (1)
Training only the ITLs, (2) Finetuning the ITLs and the encoder, is not necessary
and we obtained better results training directly both. As in 3FabRec, we use as
loss the L2 distance between the predicted (H̃) and ground truth heatmaps H.

3.2 Active learning for face alignment

When training with very few examples, we optionally use active learning to select
the best examples. We introduce a new acquisition function called Negative
Neighborhood Magnitude (NNM) based on uncertainty sampling applied to the
landmark heatmaps. When the model is not confident about its predictions, we
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noticed that the magnitude of the heatmaps near the predicted landmark is
lower than when it is confident (see Fig 2). Thus, to compute the NNM, for each
predicted heatmap H̃, we compute the sum of the heatmap pixels in a square
window Wi of size s around the predicted landmark position l̃i, then we sum
all heatmaps and take the negative so that the NNM behaves the same way as
entropy, the less confident the model is, the greater NNM is.

NNM(H̃) = −
L∑

i=1

∑
u,v∈Wi

H̃i(u, v) (1)

After each model training, we rank the unlabeled samples. Some datasets
contain very hard images where the most face is occluded which, thus, have a
large NNM but are not useful for annotation. So, when we select images to label,
we discard a percentage of the images with the largest NNM (see Section 4.6).

Fig. 2. Original image with ground truth (green dots) and predicted (blue dots) land-
marks, ground truth heatmaps and predicted heatmaps for two images from WFLW.

4 Experiments

4.1 Datasets

Unsupervised training datasets We used a combination of two datasets for
the unsupervised training:

AffectNet [21]: dataset created to capture a wide range of facial emotions.
It contains 748K images.

CelebA [19]: dataset with 202K images of celebrities.

Our final dataset for unsupervised training contains about 950K images.
The authors of 3FabRec [1] used as dataset a combination of 228K images from
AffectNet [21] and 1.8M images from the VGGFace2 dataset [4] yielding a total
of 2.1M images. However, due to copyright issues, VGGFace2 [4] is no longer
available, so we could not use it for our experiments.

Supervised training datasets We trained and evaluated our supervised
models on two facial landmark datasets.

300-W [25]: combination of several facial landmark datasets re-annotated
with 68 landmarks. Following the usual splits [1, 9], our training set contains
3148 images, the full test set contains 689 images and is split into a common
test set of 554 images and a challenging test set of 135 images.
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WFLW [28]: dataset containing 7500 training images and 2500 testing im-
ages annotated with 98 landmarks. Many faces are heavily occluded or blurred
making it a challenging dataset.

4.2 Experimental settings

Unsupervised training Apart from the training datasets (see Section 4.1),
we follow the same procedure as in 3FabRec [1], we use the same network (with-
out ITLs and skip-connections) and the same hyperparameters.

Supervised training. Using the ground truth bounding boxes, we crop and
resize the images to 256 x 256 pixels. To generate the ground truth heatmaps, we
use Gaussian kernels with σ = 7. Each ITL layer is a 3x3 convolutional layer and
for the bottleneck blocks we use the hierarchical, parallel, and multi-scale block
of [2]. The modified auto-encoder generates landmark heatmaps of size 128 x 128
pixels by skipping the last generator layer (the authors of 3FabRec [1] showed
that the higher generator layers contain mostly decorrelated local appearance
information). We use the same data augmentations as in 3FabRec [1], we also
use Adam [15] to optimize the ITL and bottleneck layers, their learning rate is
set to 0.001 while the encoder’s one remains to 2×10-5, the Adam’s β1 is reset to
the default value of 0.9. Unlike 3FabRec [1], we train directly the three modules
in parallel without any ITL-only-training stage before.

Active learning The initial labeled L0 set always contains 10 random samples
from the unlabeled set UN , the number K of added samples after each training
depends on the final training set size. For 300-W we used K=60, 30, 10 for a
final training size of 315 (10% of dataset), 158 (5%), 50 respectively. For WFLW,
we used K=100, 75, 40, 20, 10 for a final training size of 750 (10% of dataset),
375 (5%) 200, 100, 50 respectively.

Evaluation To evaluate our models, we use the Normalized Mean Error
(NME) with the distance between outer eye-corners as “inter-ocular” normal-
ization.

4.3 Unsupervised training results

We trained the auto-encoder with the same training parameters as in 3FabRec
[1] except for the datasets (see section 4.1) but because we had less than half
of the number of images used in 3FabRec [1] for our unsupervised training, we
obtained worse results on the supervised training. Fortunately, the authors of
3FabRec [1] provide the source code and pre-trained weights for the auto-encoder
at https://github.com/browatbn2/3FabRec, so we decided to use these weights
to focus on the supervised training and get fair comparisons with their results.

