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Abstract. Unsupervised domain adaptation is a promising technique
for computer vision tasks, especially when annotating large amounts of
data is very costly and time-consuming, as in semantic segmentation.
Here it is attractive to train neural networks on simulated data and fit
them to real data on which the models are to be used. In this paper,
we propose a consistency regularization method for domain adaptation
in semantic segmentation that combines pseudo-labels and strong per-
turbations. We analyse the impact of two simple perturbations, dropout
and image mixing, and show how they contribute enormously to the
final performance. Experiments and ablation studies demonstrate that
our simple approach achieves strong results on relevant synthetic-to-real
domain adaptation benchmarks.

Keywords: Domain Adaptation - Semi-Supervised Learning - Unsuper-
vised Learning - Semantic Segmentation - Synthetic Data.

1 Introduction

Semantic segmentation has accomplished amazing performance on annotated
data and has become one of the most important tasks in computer vision. How-
ever, labelling data for semantic segmentation requires assigning a class label to
each pixel in an image, which is an extremely tedious and expensive task. For
example, annotating a single image of the Cityscapes dataset [6], which consists
of images of urban scenes, takes up to 90 minutes [6]. As a result, datasets for
semantic segmentation of urban scenes are generally much smaller than datasets
for image classification. Synthetic images from computer games are a power-
ful alternative to real images because they can be labelled automatically, since
the geometric 3D scene and the objects it contains, that are projected into the
image, are known. This results in high-resolution datasets with precise object
boundaries that are inexpensive to obtain and offer almost infinite possibilities
for the automatic creation of synthetic data. The problem here is, however, that
computer simulations are not perfectly realistic. In general, convolutional neu-
ral networks (CNNs) learn features only from the domain on which they were
trained. For this reason, CNNs trained on synthetic data tend to perform poorly
on real images, even when the synthetic data consists of significantly more im-
ages. For example, in our experiments we noticed that as few as 30 images from
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the Cityscapes dataset were enough to get similar performance to 24000 images
from a dataset that consists of images from the GTA5 game [16].

Unsupervised domain adaptation (UDA) tries to bridge this domain gap. It aims
to transfer the knowledge of a label-rich source domain to an unlabelled target
domain with similar class information. When synthetic data is used as source
domain, the problem of synthetic-to-real domain adaptation arises. Recently,
researchers utilised self-training (ST) techniques for UDA [1,5, 15,25, 30], that
allows the usage of images from the target domain directly for the training of the
segmentation network via pseudo-labels. They do so by adding a new loss term to
the training objective that encourage the model to make consistent prediction of
images from the target domain under different perturbations of the image. These
approaches achieve great results and represent the current state of the art. In
such a framework, the used perturbations are the key for the success of those
approaches [9]. Current approaches however use perturbations on the image level,
that are sometimes not realistic, such as heavy noise [30], Fourier Mixing [15,28]
or Style Mixing [15,20]. Even though these perturbations are non-realistic, they
improve the general performance when applied. We argue that this improvement
also comes from the fact, that the perturbations lead to a much worse prediction,
making the pseudo labels, which may not be perfectly correct as well, still better
and therefore leading to an improvement of the model. In our experiments, we
found that perturbations that do not degrade the prediction of the model do
not improve the UDA task, while perturbations that degrade the prediction
of the model do. This comes close to the bootstrapping idea in its idiomatic
meaning, which refers to a self-starting process that is supposed to continue
or improve itself without external input. Based on this situation, the question
arises as to how the prediction of the model can be deteriorated the most. While
perturbations on the image level are effective, we found that perturbation within
the network itself are powerful as well. Surprisingly, we found that a simple
baseline model, which uses heavily dropout as perturbation, achieves strong
results on current benchmarks for UDA. Combined with a perturbation on the
image, we achieve state-of-the-art results. As image perturbation, we utilise a
recent perturbation that has originally been proposed for the image classification
task: the CowMask [8] image mixing method. It mixes two images and their
predictions by a network with a specific mask looking similar to the typical black
and white skin pattern of a cow. We argue that this perturbation is perfect for
segmentation tasks, as it simulates the occlusion of objects and introduces an
additional segmentation task.

