Abstract
In self-driving car applications, there is a requirement to predict the location of the road given an input RGB front-facing image. We propose a framework that utilizes an interleaving strategy of large and small feature extractors assisted via a propagating shared feature space allowing us to realize gains of over 2.5X in speed with a negligible loss in the accuracy of predictions. By utilizing the gist of previously observed frames, we train the network to predict the current road with greater accuracy and lesser deviation from previous frames.
P. Venkatesh, R. Rana and V. Jain—The authors contributed equally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
The Pascal Visual Object Classes (VOC) Challenge. Int. J. Comput. Vis. https://dl.acm.org/doi/10.1007/s11263-009-0275-4
Chen, C., Seff, A., Kornhauser, A., Xiao, J.: Deepdriving: learning affordance for direct perception in autonomous driving. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). ICCV 2015, pp. 2722–2730. IEEE Computer Society, USA (2015). https://doi.org/10.1109/ICCV.2015.312
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. arXiv:1711.03938 [cs] (2017)
Dosovitskiy, A., Ros, G., Codevilla, F., López, A.M., Koltun, V.: Carla: an open urban driving simulator. arXiv:abs/1711.03938 (2017)
Hu, P., Heilbron, F.C., Wang, O., Lin, Z.L., Sclaroff, S., Perazzi, F.: Temporally distributed networks for fast video semantic segmentation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8815–8824 (2020)
Kim, Y.: Two-step recurnet - younghyun. https://sites.google.com/site/entertain84/research-project/TSRN
Kolesnikov, A., et al.: Big Transfer (BiT): general visual representation learning. arXiv:1912.11370 [cs] (2020). version: 3
Liu, M., Zhu, M., White, M., Li, Y., Kalenichenko, D.: Looking fast and slow: memory-guided mobile video object detection. arXiv:1903.10172 [cs] (2019)
Liu, X., Deng, Z., Yang, Y.: Recent progress in semantic image segmentation. Artif. Intell. Rev. 52(2), 1089–1106 (2019). https://doi.org/10.1007/s10462-018-9641-3
Lo, S.Y., Hang, H.M., Chan, S.W., Lin, J.J.: Efficient dense modules of asymmetric convolution for real-time semantic segmentation. In: Proceedings of the ACM Multimedia Asia (2019)
Nirkin, Y., Wolf, L., Hassner, T.: Hyperseg: patch-wise hypernetwork for real-time semantic segmentation. In: CVPR (2021)
Rong, G., et al.: LGSVL simulator: a high fidelity simulator for autonomous driving. arXiv:2005.03778 [cs, eess] (2020)
Shah, S., Dey, D., Lovett, C., Kapoor, A.: AirSim: high-fidelity visual and physical simulation for autonomous vehicles. arXiv:1705.05065 [cs] (2017)
Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017). https://doi.org/10.1109/TPAMI.2016.2572683
Xavier, A.: An introduction to convlstm, April 2019. https://medium.com/neuronio/an-introduction-to-convlstm-55c9025563a7
Yu, F., Koltun, V.: Multi-Scale Context Aggregation by Dilated Convolutions. arXiv:1511.07122 [cs] (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Venkatesh, P., Rana, R., Jain, V. (2022). Memory Guided Road Segmentation. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13231. Springer, Cham. https://doi.org/10.1007/978-3-031-06427-2_63
Download citation
DOI: https://doi.org/10.1007/978-3-031-06427-2_63
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06426-5
Online ISBN: 978-3-031-06427-2
eBook Packages: Computer ScienceComputer Science (R0)