4.4 Qualitative results

During the supervised training of SCAF, the reconstruction error increases be-
cause details non-necessary for landmark detection such as gender or skin color
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fade away. Only the shape of the face remains but sometimes some reconstructed
facial parts do not even match with the predicted landmarks. For example (see
Fig. 3), the mouth is always reconstructed as close even if it is open in the
original face, but the landmark predictions align with the original mouth.

Fig. 3. Comparison of the reconstructions and landmark predictions. Top row shows
some original images from the WFLW Full test set and their ground truth landmarks
(green dots). Bottom row shows the reconstructed images with SCAF. Predicted land-
marks are displayed in blue along with the ground truth landmarks in green.

4.5 Comparison with state-of-the-art

Comparison with fully supervised methods Table 1 compares our meth-
ods with fully supervised methods on 300-W [25] and WFLW [28] when training
on the full training set. We re-trained 3FabRec [1] from the provided unsuper-
vised weights available at https://github.com/browatbn2/3FabRec to get a fair
comparison between the original network and our modified architecture. When
training on 300-W, our implementation of 3FabRec gets worse results than the
ones reported in the paper of 3FabRec [1] however SCAF improves our results,
especially on the Challenging test set. For WFLW, this time, our implementa-
tion of 3Fabrec obtain NME results slightly better than the ones reported in
the 3FabRec paper [1]. The addition of the skip-connections improves again the
NME from 5.58 to 5.50. Recent fully supervised methods beat our approach
when trained on the full training set of WFLW or 300-W but the point of our
semi-supervised method is to keep good performance even when training with
limited data as we will see in the next paragraph.

Training with limited data For 300-W, our implementation of 3FabRec
gets better results than the ones reported in 3FabRec paper [1] when training
on reduced training size. Apart from the training size of 50, SCAF outperforms
our implementation of 3FabRec for any training dataset size. If we also apply
active learning, the NME is reduced on the Challenging test but increased on the
Common test set meaning that the model is more robust to challenging examples
but a bit less precise for common examples. Results are reported in Table 2.
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Table 1. Normalized mean error (%) on 300-W on the Common, Challenging and Full
test sets and on WFLW Full test set

300-W

Method Com. Chall. Full

SDM [29] 5.57 15.40 7.52

SAN [8] 3.34 6.60 3.98

LAB [28] 2.98 5.19 3.49

ODN [32] 3.56 6.67 4.17

SA [23] 3.21 6.49 3.86

TS3 [9] 2.91 5.90 3.49

AWing [27] 2.72 4.52 3.07

LUVLi [18] 2.76 5.16 3.23

3FabRec [1] 3.36 5.74 3.82

3FabRec (Our impl.) 3.54 5.93 4.01

SCAF (Ours) 3.48 5.83 3.95

WFLW

Method Full

SDM [29] 10.29

SAN [8] 5.22

LAB [28] 5.27

SA [23] 4.39

AWing [27] 4.36

LUVLi [18] 4.37

3FabRec [1] 5.62

3FabRec (Our impl.) 5.58

SCAF (Ours) 5.50

Table 2. Normalized mean error (%) with reduced training sets on 300-W on the
Common, Challenging and Full test sets (first, second and third columns respectively
for each training set size). AL stands for active learning.

300-W dataset

Method Training set size

100% 20% 10% 5% 50(1.5%)

RCN+ [14] 3.00 4.98 3.46 - 6.12 4.15 - 6.63 4.47 - 9.95 5.11 - - -

SA [23] 3.21 6.49 3.86 3.85 - - 4.27 - - 6.32 - - - - -

TS3 [9] 2.91 5.90 3.49 4.31 7.97 5.03 4.67 9.26 5.64 - - - - - -

3FabRec [1] 3.36 5.74 3.82 3.76 6.53 4.31 3.88 6.88 4.47 4.22 6.95 4.75 4.55 7.39 5.10

3FabRec (Our impl.) 3.54 5.93 4.01 3.79 6.33 4.29 3.93 6.70 4.47 4.10 6.86 4.64 4.27 7.23 4.85

SCAF (Ours) 3.48 5.89 3.95 3.66 6.23 4.17 3.87 6.60 4.40 3.93 6.84 4.50 4.33 7.60 4.97

SCAF+AL (Ours) - - - - - - 3.99 6.49 4.48 4.19 6.78 4.70 4.29 6.93 4.81

Table 3 compares our models to other semi-supervised methods on WFLW.
Firstly, when training 3FabRec network on WFLW, skipping the ITL-only train-
ing step significantly improves the NME, especially when training with very lim-
ited data. Apart from the training size of 50, SCAF consistently outperforms
3FabRec when training on full or limited training data. When combined with
Active learning, its performance is improved even further, especially with the
training size of 50 where it beats our implementation of 3FabRec this time.