2 Related Work

UDA for semantic segmentation has been extensively studied in the last years.
Adversarial training was the previously dominant approach applied either on
the input space, the feature space or the output space [23] of a segmentation
network. Popular input space adaptation techniques try to change the style of
the source domain by performing image-to-image translation, for example by
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making synthetic images look more realistic [2,5,11,19]. The biggest disadvan-
tage of adversarial training is the unstable training behaviour. Recently, a new
line of methods introduced semi-supervised learning (SSL) techniques for UDA
and showed remarkable results. SSL aims to include unlabelled data alongside
labelled data in the training of a neural network. These approaches are either
based on consistency regularization [5,15,30] or self-training [31,32]. Self-training
aims to generate pseudo-labels for the unlabelled data and fine-tune the model
on them iteratively [13,27]. Zou et al. [31] and Li et al. [14] applied the pseudo-
labelling approach for UDA task and achieved strong improvements. The key
idea of consistency regularization is that the predictions of a model should be in-
variant under different perturbations. These approaches usually adopt a teacher
- student framework, where the teacher model is an exponential moving average
(EMA) of the student model. The teacher model transfers the learned knowledge
to the student, who is additionally influenced by perturbations that are normally
applied to the input image. In comparison to self-training, these approaches are
typically not trained iteratively, but end-to-end. Choi et al. [5] combined this ap-
proach with a GAN-based augmentation module for image translation. Zhou et
al. [30] further incorporated an additional uncertainty module that tries to ap-
proximate the uncertainty of the predictions to filter uncertain pixel predictions
from the loss calculation. To do so, they perform several forward passes of an
image with different Gaussian Noise applied and calculate the pixel-wise entropy
based on those predictions. Melas-Kyriazi and Manrai [15] proposed a similar
approach with different perturbations on the image, namely simple data aug-
mentation, CutMix [29], style consistency and Fourier consistency. Compared to
the other work, they did not apply the exponential moving average of the trained
model and use the prediction of the model itself as guidance. Our work is mostly
related to this line of research. Building on PixMatch [15], we show that sim-
ply by applying dropout as perturbation for the student model, we are able to
improve the general results. Combined with the recent image-mixing technique
using CowMask [8], we achieve strong results with a very simple and easy to
implement approach. Specially, we show that the used perturbations are the key
for this kind of approaches.

3 Methodology

Let S, T be the source and target domain and let X, X7 be sets of images from
each domain, respectively. We denote x;, € Xs and x; € X7 as data samples
from the source and target domain. At the source domain we have access to NV
labelled segmentation masks, i.e., Xs = {(x%,y?)}X,. We denote y as ground
truth annotation from the dataset and y as pseudo-label. The target domain
has no labelled samples and shares C' categories of the source domain. Our task
is to train a segmentation network that performs well on the target domain.
This problem formulation can further be extended to multiple source domains
Xé,X‘%, ...,Xg or target domains X71-,X72—, ...,X%—I, with K and M the number
of source or target domains, respectively.
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Figure 1 shows an overview of our proposed architecture. The overall objective
function for the segmentation training is defined by a supervised part based
on images from the source domain as well as a self-supervised part based on
images from the target domain. The self-supervised part employs consistency
regularization and pseudo-labels on the target domain. Similar to Tarvainen et
al. [22], we make use of two networks of identical architecture: a student network
Fs and a teacher network Fr. The predictions of the teacher network are used to
produce pseudo-labels for images of the target domain, which are subsequently
used to train the student network. In this framework, the teacher network is
simply the exponential-moving average (EMA) of the student model and will
not receive any gradient-based parameter updates. The overall objective £ is
defined as follows:

£ = 55 + AL, (1)

where A7 is a trade-off parameter. Egs indicates the softmax cross-entropy ob-
jective L.. between the prediction of the student network Fg(xs) for an im-
age of the source domain x; € Xg and its pixel-level annotation map ys, i.e.,
»Cgs = £66<FS(XS))yS)'

Given an image from the target domain x; € X7 and its perturbed version
X, we feed the image through the teacher network Fr to obtain the soft pseudo-
label y; oft — By (x¢). We can get a hard pseudo-label by calculating the argmax
at the class dimension, i.e. yPod = argmax(yfoft). Both soft and hard pseudo
labels may now be used as targets for the student network. By incorporating

&fof ! we can calculate a loss by applying the Mean Squared Error (MSE):

/3?8 = Lase(Fs(X), 7). (2)

By incorporating 7?4, we can calculate a loss by applying the standard cross

entropy loss:
ACFS = Acce (FS (xt)a yiw,rd). (3)

Comparing soft and hard pseudo-labels, soft pseudo-labels are generally more
robust against noisy labels (false classifications), while hard pseudo-labels bring
an additional learning effect as the highest activation is reinforced across classes.
We will investigate both in our ablation study.

Perturbations As stated in [9], the success of SSL techniques based on consis-
tency regularization depends on the used perturbations. These are used only at
the forward pass of the student model when calculating the self-supervised loss
on images from the target domain. We experiment with two different perturba-
tions, one at the input image and one within the model itself.

An easy way to perform a perturbation on the student side is by using
dropout layers. The role of dropout is to improve generalization performance
by preventing the model from overfitting. It forces the network to learn more
robust features that can deal with many random subsets of neurons. In addition,
dropout usually also leads to a deterioration of the prediction and thus to an
increase of the error, since, in a sense, only a part of the original network is used.
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Fig. 1: Mlustration of the proposed solution.

As we work with CNNs, we will make usage of SpatialDropout as proposed by
Tompson et al. [24]. Given a feature tensor from a convolutional layer of size
height x width x depth, where depth is the amount of filters of the layer, the
dropout is applied at some dimensions of the depth across the entire feature
map. It therefore simulates that certain filters had no activation. The dropout
within the network has the positive effect, that the resulting sub-network of the
original network will be trained on clean images, with lets the network learn
particular features of that domain. Other perturbations such as heavy random
noise or Style change [15,20] applications let the network learn on images that
will not occur in reality.

Following [8], we further use the Cutmix [29] augmentation using a Cow-
Mask [8] as perturbation. In this augmentation, individual parts of the image
will be replaced by another image. These augmentations do not occur in re-
ality, but they serve as an additional perturbation by suppressing areas and
introducing additional object boundaries at the edge of the applied mask. The
replacement of certain areas within the image further results in an occlusion of
the objects. To generate a single sample for the student network, we take two
images from the target domain x; and x?. Both images will be fed to the teacher
network Fr to obtain the pseudo labels ¥} and y?. We then calculate the image
and target for the training of the student network by mixing the images and the

pseudo labels according to the generated mask M by:
X=Mox; +(1—-M)ox, @
=Mooy, +1-M)oy;,

where M € {0,1}"W*H denotes a binary mask and ® is element-wise multiplica-
tion. For the calculation of a random CowMask M, please refer to [8].
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4 Experiments and Results

In this section, we detail the experiments that we conducted in order to show
the benefit and performance of our proposed approach.

4.1 Datasets

We use five datasets in our experiments. The Cityscapes dataset [6] contains
images from real-world urban scenes, split into 2975 images for training and 500
for validation. The GTA5 dataset [16] and the SYNTHIA dataset [17] contain
24966 and 9400 synthetic images with pixel wise annotations, respectively. The
annotations of both datasets are compatible with Cityscapes. Both synthetic
datasets serve as source domain, while the Cityscapes dataset serves as target
domain. This results in two popular synthetic-to-real domain adaptation sce-
narios: GTAS5 to Cityscapes (GTA — CS) and SYNTHIA to Cityscapes (SYN
— C8S). We further experiment with a third synthetic dataset Synscapes [26],
which contains 25000 photo-realistic images. Besides synthetic-to-real domain
adaptation, we also evaluate our approach at the CS — ACDC benchmark. The
ACDC [18] dataset contains images of four common adverse visual conditions:
fog, nighttime, rain and snow. Images from the Cityscapes dataset are taken at
normal weather conditions and at daytime. This domain adaptation attempts
to improve the segmentation model at different visual conditions as they occur
in the labelled dataset. As it considers four different visual conditions, it can
be seen as a multi-target domain adaptation problem. Each visual condition
contains of 400 training images, 100 validation images and 500 test images.

4.2 Implementation details

For a fair comparison to earlier works, we adopt the VGG16 [21] and the
ResNet101 [10] backbone pre-trained on the ImageNet dataset [7]. Following
Deeplab-V2 [3], we incorporate Atrous Spatial Pyramid Pooling (ASPP) as the
decoder and then use bilinear upsampling to get the segmentation output. We
use color jittering as augmentation on images from the source domain with the
same settings as used in [4]. For the dropout perturbation, we place a dropout
layer before each pooling or strided convolutional layer for simple reproducibility
and re-implementation. If not stated otherwise, we use a dropout rate of 0.3 and
an EMA value of 0.999. For the ResNet101, the Batch Normalization layers are
frozen during training. We set Aeq; to 50 when using soft pseudo-labels, other-
wise to 1. All experiments were conducted on a single NVIDIA V100 GPU with
16GB of VRAM. We perform 25.000 training steps where no loss is calculated
on the target domain as warm-up phase. Afterwards, each mini-batch consist of
an image from the source and target domain respectively. We train our models
with early stopping.
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Table 1: Ablation Study of our proposed perturbations within the consistency
regularization framework using the VGG16 network as backbone. ’SL’” and "HL’
stands for soft and hard pseudo-labels, respectively. '"CM’ stands for the image-
mixing technique using a CowMask.