4.6 Ablation studies

Comparison of acquisition functions We tried three different acquisition
functions on the 3FabRec [1] and SCAF architectures. Two of them are based on
uncertainty sampling: our proposed Negative Neighborhood Magnitude (NNM)
and the mean of the spatial entropy of the heatmaps. The last function is based
on diversity sampling, it is the K-center-greedy algorithm used in [26].
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Table 3. Normalized mean error (%) with reduced training sets on WFLW Full test
set. AL stands for active learning.

WFLW dataset

Method Training set size

100% 20% 10% 5% 50

SA [23] 4.39 6.00 7.20 - -

3FabRec [1] 5.62 6.51 6.73 7.68 8.39

3FabRec (Our impl.) 5.58 6.23 6.42 6.84 7.74

SCAF (Ours) 5.50 6.07 6.28 6.72 8.06

SCAF+AL (Ours) - - 6.24 6.59 7.60

Table 4. Normalized mean error (%) on WFLW Full test set for different active learning
methods and different training set sizes (5% = 375 examples and 10% = 750 examples),
for our implementation of 3FabRec and SCAF.

WFLW dataset

Method 3FabRec (Our impl.) SCAF
Final training set size Final training set size

50 100 200 5% 10% 50 100 200 5% 10%

Random 7.74 7.44 7.04 6.84 6.42 8.06 7.40 6.88 6.72 6.28
NNM 8.27 7.57 7.15 6.77 6.36 8.04 7.44 7.01 6.63 6.22
Entropy 8.17 7.53 7.06 6.71 6.32 7.95 7.44 7.02 6.61 6.22
NNM10% 7.63 7.20 6.82 6.62 6.31 7.60 6.99 6.72 6.59 6.24
Entropy10% 7.71 7.12 6.83 6.62 6.34 7.53 6.96 6.73 6.62 6.22
K-center-greedy 7.85 7.36 6.95 6.65 6.32 7.74 7.18 6.82 6.61 6.28

Table 4 reports the NME on WFLW for these acquisition functions. Apart
from the final training size of 50 on the 3FabRec network, the K-center-greedy
function improves consistently the results over random sampling. When using
NNM or Entropy to select the samples among all the unlabeled samples, when
the final training size is small (≤200), the results are worse (or barely superior)
than sampling at random. However, if we discard the top 10% ranked samples
when selecting the samples, then we improve the NME and strongly outper-
form the random and K-center-greedy samplings. These methods are referred as
NNM10% and Entropy10% in Table 4. This shows that very hard samples in the
WFLW training dataset should not be added to the training set because they
are outliers and won’t help the model to generalize to unseen data. However, as
the final training set size increases, the benefit of discarding the worst examples
tends to disappear; because more samples are added, the proportion of outliers
decreases, and “normal” challenging samples are added to the training set.

Fig. 4 shows the top-5 ranked samples according to the NNM after training
SCAF on 10 random samples for the WFLW training set. The top row displays
the top-5 samples among all unlabeled samples, the five images are clearly out-
liers: blue color, distorted face for the second image, non-human face for the
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last image and won’t help much the model to generalize to unseen data after
training. The bottom row displays the top-5 images after discarding the top-10%
images from the unlabeled dataset. These five images are still challenging (low
resolution, occlusion, baby face) but closer to “normal” images, adding them to
the training set should improve the model predictions.

Entropy and NNM have close results in terms of NME. However, in the
case of Entropy, the whole heatmaps must be normalized before computing the
entropy on the whole heatmaps too, whereas the computation of the NNM only
requires summing heatmaps values of small windows. In our experiments, with an
Intel Core i7-9850H CPU, computing the Entropy took on average 0.042 seconds
whereas computing the NNM only took 0.012 seconds. Thus, the NNM is 3.5
times faster to compute than the Entropy while achieving comparable results.

Fig. 4. Top-5 ranked images for NNM after training the model on 10 random samples.
Ground truth landmarks are displayed with green dots while blue ones are the predicted
landmarks. Top row shows the top-5 ranked images among all the unlabeled samples
while bottom row displays the top-5 ranked images after removing the top-10% images.

5 Conclusion

In this paper, we addressed the problem of training face alignment models with
limited labeled data. To achieve this goal, we improved 3FabRec [1] architec-
ture by adding skip-connections between the encoder and decoder during the
supervised training. This makes the network predict more accurately the facial
landmarks heatmaps, especially for challenging examples where the hidden rep-
resentation fails to capture all the specificities of the image. We also applied
active learning to the face alignment task to improve even further the perfor-
mance with limited training data and showed its effectiveness by introducing
a new acquisition function for heatmaps called Negative Neighborhood Magni-
tude. This function achieves similar performance to spatial entropy in terms of
NME while being much faster to compute.
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