Method [mIoU19 Method [mIoU16 [mIoU13
Baseline 35.23 Baseline 31.0 35.9
SL 40.57 SL 32.05 |36.86
SL + Dropout 49.03 SL + Dropout 37.6 42.90
SL + CM 51.29 SL + CM 38.74 |43.85
SL + Dropout + CM |49.81 SL + Dropout + CM [41.47 |47.34
HL 40.05 HL 33.17 |38.01
HL 4 Dropout 48.0 HL 4+ Dropout 38.12  |43.53
HL 4+ CM 52.26 HL + CM 41.82 |47.50
HL + Dropout + CM|53.4 HL + Dropout + CM|[44.74 |51.21
(a) GTA5 — Cityscapes (b) SYNTHIA — Cityscapes

4.3 Ablation Study

In this section, we study the effectiveness of each component in our approach and
investigate how they contribute to the final performance on both benchmarks
when using the VGG16 as backbone. Table 1 compares the use of soft and hard
pseudo-labels (SL vs. HL) as well as the perturbations alone and in combination.
Comparing the results for soft and hard pseudo-labels, we can identify only minor
differences. However, when both perturbations are used, hard pseudo-labels lead
to better results. This is presumably because when both perturbations are used,
the model improves and so do the pseudo labels, giving the additional learning
effect of the pseudo labels a better impact. Comparing the approach without
any perturbation to the baseline, we can observe an improvement of 5% on
the GTA — CS and 1% on the SYN — CS benchmark. Using only dropout as
perturbations improves the results for 8 — 9% on the GTA — CS and 5% on
the SYN — CS benchmark. The same applies for the CowMask image mixing
perturbation, which improves the result even more. Thus, the use of dropout
or image mixing as perturbations leads to a stronger improvement than the
use of pseudo-labels in general. Combining both perturbations gives a slight
improvement in comparison to both perturbations alone. In general for the GTA
— CS benchmark, we improve the result by 17% compared to the baseline,
while 12% come alone from the used perturbations. This shows that the used
perturbations are indeed the key of the success of such methods.

We also study the effect of different dropout and EMA score rates in Figure 2.
For the dropout experiment, the image mixing perturbation is not used, but it
is for the EMA experiment. It can be seen, that different EMA values hardly
have an effect on the final performance. Higher values achieve a slightly better
result. It should also be noted that higher EMA values lead to more stable
training and the results are much better reproducible. For the dropout values,



8 S. Scherer et al.

Dropout Experiment EMA Experiment Model Analysis

—e— GTA1o Cityscapes 52 e

48 o3| > SYNTHIAto Cityscapes s

46 -
52 w0

4 51

38 47 16

36 46 12
a5 8

34 —e— GTAto Cityscapes

—s— SYNTHIA to Cityscapes 44

mloU
&
ol

—— Teacher Model
Student Model

—— Student Model + Dropout

—— Student Model + CowMask

01 05 09 0.9999 0 50k 100k 150k 200k 250k

o o5
EMA value Training Steps
(a) (b) (c)

Fig.2: (a), (b) Ablation study for different dropout and EMA decay values for
the GTA — CS and the SYNTHIA — CS benchmark. (c) Performance of the
teacher model, the student model and the student model with the proposed
perturbations during training. The experiments were performed with a VGG16
as backbone. Best viewed in colour.
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the performance increases up to 0.4, then decreases again slightly. This may be
due to the fact that at very high dropout values too much information is lost.

To explain the effect of perturbations on the final performance, we conducted
an experiment where we continuously evaluate the teacher model and the stu-
dent model with and without our proposed perturbations. The result is shown
in Figure 2c. It can be seen, that the teacher model is always better as the
student model impaired by perturbations. That means, that the feedback the
student gets from the teacher during training is always on average better as its
own predictions. As it receives a positive feedback, the model may be able to
continuously improve itself and learn better decision boundaries.

4.4 Comparisons to state-of-the-art

For a fair comparison, we compare our method on both benchmarks with sim-
ilar methods from the last two years that are primary based on consistency
regularization for SSL in any kind. Note that not all published methods report
results for the VGG16 and the ResNet101 backbone. We report results using
hard pseudo-labels and both perturbations. The results are shown in Table 2
and Table 3. For the VGG backbone, we compare our method with two ap-
proaches that combine SSL with additional image-to-image translation [5,30].
For the ResNet101 backbone, we compare our method with four state-of-the art
methods that utilize SSL [1,12,15,25]. We can see that our much simpler ap-
proach achieves a substantial improvement on both benchmarks and achieves the
best results for the GTA — CS benchmark with both backbones. At the SYN —
CS benchmark we achieve the second-best results, while SAD [1] performs best.
However, we believe that this comes mainly from their additional class balanced
training and importance sampling, where they increase the sample frequency of
certain classes during training, as they reported a drop from 49.9% to 44.5% at
the GTA — CS benchmark when not using it. Specially importance sampling of
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Table 2: Results on the GTA5 — Cityscapes benchmark. We compare our

method using the VGG16 (A) and the ResNet-101 (B) backbone.
GTA5 — Cityscapes

o) ) = g . e - 5 =)

R EEE S NN EE R R

S @ 2 8 & A% L2 8 4 A 28 E 52 EE B |E
Baseline A|88.039.879.327.57.4 26.025.911.481.324.667.052.012.881.520.812.20.0 8.3 0.7 |35.2
Choi et al. [5] |A[90.251.581.115.0 10.7 37.5 35.2 28.9 84.1 32.7 75.9 62.7 19.9 82.6 22.9 28.3 0.0 23.0 25.4|42.5
Zhou et al. [30]|A|95.1 66.5 84.7 35.1 19.8 31.2 35.0 32.1 86.2 43.4 82.5 61.0 25.1 87.1 35.3 46.1 0.0 24.6 17.5 | 47.8
SAD [1]|A |88.1 41.0 85.7 30.8 30.6 33.1 37.0 22.9 86.6 36.8 90.7 67.1 27.1 86.8 34.430.48.5 7.5 0.0 |44.5
(w/o CBT-IS-FL)
SAD [1] A[90.053.1 86.2 33.8 32.7 38.2 46.0 40.3 84.2 26.4 88.4 65.8 28.0 85.6 40.6 52.9 17.3 13.7 23.8 | 49.9
Ours A|93.6 58.7 88.4 41.3 40.6 33.9 47.4 59.5 85.0 37.4 86.0 57.7 33.9 86.7 38.7 53.5 24.9 42.7 4.1 |53.4
Baseline B|(89.141.081.931.05.3 28.727.914.4 82.3 28.9 84.951.7 12.581.521.6 15.90.0 5.1 0.2 |37.0
MLSL [12] B|(89.0 45.2 78.2 22.9 27.3 37.4 46.1 43.8 82.9 18.6 61.2 60.4 26.7 85.4 35.9 44.9 36.4 37.2 49.3 [ 49.0
PixMatch [15] |B[91.6 51.2 84.7 37.3 20.1 24.6 31.3 37.2 86.5 44.3 85.3 62.8 22.6 87.6 38.9 52.3 0.65 37.2 50.0 [ 50.3
DACS [25] B [89.939.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.334.0(52.1
SAD [1] B|[90.4 53.9 86.6 42.4 27.3 45.1 48.5 42.7 87.4 40.1 86.1 67.5 29.7 88.5 49.1 54.6 9.8 26.6 45.3 | 53.8
Ours B[95.165.1 88.3 46.6 28.2 36.5 44.6 49.0 86.9 42.0 89.0 64.1 30.9 89.7 53.0 64.6 0.0 25.4 49.0 |55.2

rare classes is a typical approach of semantic segmentation applications in gen-
eral and not specific to UDA. Compared to PixMatch [15] that is mostly related
to our work, we observe a substantial improvement on both benchmarks.

We further evaluate our proposed solution for multi-source or multi-target
domain adaptation problems. At these experiments, we simply merge the differ-
ent domains or datasets into one. Table 4a shows that the performance increases
when we simply combine different synthetic datasets. Combining GTA5 and
SYNTHIA, we can improve the performance from 55.2% using GTA5 only to
59.9%. Including Synscapes as well, we can achieve a performance of 63.3%. This
shows that using multiple different synthetic datasets has a positive effect on
the performance, and that by exploring and combining more advanced synthetic
datasets, we could achieve similar results to a model trained fully supervised on
Cityscapes. Table 4b shows the result for the CS — ACDC benchmark, where
our proposed method is able to improve the performance on different visual con-
ditions. It should also be mentioned that we did not observe any deterioration in
the performance of the adapted model at the Cityscapes validation set. In this
context, the Source-only model is trained fully supervised on Cityscapes, while
the Oracle model used the labelled training set of Cityscapes and the ACDC
dataset as supervision. Compared to the Source-only model, we can improve
the performance relative to the Oracle model by nearly 55%. Since the ACDC
dataset contains only 400 images per visual condition at the training set, we
believe that a larger unlabelled dataset can further improve the results, making
the annotation process unnecessary in this case. The ability of SSL to use unla-
belled data is not exploited in this experiment, as both our UDA trained model
as well as the Oracle see the same images during training.
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Table 3: Results on the SYNTHIA — Cityscapes benchmark. We

method using the VGG16 (A) and the ResNet-101 (B) backbone.
SYNTHIA — Cityscapes

compare our

3 . 515
2} o g . B
R R - R R
=2 % 2 8 & &% &L % 4 2 £ 8 B2 8 B | E| B
Baseline A [44.8 19.6 64.7 3.1 0.1 26.0 4.8 12.7 75.9 75.5 46.4 12.3 65.1 15.7 10.0 18.5 | 31.0|35.9
Choi et al. [5] |A[90.1 48.6 80.7 2.2 0.2 27.2 3.2 14.3 82.1 78.4 54.4 16.4 82.5 12.3 1.7 21.8 | 38.5(46.6
Zhou et al. [30] |A|93.1 53.2 81.1 2.6 0.6 29.1 7.8 15.7 81.7 81.6 53.6 20.1 82.7 22.9 7.7 31.3 |41.5|48.6
SAD [1] A |77.9 38.6 83.5 15.8 1.5 38.2 41.3 27.9 80.8 83.0 64.3 21.2 78.3 38.5 32.6 62.1 (49.1|56.2
Ours A [65.0 25.6 81.9 19.1 0.0 31.1 1.3 40.9 79.1 82.4 61.5 27.9 86.5 61.4 14.6 37.7 | 44.7 | 51.2
Baseline B [52.5 20.6 72.8 3.0 0.0 27.6 0.0 6.8 78.8 78.7 42.7 15.8 67.7 18.5 8.6 18.6 |32.1|37.2
MLSL [12] B[59.2 30.2 68.5 22.9 1.0 36.2 32.7 28.3 86.2 75.4 68.6 27.7 82.7 26.3 24.3 52.7 | 45.2|51.0
PixMatch [15] |B [92.5 54.6 79.8 4.8 0.1 24.1 22.8 17.8 79.4 76.5 60.8 24.7 85.7 33.5 26.4 54.4 | 46.1 | 54.5
DACS [25] B [80.6 25.1 81.9 21.5 2.9 37.2 22.7 24.0 83.7 90.8 67.6 38.3 82.9 38.9 28.5 47.6 | 48.3 | 54.8
SAD [1] B [89.3 47.2 85.5 26.5 1.3 43.0 45.5 32.0 87.1 89.3 63.6 25.4 86.9 35.6 30.4 53.0 |52.6(|59.3
Ours B [89.0 53.6 85.0 23.7 3.2 34.4 6.0 41.3 82.2 80.6 54.1 39.0 86.2 68.1 25.6 45.1 | 51.1 | 58.1

Table 4: Results for multi-source and multi-target domain adaptation.
‘Sources ‘mIoU19

G 55.9 Method  |mloU"’
Single Source DA |S 44.3 Source-only|50.6
C 55.4 Ours 59.1
. G+S 59.9 Oracle 66.3
Multi Source DA G4S+C|63.3

(b) Results on the ACDC test set for
the Cityscapes — ACDC benchmark
using the ResNet101 backbone.

(a) Results on the Cityscapes validation
set combining different source domains. G:
GTAS5, S: SYNTHIA, C:Synscapes.

5 Conclusion

In this work, we investigated the problem of unsupervised domain adaptation
for semantic segmentation. To address this problem, we presented the use of an
approach for consistency regularization combined with perturbations on the in-
put image as well as the model itself. Through a comprehensive series of ablation
studies, we have sought to understand which aspects of this approach are most
important to the final performance of the model. We were able to show that
the type of perturbation is the key to success. Even a simple perturbation such
as dropout is able to improve the performance of the model by a large margin.
Combined with an image mixing method, the approach is able to achieve state-
of-the-art results. Future work may explore the combination of other existing
perturbation functions.
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